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The genus Hydrogenovibrio consists of chemolithotrophic sulfur- and hydrogen-
oxidizing bacteria that are found in diverse marine environments including hydrothermal
vents where they can reach high cell numbers. Although several vent Hydrogenovibrio
genomes encode for [NiFe]-hydrogenases (enzymes catalyzing the reversible reaction
of hydrogen into protons and electrons), different attempts to grow these strains on
hydrogen failed for a long time. Not long ago it was shown that some Hydrogenovibrio
strains from hydrothermal vents are indeed able to oxidize hydrogen, which broadens
their physiological spectrum in a competitive environment for energy sources. We
here identify two active hydrogen consuming bacteria of the Hydrogenovibrio genus
with different hydrogenase genes from vents in the South Pacific Ocean. Based on
our results, hydrogen consuming Hydrogenovibrio species seem to be much more
widespread in the oceans than expected.

Keywords: Hydrogenovibrio, [NiFe]-hydrogenase, geographic range, microbial hydrogen oxidation,
Kermadec Arc

INTRODUCTION

Hydrogenovibrio species are common in hydrothermal vent environments (Brazelton and Baross,
2010; Böhnke et al., 2019). They were originally described as Thiomicrospira species and based
on physiology, morphology and phylogeny only recently reclassified as Hydrogenovibrio (Boden
et al., 2017). Initially they were described as chemolithotrophic sulfur-oxidizers capable of
using hydrogen sulfide, thiosulfate, tetrathionate and sulfur under aerobic and/or microaerobic
conditions (e.g., Ruby and Jannasch, 1982; Jannasch et al., 1985; Brinkhoff and Muyzer, 1997; Takai
et al., 2004). Mostly, they were shown to be autotrophic CO2 fixers, but some were posited to be
chemolithomixotrophs (Takai et al., 2004). Their ability to utilize alternative inorganic electron
donors was expanded by hydrogen oxidation and iron oxidation in the last few years (Hansen
and Perner, 2015; Barco et al., 2017). Recent incubation experiments with hydrothermal fluids
demonstrate that when spiked with hydrogen or iron their numbers as well as biomass synthesis
can increase considerably in some hydrothermal fluids (Böhnke et al., 2019). Consequently, they
appear to be important at hydrothermal vents for carbon turnover.

The first Hydrogenovibrio species from a vent for which a hydrogenase (enzyme converting
H2 < - > 2H+ + 2e−) was discovered on its genome was H. crunogenus XCL-2 (previously
Thiomicrospira crunogena XCL-2) (Scott et al., 2006), although repetitive experiments under
different conditions could not detect hydrogen consumption in cultivation experiments (Hansen
and Perner, 2016a,b). Hydrogenases from other hydrothermal vent Hydrogenovibrio species were
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later identified and respective hydrogen consumption ability
verified (Hansen and Perner, 2016a). The hydrogenases of the
actively consuming hydrogen oxidizing Hydrogenovibrio vent
species were identified as [NiFe]-hydrogenases of the subgroup
1, associated with hydrogen uptake (Vignais and Billoud,
2007). Two major subgroups among the Hydrogenovibrio were
recognized: those forming cluster I with MA2-6 and SP-41 (from
the Mid-Atlantic Ridge, MAR) (Brinkhoff and Muyzer, 1997;
Hansen and Perner, 2015) and H. marinus (from the water
column) (Nishihara et al., 1991), other Gammaproteobacteria,
Alpha- and Zetaproteobacteria (Hansen and Perner, 2016a). The
cluster II combines the H. crunogenus hydrogenases encoded on
the genomes of MA-3 (Wirsen et al., 1998), SP-41 (Hansen and
Perner, 2015) from the MAR and TH-55 (Jannasch et al., 1985)
and L-12 (Ruby and Jannasch, 1982) from the East Pacific Vents
(Hansen and Perner, 2016a). According to Greening et al. (2016),
cluster I hydrogenases are associated with group 1d and cluster II
with group 1b. Just recently a new Hydrogenovibrio thermophilus
strain from the Southwest Indian Ridge (SWIR) was isolated,
namely S5 which encodes a hydrogenase associated with cluster
I and which can consume hydrogen (Jiang et al., 2017).

