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Spatial modelling based on line transect data is a standard method for characterising
marine mammal distributions and habitat preference. However, collecting the data
required is costly and may be difficult in remote areas. Models based on habitat
variables offer the potential to predict where the species will occur in areas outside
the area of a localised survey. This has important implications for spatial management
where decisions have to be made that affect wide areas over which comprehensive
survey efforts may not be feasible. This study demonstrates that it is possible, using
a spatially limited data set, to characterise habitat use and predict the distribution
of two poorly known sympatric delphinids around the Falkland (Malvinas) Islands
(FI), Commerson’s dolphins (Cephalorhynchus commersonii) and Peale’s dolphins
(Lagenorhynchus australis). We used a Hurdle model approach to investigate the
relationship between dolphin sightings (from a spatially restricted boat-based line
transect survey) and environmental covariates. We then used the modelled relationships
to predict the distribution and relative abundance of Commerson’s and Peale’s dolphins
over the entire FI inshore waters. We compared the predicted distribution maps to
independent sightings from a subsequent island-wide aerial line transect survey, and
found a close match between predicted and observed distributions. Commerson’s
dolphins preferred nearshore waters with strong tidal mixing and were most numerous
close to river mouths and in upper inlets or channels. In contrast, Peale’s dolphins
preferred deeper, well-stratified areas further from shore as well as nearshore waters
with extensive kelp beds. While the two dolphin species are often considered sympatric,
our results indicate fine-scale habitat partitioning based on specific habitat preferences,
which is important to consider in further studies and marine spatial planning. We provide
several methodological refinements to prepare transect sighting data for spatial analysis
and implement Hurdle models more easily using the new “dshm” R-package. We also
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show the usefulness of such refinements applied to a carefully chosen spatially limited
dataset as a cost-effective approach to elucidating species distribution patterns. Our
methodology and software implementations can be easily applied to transect survey
data of other marine and terrestrial taxa.

Keywords: Falkland Islands, habitat partitioning, Hurdle model, line transect survey, predictive species
distribution modelling, Commerson’s dolphin, Peale’s dolphin

INTRODUCTION

Understanding how environmental factors shape species
distributions is a key concept in ecology. Characterising species-
environment relationships can facilitate accurate predictions
of species’ spatial distributions (Guisan and Zimmermann,
2000), and help identify ecological niches (Austin et al., 1990;
Barragán-Barrera et al., 2019). Knowing where animals occur
within a specific region is also crucial for effective management
and for the implementation of conservation measures (Guisan
et al., 2013). Ideally, the entire area of interest is surveyed in
order to estimate the distribution of animals. However, survey
data may be very costly to obtain and are restricted to times
and areas where direct observations are possible. To overcome
this spatial limitation, such data can be analysed together with
associated habitat covariates, and the resulting models used
to predict where animals could be, as long as the surveyed
area has covered similar environmental conditions to that
of the region of interest (Guisan and Zimmermann, 2000;
Mannocci et al., 2014).

One such area where surveys in the complex marine
environment are challenging, is around the Falkland (also known
as Malvinas) Islands (FI) in the South Atlantic. The FI are situated
on the Patagonian Shelf and include the two main islands, East
Falkland and West Falkland, and 776 smaller islands. The coast
is convoluted and lined by extensive kelp beds (Macrocystis and
Lessonia spp.), which can extend up to 10 km offshore, and cover
an area of around 1,600 km2. These inshore waters are important
to a community of marine animals including meso predators such
as Commerson’s dolphins (Cephalorhynchus commersonii) and
Peale’s dolphins (Lagenorhynchus australis). The current lack of
information on the distribution and habitat use of Commerson’s
and Peale’s dolphins in FI waters limits the proper assessment of
their conservation status at national, regional and international
levels as well as their inclusion in local and regional management
plans (Augé et al., 2018). Both are key species in the FI Species
Action Plans (Otley, 2008), requiring population assessments
and baseline understanding of their ecology so that they can
be included in wider marine spatial planning initiatives. The
shelf area around the FI has experienced a substantial increase
in anthropogenic activities including oil exploration, shipping
traffic, commercial fishing, aquaculture, and tourism (Otley,
2008; Augé et al., 2018). Such activities often negatively affect
marine ecosystem stability and functioning, and thus should
be carefully assessed and managed, requiring information on
spatial overlap between species distributions and anthropogenic
activities. Commercial fishing and aquaculture are still in their
infancy in the FI inshore waters, providing a relatively rare

opportunity to investigate species distributions prior to the onset
of these potentially damaging human activities.

