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Artificial light at night (ALAN) has been recently recognized as a globally widespread
anthropogenic disturbance, characterized by different intensities and spectra, as well
as spatial and temporal variability. Among marine organisms, those living on coastal
areas are particularly exposed to artificial light. Some recent studies anticipated a
potential for influences of ALAN on microphytobenthos (MPB) on rocky shores, either
direct or indirectly mediated by trophic relationships. Here we emphasize the need
for further investigations in different habitats, as well as on synergistic interferences
with other stressors already impinging on coastal areas. The study of effects of
ALAN poses new challenges in MPB research, including those related to the use of
instruments for measuring both the light environment and the functioning of microbial
photoautotrophs at night, and to the development of common monitoring approaches
and manipulative experiments.

Keywords: light pollution, microphytobenthos, light intensity, light spectrum, temporal and spatial variability,
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INTRODUCTION

Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic
disturbance, globally widespread on both terrestrial and aquatic environments (Falchi et al., 2016;
Davies and Smyth, 2017). ALAN is tightly related to the rate of urban development. For centuries,
people have tended to concentrate on coastal areas and at the current rate of human population
growth the spatial extent and magnitude of light pollution on these areas is expected to increase.
The ALAN phenomenon is mostly due to the presence of outdoor night lights; these affect the
surrounding abiotic environment both directly, through light sources of variable intensity (from
a few to more than 100 lux) and indirectly, through the formation of a skyglow. The skyglow is
a diffuse light field of low intensity (0.3–0.5 lux) visible as a glowing dome over built up areas
and extending its influence on sub-urban and rural sites (Gaston, 2018). The most common direct
sources of ALAN affecting coastal communities are represented by fixed lamps distributed along
coastal streets, promenades, ports and marinas and potentially impacting estuarine mudflats, sandy
beaches, rocky shores or artificial structures (Figures 1A,B). The intensity of light originating from
a lamp rapidly declines within a few meters; therefore, the spatial arrangement of a given number
of fixed lamps can create a scenario of alternating low and high light intensity areas, resulting in
marked spatial variability in light pollution at the scale of a few to tens of meters (Figure 1C). It is
worth noting that in coastal areas light pollution may also be related to the presence of intermitting
and mobile sources, such as those associated with lighthouses or installed on commercial
and tourist boats. The additional key feature of light sources, i.e., their emission spectrum,
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FIGURE 1 | Night light pollution caused by sources of artificial light located
close (water damn, A) or relatively far away (intertidal estuarine mudflat, B),
from water bodies and adjacent areas. (C) Example of alternating low and
high intensity areas, along an artificial structure illuminated by streetlamps
within a port. Photo credits: J. Serôdio (A,B) and M. Menconi (C).

may also create vertical variability in the water column, due
to specific attenuation patterns among different wavelengths
(Tamir et al., 2017).

Knowledge on the effect of ALAN on coastal organisms and
habitats is still fragmented, but published research has already
highlighted a variety of impacts, including effects on settlement
processes (both in invertebrates and bacteria; Davies et al., 2015;
Maggi and Benedetti-Cecchi, 2018), changes in behavior (e.g.,
orientation of turtles, vertical migration of zooplankton and

fish, anti-predator and locomotor activities, trophic pressure;
e.g., Witherington and Bjorndal, 1991; Underwood et al., 2017;
Ludvigsen et al., 2018; Duarte et al., 2019; Maggi et al.,
2019) and composition of assemblages (Garratt et al., 2019;
Maggi et al., 2020).

Among these studies, first evidences exist of impacts on
intertidal microphytobenthos (MPB) (Maggi and Benedetti-
Cecchi, 2018), but there is a need to further address the role
of light pollution on key physiological and ecological aspects of
MPB in different coastal habitats.

MICROPHYTOBENTHOS AND LIGHT
ENVIRONMENT

The MPB plays a key functional role in a variety of coastal
systems, representing one of the main groups of primary
producers and a source of food for grazers in intertidal and
shallow subtidal systems, either on soft bottoms or hard surfaces
(Underwood and Kromkamp, 1999; Jenkins et al., 2001; Nagarkar
et al., 2004; Al-Zaidan et al., 2006). MPB comprises a mix of
autotrophic taxa that uses light as the primary energy source for
photosynthesis. While it is known that light optima vary among
(groups of) MPB species (Oxborough et al., 2000; Frankenbach
et al., 2018), knowledge about low light requirements is almost
null. It is known that some marine photolithotrophs can grow
under natural conditions characterized by no more than 10 nmol
photon m−2 s−1 (Raven et al., 2000). Although not aware of any
experimental results, it is conceivable that motile diatoms might
be capable of detecting and responding to low light levels, too;
this hypothesis seems to be supported by the recent finding of
phytochromes in pennate and centric diatoms (Fortunato et al.,
2016). In fact, phytochromes can mediate the responses of plants
to very low light intensities (e.g., “Very Low Fluence Responses”
in seed germination; Sheerin and Hiltbrunner, 2017). Concerning
motile diatoms, such responses would have a clear adaptive value
in helping cells buried in ill-illuminated sediment layers (due to
resuspension or bioturbation; Frankenbach et al., 2019) to reach
the surface and regain photosynthetic activity and growth.