To date no hydrothermal vent Hydrogenovibrio species have
been enriched from vents in the Southern Pacific that encode
a hydrogenase of cluster I or II and/or exhibit hydrogen
consumption ability. Here, we expand the geographic range
of hydrogen oxidizing Hydrogenovibrio crunogenus species, so
far only found along mid-ocean ridges (MOR), to an island
arc venting system.

MATERIALS AND METHODS

Sample Collection
A hydrothermal fluid (45 ROV 5F/6F KIPS A/B; 70◦C, water
depth 1318 m; −34◦52.73383’S 179◦04.26386’E) was taken
with the remotely operative vehicle ROV Quest (MARUM,
University Bremen) during the HYDROTHERMADEC cruise
(SO253, December 2016/January 2017) with the RV Sonne. The
hydrothermal fluid was retrieved with the pumped flow-through
system KIPS (Kiel Pumping System) (Garbe-Schönberg et al.,
2006) from Brothers lower cone in the Kermadec region. For
further details on sampling see Perner et al. (2009). The sample
was immediately processed after retrieval on board.

Enrichment, Cultivation and Isolations
Attempts
Initially an enrichment culture was grown by inoculating artificial
seawater medium (MJ medium, 10 ml) and T-ASW medium
(10 ml) under an atmosphere of H2:CO2:O2 (79:20:1) (Westfalen
AG, Münster, Germany) at standard pressure with 1 ml of
the diffuse fluid sample. MJ was prepared as described before
without yeast extract and trypticase peptone, but with addition
of 10 ml vitamin solution (Balch et al., 1979). The reduction
state of the MJ medium was monitored with resazurin (0.5 mg
l−1). We prepared the T-ASW medium like described previously
(Dobrinski et al., 2005) but with raised Ni and Fe concentrations
(0.003 mM and 0.03 mM final concentration, same as in MJ

medium). After incubation at 28◦C for 1 week a color change
in the MJ medium (from blue to colorless), which accompanies
the consumption of oxygen, could be observed. Serum bottles
with 50 ml of MJ and T-ASW medium were then inoculated with
2 mL of the pre-cultures and supplemented with the gas mixture.
The enrichment culture was routinely cultivated on the respective
media as described above.

To obtain a pure culture, we used the PALM MicroTweezers
microscope (Carl Zeiss AG, Oberkochen, Germany) for picking
single cells. Additionally we made six-fold dilution series with
T-ASW and MJ medium to 10−10. Since both methods were not
successful for isolating the strains in MJ medium, we additionally
plated the cultures on MJ agar plates.

Hydrogen Consumption Measurements
The cultures were grown on the respective medium (MJ or
T-ASW) in serum bottles with an H2:CO2:O2:He (2:20:1:77)
(Westfalen AG, Münster, Germany) atmosphere at standard
pressure. The experiment was set up in triplicate and
sterilized medium was used as a control. The concentration
of hydrogen was measured using gas chromatography and
cell numbers were determined using an Olympus BX41
(Olympus, K.K., Tokyo, Japan) microscope as described before
(Hansen and Perner, 2015).

DNA and RNA Extraction, cDNA
Generation and Amplification of 16S
rRNA and hynL Gene Fragments
At the end of the hydrogen consumption experiments the
active organisms were determined by simultaneous DNA and
RNA extraction using TRIzolTM Reagent (Fisher Scientific,
Schwerte, Germany) in combination with a phenol-chloroform
extraction method and the Direct-zolTM RNA Miniprep Kit
(Zymo Research, Irvine, United States). Complementary DNA
synthesis was performed using the SuperScriptTM VILOTM

cDNA Synthesis Kit (Fisher Scientific, Schwerte, Germany).
Polymerase chain reaction and sequencing of 16S rRNA and hynL
genes were performed (see Supplementary Figure 1; Hansen and
Perner, 2015, 2016a). The 16S rRNA and hynL gene sequences
were deposited under the NCBI accession numbers MN923280,
MN923281, MN935466, and MN935467.