Commerson’s and Peale’s dolphins inhabit continental shelf
waters ranging from shallow nearshore to offshore waters up to
300 m deep (Dellabianca et al., 2016; Cipriano, 2018), and are
often considered to be sympatric species in the South Atlantic,
including the FI. Peale’s dolphins make extensive use of kelp
beds for foraging (Viddi and Lescrauwaet, 2005), and their diet is
known to consist of bottom and demersal fishes as well as octopus
and squid species living on the continental shelf or associated
with kelp (Schiavini et al., 1997). A similar diet composition
was also found for Commerson’s dolphins inhabiting the same
region (Riccialdelli et al., 2010). Commerson’s dolphins have
been observed in estuarine zones feeding in shallow waters
near river mouths where their distribution is influenced by
tidal patterns (Garaffo et al., 2011; de Castro et al., 2013).
Tidal fronts are a dominant oceanographic feature around the
FI (Acha et al., 2004). Frontal areas are associated with high
primary productivity, and usually attract diverse low and high
trophic level consumers, including meso or top predators such
as dolphins (Davis et al., 2002; Dellabianca et al., 2012). Modelled
distribution for both Commerson’s and Peale’s dolphins matched
previously described frontal zones on the Patagonian shelf (Acha
et al., 2004; Dellabianca et al., 2016), but such relationships have
not yet been investigated in other parts of the species’ ranges.

The aim of this study was to make use of a spatially limited
dataset to investigate habitat use of Commerson’s and Peale’s
dolphins in the entire FI inshore waters. Firstly, we describe the
relationships between habitat covariates and sightings of dolphins
based on data from a systematic small-scale survey. Secondly,
we predict the spatial distributions of both species throughout
the FI inshore waters, using a Hurdle model approach. We use
the model predictions to identify key areas for both species,
and examine spatial overlap between preferred habitats. We
demonstrate the usefulness of our methodology for predictive
habitat modelling, which should be relevant to other complex
areas and data-poor species.

MATERIALS AND METHODS

Sighting Data
Sightings of Commerson’s and Peale’s dolphins were collected
during a 10-day vessel-based line transect survey conducted
from the 26th of February to the 7th of March 2014 and
implemented as part of the Darwin Initiative UK Overseas
Territories Challenge Fund Project “Inshore Cetaceans of the
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Falkland Islands” (Project Reference: EIDCF019; Thomsen,
2013). Surveys were conducted with a 15 m converted fishing
vessel (MV Condor) which housed the observation team. During
surveys, two dedicated observers scanned continuously ahead of
the vessel and out to 90◦ of the track line using the naked eye
aided by 7 × 50 binoculars when needed. For each sighting,
species identification, estimated group size, behaviour, distance
and angle to the sighting (using measuring sticks and angle
boards, respectively) as well as sighting conditions were reported
to a third observer inside the wheelhouse who recorded these data
in the bespoke software Logger (Gillespie et al., 2010) along with
the date, time and the vessel’s GPS location.

Due to time and budget constraints the survey could only
cover a small but representative part of the FI inshore waters
(Thomsen, 2013). The survey area comprised the different coastal
habitat types around the FI, and encompassed approximately
2,000 km2 split into nine smaller regions or strata containing
72 transect lines (extending from 0.3 to 10 km offshore),
located in the northern part of West Falkland, the northern
part of Falkland Sound, and the southern part of East Falkland
(Figure 1). The survey was designed using the software Distance
v.6 (Thomas et al., 2010). Average vessel steaming speed was 8
knots (Thomsen, 2014).

Aerial line-transect surveys with a fixed wing aircraft were
conducted during nine days from March to May 2017 using two
trained observers and one data recorder. Software Distance v.6.2.
was used to design the survey to cover the entire FI inshore waters
resulting in 217 parallel transect lines (extending from the coast
to 10 km offshore; Supplementary Figure 1). The aircraft flew at
a height of 150 m at a speed of 90 knots (∼167 km/h).

All field work was carried out in accordance with the
guidelines for the Treatment of Marine Mammals in Field
Research (Society for Marine Mammalogy) and approved by
the University of St Andrews, School of Biology Animal
Ethics Committee.