In addition to the role of light as a resource, seasonal changes
in photoperiod play a fundamental role for MPB, the most
obvious being related to the alternation between periods of
high photosynthetic activity and net carbon fixation and those
dominated by respiration. For cyanobacterial dominated MPB,
the dark phase is also associated with the highest rates of nitrogen
fixation (Sicora et al., 2019), while for MPB dominated by motile
diatoms, common in fine sediment estuarine flats, these cycles
are a main factor controlling diel vertical migrations (Round
and Palmer, 1966; Consalvey et al., 2005; Coelho et al., 2011;
Haro et al., 2019).

Given these premises, it is reasonable to expect that changes
in night light conditions might affect MPB biology and ecology.
Recent studies conducted in the Mediterranean showed, under
lit conditions, a doubling in mean photosynthetic biomass
and maximum photosynthetic efficiency of rocky shore MPB
during early stages of the colonization process (Maggi and
Benedetti-Cecchi, 2018), as well as an increase in temporal

Frontiers in Marine Science | www.frontiersin.org 2 May 2020 | Volume 7 | Article 329

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00329 May 14, 2020 Time: 20:45 # 3

Maggi and Serôdio Light Pollution and Microphytobenthos

variability of maximum photosynthetic efficiency, more evident
on mature assemblages (Maggi et al., 2019). These results clearly
point out that ALAN originating by direct sources of white
LEDs, at relatively high intensity (30 lux), may influence the
mechanisms related to photosynthetic activity, as well as the
competitive interactions among different species composing
MPB assemblages. In fact, the observed temporal variability
suggests the occurrence of changes in composition and/or relative
abundances of different taxa, possibly related to differences in
species-specific sensitivities to light and in light optima (Maggi
et al., 2019). If and how these effects are geographically consistent
and pervasive among different habitats is currently unknown.
It is undeniable, however, the potential key role of ALAN
in disrupting vertical migratory cycles and ultimately primary
productivity, as observed in silty mud MPB assemblages after 3
days under continuous light conditions (Haro et al., 2019).

In addition to high intensity light sources, MPB might
be impacted by low light levels of a few lux, such as
those experienced at some distance from a streetlamp or
induced by brief flashes of light due to intermittent/variable
sources (e.g., lighthouses, boats), as suggested by the previous
discussion on low light requirements. Moreover, recent findings
have confirmed an increase in photosynthetic biomass in
the planktonic cyanobacteria Microcystis aeruginosa under
very low irradiance at night (80 nmol m−2 s−1, ∼6.6 lux)
(Poulin et al., 2014).

As for different light spectra, the results of Grubisic et al.
(2018) on freshwater periphyton assemblages suggest that the
current transition from HPS lamps to white LEDs (Kyba, 2018)
might increase the ecological impact of artificial light on aquatic
primary producers.

Future investigations of ALAN effects on MPB should also
consider the role of temporal variability. In fact, even constant
artificial night lighting may have temporally variable effects.
Hölker et al. (2015) revealed how natural seasonal changes
in microbial community structure of freshwater habitats can
be reduced under long-term lit conditions, with a shift from
negative to positive net ecosystem production (NEP), driven
by positive effects on the autotrophic component. Moreover,
ALAN itself can be characterized by a marked temporal
variability. For example, in some coastal localities, tourist
activities are mainly concentrated during the warm season
and light pollution originating from restaurants, beach resorts
or boats might vary seasonally in intensity, spectrum and
spatial variability.

Finally, the ecological effect of ALAN on MPB cannot be fully
assessed without considering top-down and bottom-up effects
related to their consumers (Leroux and Loreau, 2015; Lynam
et al., 2017). Rates of grazing activity might be influenced by
ALAN, with positive or negative effects cascading down to MPB,
depending on the suppression or enhancement of consumers’
metabolism, respectively (Maggi and Benedetti-Cecchi, 2018;
Maggi et al., 2020). Potential changes in behavior of herbivores
might even affect the spatial variability in the MPB biomass, as
observed under increased water temperature (Como et al., 2014).
Conversely, the effects on MPB might cascade up to their

consumers, as an increase or decrease in availability of resources
(Manfrin et al., 2018).