RESULTS AND DISCUSSION

We used hydrothermal fluids (45ROV5F/6F) from the Brothers
volcano on the Kermadec island arc (New Zealand) to enrich
for Hydrogenovibrio species. Two types of artificial seawater
media were used: (i) T-ASW medium and (ii) MJ medium (cf.
Sako et al., 1996; Dobrinski et al., 2005; Hansen and Perner,
2015) – for differences of media compositions see Hansen
and Perner (2016b). Since we aimed at culturing hydrogen
oxidizers, the medium was supplemented with hydrogen gas
(79H2:20CO2:1O2) and kept at room temperature. From these
enrichments, two new hydrogen consuming Hydrogenovibrio
species were identified: Hydrogenovibrio sp. 45ROV5F/6F-TASW
and Hydrogenovibrio sp. 45ROV5F/6F-MJ. According to 16S
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FIGURE 1 | Phylogenetic relationship of Thiomicrospira and Hydrogenovibrio species based on 16S rRNA genes. Sequences were aligned using the multiple
sequence alignment web server T-Coffee (Notredame et al., 2000) with followed construction of the phylogenetic tree using Mega-X (Kumar et al., 2018) and 1000
bootstraps. The Thiomicrospira and Hydrogenovibrio species are color-coded according to their isolation source. The strains described here are written in bold. The
scale bar represents the changes per nucleotide. Only bootstrap values higher than 75 are given.
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FIGURE 2 | Phylogenetic relationship of Thiomicrospira and Hydrogenovibrio species based on hynL (large subunit of the [NiFe]-hydrogenase) genes. Sequences
were aligned using the multiple sequence alignment web server T-Coffee (Notredame et al., 2000) with followed construction of the phylogenetic tree using Mega-X
(Kumar et al., 2018) and 1000 bootstraps. The strains described here are written in bold. The scale bar represents the changes per amino acid. Only bootstrap
values higher than 75 are given.
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FIGURE 3 | In vivo hydrogen consumption and growth of the T-ASW
enrichment culture on MJ (A), MJ-T (B) and T-ASW (C) medium. Hydrogen
consumption of the cultures is shown in blue with diamonds, controls
containing only the respective medium in green with triangles and cell number
of the cultures as dotted line in black with squares. The experiments were
performed in triplicate, followed by polymerase chain reaction and sequencing
of 16S rRNA and hynL genes (Hansen and Perner, 2015). Hydrogen
consumption was determined by using gas chromatography and cell numbers
were detected as described before (Hansen and Perner, 2015).

rRNA genes, the former was related to H. crunogenus species and
the latter to H. thermophilus (Figure 1). Both strains encoded
a hydrogen uptake group 1 [NiFe]-hydrogenase (Figure 2).
The 45ROV5F/6F-TASW hydrogenase grouped in cluster II
common for other H. crunogenus hydrogenases. 45ROV5F/6F-
MJ’s hydrogenase was related to the hydrogenase from MA2-6 in
cluster I (Figure 2). It actually exhibited the highest similarity
(99% AA identity) to an environmental hydrogenase sequence
reported from the Lilliput venting field at 9◦S on the MAR
(Perner et al., 2007).

FIGURE 4 | In vivo hydrogen consumption and growth of the MJ enrichment
culture on MJ (A), MJ-T (B) and T-ASW (C) medium. Hydrogen consumption
of the cultures is shown in blue with diamonds, controls containing only the
respective medium in green with triangles and cell number of the cultures as
dotted line in black with squares. The experiments were performed in
triplicate, followed by polymerase chain reaction and sequencing of 16S rRNA
and hynL genes (Hansen and Perner, 2015). Hydrogen consumption was
determined by using gas chromatography and cell numbers were detected as
described before (Hansen and Perner, 2015).

Both strains can consume hydrogen (Figures 3, 4).
45ROV5F/6F-TASW uses hydrogen in MJ-medium regardless of
whether thiosulfate is present or not suggestive that in any case
hydrogen oxidation is utilized as an energy source (Figure 3).
In contrast, 45ROV5F/6F-MJ appears to use hydrogen only if
hydrogen oxidation is the only available energy source, while
hydrogen is not consumed if thiosulfate is present (Figure 4).
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This indicates that hydrogen oxidation is not the preferred
energy source under the provided incubation conditions when
thiosulfate is present. Respective hydrogenase transcripts were
identified in both strains when grown in hydrogen supplemented
MJ-medium (Supplementary Figure 1). This makes it highly
likely that the hydrogenases from cluster I and II are responsible
for the hydrogen uptake in the cultures, as has been documented
for other uptake hydrogenases from vent Hydrogenovibrio strains
(Hansen and Perner, 2016a).