Habitat Covariates
To model dolphin habitat preference, we considered six
environmental covariates: distance to coast (DC), distance to kelp
(DK), distance to 100 m isobath (D100), distance to main river
mouths (DRM), water depth, and water column stratification
index (SI). These abiotic variables were considered proxies
characterising biologically relevant yet unknown links between
dolphins and their environment (e.g., via prey distribution) and
had been shown or were suspected to be of importance to either
species (Garaffo et al., 2011; de Castro et al., 2013; Dellabianca
et al., 2016; Heinrich et al., 2019).

All distances were calculated as least cost distances using
the “gdistance” R-package (van Etten, 2017). Water depth
was obtained from the 2014 GEBCO 30 arc-second gridded
bathymetry (equivalent to a spatial resolution of 0.9 km;
Weatherall et al., 2015). We applied bilinear interpolation in
QGIS (v 2.16.2) to resample covariates at a resolution of 50 m
(Qgis Development Team, 2017).

We obtained kelp and coastline data from the South Atlantic
Environmental Research Institute (SAERI) and validated them
with satellite images in Google Earth Pro. The 100 m isobath

was extracted from the GEBCO gridded bathymetry while main
river mouth locations were obtained from a nautical chart and
validated in Google Earth Pro.

The water column stratification index (SI) used in this study
was calculated using depth and the mean depth-averaged tidal
speed, and indicated if the water column was more likely to
be stratified (two layers) or vertically homogeneous (mixed)
(Simpson and Hunter, 1974). The SI values were calculated using
depths from the GEBCO 30 arc-second bathymetry and tidal
currents predicted by the 30 arc-second Patagonian Shelf model
using the Tidal Model Driver (Egbert and Erofeeva, 2002). The
resulting stratification indices represented a static field unlikely to
reflect exactly the highly dynamic in situ conditions at the time of
the survey, and should be interpreted as representing the general
stratification characteristics of a particular area.

Characteristically on the continental shelves SI values range
from 1 to 5 with the boundary between stratified and mixed
layers called tidal front (Simpson and Hunter, 1974; Hill et al.,
2008). Stratification index values higher than 2.7 indicate a high
possibility for a stratified water column, while lower values
suggest a homogeneous (mixed) water column. Changes in water
temperature and salinity across tidal fronts and between the
top and bottom layers in the stratified water column are large
enough to be detectable by marine mammals, and therefore make
them a biologically relevant oceanographic feature for our study
(Bost et al., 2009).

Modelling
General Approach
Dolphin distribution patterns were assessed by investigating
the relationship between the six habitat covariates and dolphin
sighting data collected in 2014. This was achieved with a
modelling approach divided into five main steps: (i) Average
detection probabilities were estimated for each species from all
sightings along all transect lines. (ii) Transect lines were split
into segments, with each segment having values for segment
size (area), habitat covariates, and the number of dolphins
observed. (iii) Models were fitted using the segment data, and
then used to predict the expected numbers of dolphins over
the entire FI inshore waters using gridded values of habitat
covariates. (iv) The models were validated by qualitatively
comparing predictions with dolphin sightings collected during an
independent, island-wide aerial survey for cetaceans in 2017. (v)
Finally, the uncertainty in the predictions was assessed through
non-parametric bootstrapping.

Setting Up Segments and the Prediction Grid
We split transect lines into segments with a minimum length
of 5 km and added a buffer (i.e., transforming segments from
lines to polygons). Using segments of sufficient length had the
following advantages: avoiding excessive autocorrelation between
data from adjacent segments; restricting the size of the data set
to be fitted; and reducing the number of segments containing
no dolphin sightings (counts = 0). This ensured satisfactory
goodness-of-fit (see Results). Since dolphins were sighted at a
range of distances from the vessel and were not always close to
the transect lines, we selected a 1.5 km buffer in order to provide
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FIGURE 1 | Transect lines travelled during the 2014 ship-based survey (in black). Round symbols = sightings for Commerson’s (black) and Peale’s (white) dolphins.
Symbol size is proportional to the observed group size. Light-grey polygons = surveyed area, outer line = 100 m isobath. Inset map: Falkland Islands in relation to
South America.

a better representation of the habitat covariates associated with
the actual sighting locations. We then calculated the segment area
(used as an offset term in the modelling) and a median value of
each habitat covariate for each segment. Finally, we built a 1 km
grid to predict the distributions of both dolphin species across
the entire FI inshore waters (see below). Median covariate values
were calculated within each grid cell. We restricted the grid extent
to the surveyed environmental space (i.e., we excluded grid cells
where covariates were outside the original range of the data).
This avoided predictions outside the calibration ranges, as these
might be unreliable.