ALAN: AN ADDITIONAL STRESSOR
IMPINGING ON COASTAL
ASSEMBLAGES

Marine systems, including coastal ones, are currently impacted
by a variety of global and local stressors, which can affect
single organisms up to entire habitats in additive, synergistic or
antagonistic ways (Halpern et al., 2008). ALAN is among the
most recently recognized sources of anthropogenic disturbance
in these areas and may interfere synergistically with various
other stressors, such as the release of contaminants and waste
(including plastic debris), eutrophication and warming. So far,
very little is known about the possible interaction pathways of
light pollution with other disturbances impinging on aquatic
systems. To the best of our knowledge, the study by Pu et al.
(2019) is the only one addressing this issue and highlighting
the potential role of ALAN in alleviating the toxic effect
of silver nanoparticles on litter decomposition in freshwater
habitats. ALAN modified the dissolved concentration of AgNP
by releasing the activity of decomposers’ enzymes (inhibited
by silver nanoparticles) and changing the microbial aquatic
assemblage. Similarly, ALAN might modify the effect of other
stressors usually covarying with light pollution in urban areas,
such as eutrophication, changes in temperature due to the “heat
island effect” or plastic debris (Grimm et al., 2008; Halfwerk
and Slabbekoorn, 2015; Kirstein et al., 2019). Although not
corroborated by any experimental data so far, the formulation
of these hypotheses is supported by the knowledge that light is
able to affect MPB growth in interaction with temperature and
nutrients (e.g., Pivato et al., 2019; Rakotomalala et al., 2019).
As for light and temperature, a recent study showed their key
role for the development of biofilm on plastic debris, especially
its photoautotrophic component (Misic and Covazzi Harriague,
2019). It is therefore possible that artificial light available
at night might represent an additional factor shaping MPB
colonizing these artificial substrates, and potentially interacting
with resident MPB assemblages either in sandy, muddy or rocky
coastal environments.

CHALLENGES IN SAMPLING ACTIVITIES

The study of potential ALAN effects on MPB poses several
challenges regarding sampling activities. First, measurements of
intensity and spectrum of ALAN in the field may be not as
straightforward as in other situations. In fact, there is a limited
availability of instruments specifically designed for measuring
the light environment of microbial photoautotrophs in aquatic
coastal habitats, where both water, sedimentation and presence
of natural or artificial surfaces reflecting or absorbing light
may create environmental heterogeneity at the scale of a few
centimeters. Second, sampling and measurements of MPB under
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night conditions require attention to avoid even short exposure
to light, with the risk of triggering additional responses and
confounding the effects of ALAN under study. A particularly
relevant case regards the use of Pulse Amplitude Modulation
(PAM) fluorometry (Schreiber et al., 1986), a technique
extensively used to study MPB biofilms on tidal systems, both
for measuring photo-physiological and productivity-associated
parameters (Kromkamp et al., 1998; Consalvey et al., 2005), but
also short-term variations in surface MPB biomass associated
to migratory rhythms (Serôdio et al., 1997). This technique
relies on the application of light pulses, of very low (measuring
light) and very high intensity (saturation pulses) that, while
considered non-invasive in most other experimental contexts,
might confound the detection of effects and responses to
ALAN. Considering the potential response of MPB species
to even low light levels, we propose that the use of PAM
fluorometry in the context of ALAN studies should be preceded
by preliminary tests for possible artefactual effects and the
eventual adaptation of currently applied experimental protocols.
Preliminary tests should be carried out comparing different
instrument settings, namely light intensity, frequency, and color
(most portable instruments use only blue or red LEDs) used for
both measuring light and saturating pulses, on the triggering
of upward vertical migration or photo-physiological effects. It
seems prudent to recommend that measurements of ALAN
effects should be carried out on samples not previously exposed
to instrument lights, and that all measurements required for
optimization of instrument settings should be carried out on a
separate set of samples.

To fill in the gaps of a still fragmented and local knowledge of
the ALAN effect on MPB, we should aim at developing integrated
common monitoring approaches to data collection. This might
involve the optimization of available sensors, sensitive enough
to measure ALAN-levels in heterogeneous environments such
as coastal areas; as well as of instruments for non-destructive
quantification of MPB biomass and functioning. Finally, research
activities might include experimental manipulative studies, both
in the field and under laboratory conditions, to unambiguously
assess the potential effects of different light intensities, spectra,
duration but also timing of night light application on MPB
in different coastal habitats. In fact, variable effects might
be related, among others, to the variability in natural night
lighting caused by changing moon phases. It is known that

information driven by moonlight is used as a cue by some
organisms in aquatic habitats, such as corals and the Palolo
worm for spawning (Caspers, 1984; Harrison et al., 1984), or
zooplankton for ocean-scale mass vertical migration during
Arctic winter (Last et al., 2016). For many other aquatic
organisms characterized by relatively short life cycles (such as
MPB), the potential role of chronobiology by moonlight has
still not been elucidated and its study could reveal unexpected
temporally variable effects of ALAN on different processes and
mechanisms (Kronfeld-Schor et al., 2013).

DISCUSSION

Intensity, spectrum, spatial and temporal variability of ALAN are
key features of a recently recognized source of anthropogenic
disturbance, that is impinging on coastal organisms at a global
scale. The role of light pollution on physiological and ecological
aspects of MPB is still in its infancy, but some recent studies
anticipate a potential for either direct or indirect influences on
the spatial and temporal variability of biomass and diversity
of MPB assemblages, mediated by trophic relationships (Maggi
and Benedetti-Cecchi, 2018; Maggi et al., 2019, 2020), as well
as for interactive effects with additional stressors (Pu et al.,
2019). Here we emphasize the need for including ALAN among
the new challenges in microphytobenthos research, through
the development of common monitoring approaches and the
unambiguous assessment of its potential effects on MPB by
means of manipulative experiment.
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