Expanding the Geographic Range of
Hydrogen Oxidizing Vent
Hydrogenovibrio Species
We here expand the geographic range of hydrogen oxidizing
hydrothermal vent Hydrogenovibrio species by two strains from
the Southern Pacific. 45ROV5F/6F-TASW is also the first strain
grouping with Hydrogenovibrio crunogenus exhibiting hydrogen
uptake ability that is not from a MOR expanding this trait to an
Island arc in the Southern Pacific and suggesting that dispersal
limitation does not apply for this phenotype in this species.
These hydrogenases form a monophyletic clade with those from
Epsilonproteobacteria (Figure 2). This supports the previous
assumption that hydrogenases in H. crunogenus species were
taken up from Epsilonproteobacteria or were acquired from the
same bacterium that Epsilonproteobacteria took up this trait from
initially (Hansen and Perner, 2016a). Horizontal gene transfer
appears to be a common feature in Hydrogenovibrio species (Petri
et al., 2001; Scott et al., 2006, 2018).

Hydrogenases of cluster I form a monophyletic clade
incorporating H. marinus, which was isolated from the water
column (Nishihara et al., 1991) and S5 from a vent along the
SWIR, MA2-6 from the MAR and 45ROV5F/6F-MJ from the
Kermadec island arc (Figure 2). According to 16S rRNA genes
the three vent Hydrogenovibrio species are all affiliated with the
described species H. thermophilus (Figure 1). Different scenarios
can explain the hydrogenase distribution in cluster I. H. marinus
(i) took up its hydrogenase from a vent Hydrogenovibrio, (ii)
the vent Hydrogenovibrio took it up from H. marinus or (iii)
H. marinus was originally a vent-colonizing organism that
emitted with the fluids into the open ocean from which it was
essentially isolated. The latter may be supported by the fact that
other (endemic) vent organisms have been detected in the open
ocean (Gonnella et al., 2016).

It is interesting that all tested hydrogen oxidizing
H. crunogenus species have the cluster II and all so far tested
hydrogen oxidizing H. thermophilus related species have the
cluster I hydrogenases regardless of biogeographic distribution.
The only so far known exception is SP-41, which encodes both
hydrogenases on its genome (Gonnella et al., 2019). Those
from cluster II resemble hydrogenases from hydrothermal
vent Epsilonproteobacteria indicating horizontal gene exchange
in the respective environment across classes. In contrast, the
cluster I hydrogenase clusters with hydrogenases from free-
living and symbiotic species associated with hydrothermal
vents across different classes including Zetaproteobacteria
and Gammaproteobacteria. Hence, at least two events of

horizontal gene transfer in the two species groups resulted in the
hydrogenase acquisition. Given that H. marinus’ hydrogenase
has proven to be extremely oxygen stable (Nishihara et al., 1997),
it may transfer a major advantage in a thermally and chemically
dynamic vent environment that is influenced by mixing processes
of endmember fluids with oxygenated ambient seawater.

This is the first report of Hydrogenovibrio species isolated
from deep-sea vents located in the Southern Pacific that
express active hydrogenases and can consume hydrogen.
We here expand the geographic range of the hydrogen-
oxidizing Hydrogenovibrio species. Hydrogenovibrio strains can
be abundant in hydrothermal vent habitats and they have
been considerably enriched in incubation experiments where
hydrogen was amended (Brazelton and Baross, 2010; Perner et al.,
2011; Böhnke et al., 2019). For example, they were shown to be
among the dominant species in incubations supplemented with
hydrogen, where 27 ± 4 nmol H2 ml−1 h−1 was consumed and
0.93 ± 0.1 nmol CO2 ml−1 h−1 was fixed autotrophically. This
suggests that in these incubations 15% of the energy gained by
hydrogen oxidation could be used for biomass synthesis most
likely by Hydrogenovibrio strains. Hydrogenovibrio’s ability to
use hydrogen, additionally to reduced sulfur compounds, is a
major advantage in these environments because it enhances their
competitiveness and furthers their substrate spectrum.
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