Model Calibration, Predictions and Validation
We estimated the detection probability p̂ for each species by using
perpendicular distances to all sightings (from all transect lines in
the entire survey area) and a hazard-rate detection function in
the “Distance” R-package (Thomas et al., 2010). Species-specific
average detection probabilities entered the models as an offset
term. We modelled dolphin sighting data using a Hurdle model
approach consisting of a binomial sub-model for presence–
absence (PA) and a zero-truncated Poisson sub-model for the
number of dolphins detected conditional on presence (AB). Final

predictions from the Hurdle model were obtained by multiplying
together PA and AB sub-model predictions.

Both sub-models assumed smooth GAM (Generalized
Additive Model) relationships between response variable and
habitat covariates. We used a shrinkage version of cubic splines
to reduce overfitting, and a maximum knot number of 10 and
3 for PA and AB sub-models, respectively. We selected a lower
knot number for the AB sub-model due to fitting instabilities
(the algorithm did not converge with the smaller presence-only
dataset). We fitted full models (i.e., containing all 6 habitat
covariates) and checked them for concurvity, which occurs when
one or more smooth terms in a GAM model can be approximated
with one or more smooth terms within the same model (i.e.,
a non-parametric analogue for multi-collinearity). In case of
concurvity indices close to 1 (i.e., full concurvity vs. 0 = no
concurvity), all covariates with Pearson correlation coefficient
(R) ≥0.5 or ≤-0.5 were only considered in different sub-model
variants (i.e., sub-models with different covariate structure;
Ramsay et al., 2003). We then specified and fitted variants for
each sub-model and we selected all variants yielding an AICc
(i.e., Akaike Information Criterion corrected for smaller sample
size) weight (δw) ≥ 0.1. If multiple variants were selected, we
scaled their AICc weights by dividing the δw of each ith selected
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variant (δw,i) by the sum of the weights of all n selected variants(
i.e.,

n∑
i=1

δw,i

)
. After checking selected variants for concurvity,

we calculated the weighted average of their predictions using
scaled δw. Hurdle model goodness-of-fit was assessed through
examination of the QQ-plot of the cumulative distribution
function (CDF) vs. the empirical distribution function (EDF)
and Kolmogorov–Smirnov (K–S) tests. Spatial autocorrelation in
residuals was evaluated with correlograms. We used the selected
Hurdle sub-models to estimate the expected number of dolphins
per km2 on the prediction grid, based on the covariate values
within each 1 km2 grid cell. Grid cells with higher values were
interpreted to represent areas of better dolphin habitat and
contribute to what we term key areas of distribution. Finally,
model predictions were validated visually by overlaying the
dolphin sightings from the 2017 aerial surveys on the predicted
density surface. If the habitat preference model included an
appropriate set of covariates and provided that the association
between dolphin distribution and habitat variables remained
consistent over time, our expectation was that the independent
sighting data should provide a reasonably good match to the
overall predicted distribution patterns, i.e., that areas where
more dolphins were predicted to occur should have yielded
more sighted dolphins than those areas where the species was
predicted to be absent or occur in low numbers. Because of the
nature of the different datasets we did not attempt to quantify
their close correspondence, but were looking to corroborate the
overall predicted distribution patterns for each species.

Model Uncertainty
We assessed uncertainty in predictions for each grid cell with
lower and upper limits of the 95% confidence interval (CI)
calculated after stratified non-parametric bootstrapping. Briefly,
we ran 1,000 simulations each made of two steps: (i) we randomly
sampled (with replacement) rows of the observation dataset (i.e.,
sightings) to estimate detection probabilities; and (ii) we fitted
the calibrated model and predicted number of dolphins on the
prediction grid after randomly sampling (with replacement) rows
of the segment dataset (i.e., segments) containing information
on segment habitat covariates, area and average detection
probability estimated in (i). Random sampling with replacement
was stratified by stratum, i.e., we resampled segments within
each stratum. Note that we fitted the same calibrated sub-model
variants with the same AICc weights (in case of selection of
multiple variants) and smooth term knot locations. All 1,000
prediction grids were subsequently converted into two grids for
lower and upper limits of the 95% CI.

Modelling Implementation
The R-package “dshm” (Density Surface Hurdle Modelling) was
developed for this analysis1 to undertake some of the data
preparation and implement the Hurdle models. One of the
advantages of the “dshm” R-package is that it contains a set
of functions to quickly split transect lines into segments, add a
buffer to them and calculate zonal statistics for each segment.

1https://github.com/FilippoFranchini/dshm

This allows the user to explore how model goodness-of-fit and
spatial correlation change with segment size, and thus to select a
reasonable size to ensure model robustness.

RESULTS

The total length of the 2014 boat survey transects was 567 km.
The number of observed dolphin groups was 73 (total number
of individuals: 266) and 33 (total number of individuals: 103) of
Commerson’s and Peale’s dolphins, respectively (Figure 1).

Detection Probabilities
Due to the relatively limited number of sightings for both species,
we decided to omit the 5% truncation distance that is usually
applied to the right tail of the detection function (Buckland
et al., 2001). The estimated detection probability p̂ was 0.54
(CV = 0.093) for Commerson’s and 0.54 (CV = 0.352) for
Peale’s dolphins (Figure 2). The goodness-of-fit tests showed
satisfactory fit for both species (Commerson’s dolphins: K–S
test statistics = 0.08 and p = 0.76; Peale’s dolphins: K–S test
statistics = 0.09 and p = 0.94).

Spatial Hurdle Models
The full Hurdle model yielded smooth term concurvity indices
ranging between 0.32 and 0.99 (Supplementary Table 1). As
a consequence, pairs of covariates with Pearson correlation
coefficient (r) outside the interval including 0.5 and −0.5 were
not considered together in the same model (Supplementary
Table 2). Water stratification index was not correlated with any
of the other covariates (−0.2 ≤ r ≤ 0.3), which instead were all
correlated (−0.8 ≤ r ≤ −0.5 and 0.5 ≤ r ≤ 1), and thus not
included together in the same sub-model variant (i.e., reduced
Hurdle sub-models with different covariate structure). Although
the Pearson correlation coefficient for the distance to the 100 m
isobaths and water depth was equal to 0.4, a visual check through
scatterplots suggested a substantial degree of correlation (not
shown). This is reasonable as water depth increases so D100
decreases on the coastal side. DC, DRM, and DK were also
positively correlated since kelp beds line the coast, and river

FIGURE 2 | Fitted hazard-rate detection functions (solid lines) for
Commerson’s dolphins (left) and Peale’s dolphins (right). The detection
function is superimposed on a histogram of detection probabilities with bars
scaled so that their areas match the area below the detection function.
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FIGURE 3 | Smooth terms (s, linear predictor scale) of selected variants for presence-absence (PA) and numbers of dolphins given presence (AB) sub-models for
Commerson’s and Peale’s dolphins. Smooth term effective degrees of freedom (edf) in brackets on the y-axis. Shaded area = 95% confidence intervals. Internal ticks
show covariate values covered by the observations. DRM, distance to river mouth; SI, water stratification index; D100, distance to 100 m isobaths; DK, distance to
kelp; DC, distance to coast.

mouths are also located along the coastline. We therefore applied
model selection to five reduced sub-model variants that included
the water stratification index in combination with each of the
remaining covariates (Supplementary Table 3).

The variant including DRM and SI yielded the best fit for both
PA and AB Commerson’s dolphin sub-models which explained
27.2 and 13.5% of the deviance, respectively (Supplementary
Table 3). The covariate with the most pronounced effect on
probability of presence was SI, which showed a U-shaped
relationship with minimum values around 5 (Figures 3, 4). This
relationship clearly showed that Commerson’s dolphins were
associated with deep, well-stratified waters (SI > 5) as well
as regions that experience very strong tidal mixing (SI < 2).
Commerson’s dolphins were found close to tidal fronts as well as
on both stratified and mixed sides. Both probability of presence
and E (n|n > 0) (i.e., the estimated number of dolphins given
presence) were inversely related to DRM, i.e., Commerson’s
dolphins appeared to prefer to stay close to river mouths and

tended to aggregate in such areas. Stratification index did not
have an effect on estimated numbers of Commerson’s dolphins.

In addition to SI, the selected PA sub-model variant for Peale’s
dolphins included D100 and explained 17.1% of the deviance
(Supplementary Table 3). In contrast to Commerson’s dolphins,
the AB sub-model included two variants with DK and DC
explaining 38.1 and 33.3% of the deviance, respectively. Water
stratification index had the lowest effect in the PA sub-model
and no effect in the AB sub-model (Figures 3, 4). Probability
of presence was inversely related to D100 and positively related
to SI, while E (n|n > 0) for Peale’s dolphins showed a similar
inversed U-shaped relationship with both DK and DC. Thus,
Peale’s dolphins seemed to prefer offshore and well-stratified
waters, but they tended to aggregate at approximately 2 km
from kelp beds and coast. Since DK and DC belonged to two
different variants, the degree of association of E (n|n > 0) for
Peale’s dolphins with these two covariates differed, with covariates
with highest δw having the highest degree of association. Thus,
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FIGURE 4 | Hurdle model point estimates for the predicted number of Commerson’s and Peale’s dolphins (A and B, respectively). Superimposed locations represent
the sightings collected during the aerial surveys conducted in 2017. Symbol size is proportional to the observed group sizes. Inset in (A) magnification of the central
part of the Falkland Sound for Commerson’s dolphins. Both maps are reported on the same colour scale. The four maps in the middle show the covariate values: SI,
water stratification index; D100, distance to 100 m isobaths; DRM, distance to main river mouth; DK, distance to kelp.

the E (n|n > 0) for Peale’s dolphins was more associated with DK
(δw = 0.81) than with DC (δw = 0.17).

Concurvity indices for smooth terms within the selected
sub-model variants for both dolphin species ranged between
0.08 and 0.31 (Supplementary Table1). QQ-plots and goodness-
of-fit tests showed a satisfactory fit of the Hurdle model

for Commerson’s dolphins (Kolmogorov–Smirnov test
statistics = 0.14, p = 0.06) and a less satisfactory fit of that
for Peale’s dolphins (Kolmogorov–Smirnov test statistics = 0.15,
p = 0.03) (Supplementary Figure 2). Spatial correlation of
Hurdle model residuals for Commerson’s dolphins decreased
with distance while that for Peale’s showed a fluctuating pattern
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FIGURE 5 | Hurdle model lower (A) and upper (B) bounds of the 95% confidence interval for the predicted density (dolphins/km2) of Commerson’s dolphins. For
further explanation see Figure 4.

across the whole range of distances (Supplementary Figure 3).
The proportion of the correlation values within−0.1 and 0.1 was
58% for Commerson’s and 70% for Peale’s dolphins.

Hurdle Model Predictions, Uncertainty,
and Validation
According to the fitted Hurdle model, Commerson’s dolphins
were found in all FI inshore waters (Figures 4–6). Larger
numbers of Commerson’s dolphins were predicted for the
central part of the Falkland Sound. In contrast, Peale’s dolphins
were predicted to occur in more offshore waters and in lower
densities (Figures 4–6). For both species predicted key areas
matched the sighting locations of dolphins from the 2017
aerial surveys (SAERI unpublished data) which had covered
4,255 km in the entire inshore waters, with 195 and 55 groups
of Commerson’s and Peale’s dolphins observed, respectively
(Figures 4–6, Supplementary Figure 1). This finding suggests
that the habitat model included an appropriate and sufficient set

of relevant predictor variables to make effective predictions, and
supports the assumption that the association between dolphins
and habitat covariates remained consistent over time.

DISCUSSION

This study succeeded in generating robust spatial predictions
from a spatially limited survey conducted over a short time
period and extrapolating the distribution and habitat use of two
dolphin species to cover the entire Falkland archipelago. Our
results suggest that while some preferred habitat is shared, there
is spatial niche separation between the two species.

Methodological Considerations
Representative sampling is an important consideration in
modelling studies and requires some a priori knowledge of the
species’ ecology. We were able to draw on ecological knowledge
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FIGURE 6 | Hurdle model lower (A) and upper (B) bounds of the 95% confidence interval for the predicted density (dolphins/km2) of Peale’s dolphins. For further
explanation see Figure 4.

of each species from studies conducted in other parts of the
species’ ranges (Garaffo et al., 2011; de Castro et al., 2013;
Dellabianca et al., 2016; Heinrich et al., 2019) to guide the
selection of potentially relevant environmental variables. The
covariate ranges surveyed during the boat-based survey were
representative of the overall FI inshore waters, thus allowing
predictions within environmental space but extrapolation in
geographic space.

Habitat modelling requires decisions about a trade-off
between high-resolution data and model robustness. Where data
are limited, model robustness can only be assured at the expense
of data resolution. The resolution or grain size (e.g., segment
area in our study) of the model should not be confused with the
resolution of the prediction grid (e.g., grid cell area). The use of
an offset term for grain size in the model allows for predictions
of animal occurrence or relative abundance on higher resolution

grid cells, while the underlying relationships are those originally
fitted to the model grain size. Decreasing model resolution by
taking large grain sizes also helps to reduce spatial autocorrelation
in the response variable, which is a frequent problem in predictive
habitat modelling (Guisan et al., 2007; Mannocci et al., 2017).
Ideally one would like to know the best grain or segment size
to ensure robustness and simultaneously maximise resolution
(Mertes and Jetz, 2018). Splitting transects into segments can
be a very tedious, time-consuming process that often requires
the user to switch between different software packages. The
newly developed “dshm” R-package greatly facilitates the splitting
of transects into segments, the exploration of different grain
sizes and the selection of a reasonable resolution to ensure
model robustness.

This study presents five updates to the methodology currently
used for predictive habitat modelling (Embling et al., 2010;
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Hammond et al., 2013; Dellabianca et al., 2016): (1) Use
of zonal statistics: Predictor variables are usually derived by
using a point-sampling approach, in which the covariate values
associated with the chosen spatial unit (e.g., segment) are those
sampled just below the unit centroids. This procedure might be
inappropriate since habitat features at a small specific location
might not be representative of the area where the animals were
observed. We used a zonal-statistics approach in which the
values of each predictor variable for a segment were derived
as the median of all that covariate’s values available for that
particular segment. Using the median rather than the mean
decreased possible bias in covariate statistics for segments near
the coastline. This is particularly important for heterogeneous
environments, where covariate values might vary greatly over
small spatial scales. (2) Use of buffered segments: Responsive
movements are a common problem in boat-based surveys
for cetaceans (Palka and Hammond, 2001) and can lead to
biases in the detection probabilities (e.g., in our study both
dolphin species showed strong attraction to the boat, leading
to positive biases in the detection probabilities). Buffering the
transect line by 1.5 km and using a zonal-statistics approach
alleviated this attraction bias in our habitat modelling approach.
The buffer size was chosen to reflect the range over which
responsive movements were thought to occur. Thus, although
the recorded spatial position of the animals might not represent
their precise undisturbed position, the spatial integration of
covariate values ensured representation of the natural habitat
that the animals occurred in. (3) The binomial part of the
Hurdle model allows zero inflation to be addressed. This is
a common problem in animal surveys (Martin et al., 2005),
and particularly so for rarely observed species (Welsh et al.,
1996). Hurdle models are also ecologically sensible for scenarios
where the processes driving the presence of a species differ
from those affecting its abundance (Ridout et al., 1998).
(4) Addressing GAM flexibility: The flexibility of the GAM
framework is a “double-edged sword”: it enables one to model
complex biological relationships but can also lead to overfitting
(Morgan and Ridout, 2008). In this study the risk of overfitting
was minimised by implementing a shrinkage version of cubic
spline. (5) Stratum-specific bootstrapping: Model uncertainty
was evaluated by using non-parametric bootstrapping with
replacement, which is free from assumptions on parameter
distributions (Fletcher et al., 2005). This approach, however, can
be affected by fitting instabilities related to spatial gaps arising
from resampling with replacement over the entire study area. We
reduced such gaps by adopting a “stratified” approach in which
resampling with replacement was limited to segments within
the same stratum.

Predicting Distributions of Sympatric
Dolphins
Our model predictions showed that Commerson’s and Peale’s
dolphins used different key habitats around the FI with only
some spatial overlap in distributions (Figures 4–6). Commerson’s
dolphins were predicted to be most abundant in the central part
of Falkland Sound, off the northern East Falkland coast as well as

in the interior part of sounds and inlets around West and East
Falkland. In contrast, Peale’s dolphins were predicted to occur
mostly off the southern and north-western coasts of the Falkland
archipelago. This difference in predicted spatial distributions
resulted from the different modelled relationships that both
species had with inshore habitat covariates. The environmental
variables likely served as proxies for linked biological variables
that could not be measured directly (such as the distribution
or density of prey or predators) and might have reflected
the differences in species-specific physiological and ecological
responses (Kiszka et al., 2015; de Thoisy et al., 2016).

Probability of presence of Commerson’s dolphins appeared
to be linked to the water SI with areas of very low SI (e.g.,
Falkland Sound) or very high SI (e.g., northern West Falkland,
most FI inlets) being those where Commerson’s dolphins were
most likely to occur (Figure 4). This suggests that Commerson’s
dolphins preferred to be close to tidal fronts as well as stay on the
mixed or stratified sides. The importance of tidal fronts to the
distribution of Commerson’s dolphins has also been suggested
for the Argentinian coast (Dellabianca et al., 2016). In contrast to
presence, Commerson’s dolphin abundance seemed to be mostly
linked to distance to rivers with the highest numbers occurring
in upper inlets, and close to river mouths. Such preference for
nearshore neritic environments with strong tidal influence and
estuarine zones is a defining feature for all species in the genus
Cephalorhynchus (Heinrich et al., 2010; de Castro et al., 2013;
Heinrich et al., 2019).

Presence of Peale’s dolphins was mostly associated with D100,
with the highest probability of observing the species close to
the 100 m isobaths, i.e., shelf-waters further offshore. Although
occurrence was predicted to be higher in deeper and well-
stratified shelf waters, Peale’s dolphins also tended to be more
numerous in shallower waters close to the coast and near to kelp
as shown by the importance of both DK and DC in the abundance
model and the resulting predicted distribution (Figures 3, 4).
Such overall plasticity in occurrence has now emerged as a feature
consistent for Peale’s dolphins across their entire distributional
range (Dellabianca et al., 2016; Heinrich et al., 2019; this study).
Peale’s dolphins’ reliance on nearshore habitat, at least during
summer, is well documented from southern Argentina (De
Haro and Iñiguez, 1997), with kelp forests thought to represent
important feeding grounds (Schiavini et al., 1997; Viddi and
Lescrauwaet, 2005; Riccialdelli et al., 2010). The low number of
Peale’s dolphin sightings affected the model goodness-of-fit (p-
value near the 5% threshold, Supplementary Figure 2). Despite
these limitations the resulting predicted spatial distribution was
well matched by sightings from the independent aerial survey
suggesting that the model predictions succeeded in capturing the
dolphins’ overall habitat preference.

Although Commerson’s and Peale’s dolphins are fully
sympatric across their South Atlantic range, our predicted
distribution maps and other large-scale modelling studies
(Dellabianca et al., 2016) indicate fine-scale habitat partitioning
between the two species. Strategies that enable sympatric
species to co-exist include spatial or temporal differences in
habitat use, dietary divergence and specialisation, as well as
differences in activity patterns and socially mediated behaviours
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(Begon et al., 2006). Future research into niche partitioning of
these two species should therefore focus on investigating ranging
patterns, site fidelity, social interactions (e.g., using individual
identification studies; e.g., Parra, 2006; Coscarella et al., 2011) and
establishing diet and trophic niche overlap (using stable isotope
or fatty acid analyses; e.g., Querouil et al., 2013; Giménez et al.,
2018). The predicted distribution maps from this study should
prove helpful to identify suitable FI study areas for such intensive,
focal research endeavours.

Conservation and Management
Relevance
The most recent Falkland Islands Species Action Plan for
Cetaceans (2008–2018) identifies a range of suspected and
known threats to the marine ecosystem on the shelf around
the FI, including pollution, bycatch, vessel traffic and climate
change, and highlights novel and expanding activities with the
potential for harmful interactions such as aquaculture, tourism
and commercial fishing (Otley, 2008). Identifying potential areas
of importance for these dolphin species as well as their overlap
with human activities should serve as a guide for future research
efforts and the current FI marine spatial planning activities.

The underlying data for such studies is, however, often very
hard to obtain, especially as information from a range of species is
needed to enable focussed management and conservation efforts.
One can argue that meso and top predators often forage in
aggregations with other species (hotspots) and that therefore the
use of data from sentinel species are enough, but on smaller
scales, as in coastal waters, niche separation might indicate
reliance on different prey and/or areas. Relevant high-resolution
data are therefore necessary to resolve such differences. Remote
tracking technologies have enabled us to collect high-resolution
information about movements and foraging behaviour, but while
such data can provide an unprecedented amount of detail, studies
are usually limited to one species, low numbers or are hampered
by a lack of concurrent data in case of multi-species approaches
(Baylis et al., 2019).

We have shown a practical and cost-effective approach using
a spatially limited dataset to estimate multi-species distribution
patterns. We have demonstrated the robustness of this method by
comparing the patterns with sightings from another survey. The
methodology and software implementations provided here can
be easily applied to transect survey data of other mobile marine
and terrestrial taxa where the area of interest is representative of
but larger than the area surveyed. This will help us to address
the challenges ahead in conservation and management of the
marine environment.
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