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The dramatic warming of the Arctic Ocean will impact pelagic ecosystems in complex ways, including shifting patterns of species distribution and abundance, and altering migration pathways and population connectivity. Species of the Phylum Chaetognatha (arrow worms) are abundant in the zooplankton assemblage and are highly effective predators, with key roles in pelagic food webs. They are useful indicator species for impacts of climate change on marine ecosystems. This study examined the population genetic diversity, structure and connectivity of the chaetognath, Eukrohnia hamata, based on sampling from six regions defined by geography, bathymetry, and major currents flowing through the Arctic Ocean. A 528-base pair sequenced region of mitochondrial cytochrome oxidase I (mtCOI) analyzed for 131 specimens resulted in 78 haplotypes and very high haplotype diversity. Analysis of mtCOI haplotype frequencies provided no evidence of population genetic structure. Genomic Single Nucleotide Polymorphisms (SNPs) detected from the same specimens by double-digest Restriction-site Associated Digestion (ddRAD) confirmed high levels of gene flow among the regions, but supported the genetic distinctiveness of two population clusters: Atlantic–Arctic versus Pacific–Arctic. Removal of SNPs subject to selection resulted in slightly higher probability of three clusters, and suggested the possibility of local adaptation of regional populations of E. hamata. Comparative analysis revealed evidence that random selection of subsets of SNPs, perhaps impacted by different ecological and (micro) evolutionary drivers, can result in marked differences in numbers and distributional patterns of clusters and associated variation in F-statistics. Analysis of population connectivity using SNPs supported the primary migration pathway via flow from the Atlantic to the Pacific Arctic regions.
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INTRODUCTION


The Arctic Ocean Ecosystem

The flow of major currents throughout the Arctic Ocean is determined by geography and bathymetry, including deep basins and undersea mountain ridges (Rudels et al., 1994, 2000). Exchange between the Arctic Ocean and other ocean regions occurs through a limited number of passageways defined by land masses (Figure 1). Cold, relatively fresh water flows through the Bering Strait from the Pacific Ocean, and is swept into the Beaufort Gyre in the Pacific Arctic (Weingartner et al., 2005; Woodgate et al., 2007). Under some conditions, the gyre rotation weakens and freshwater is transported via the Transpolar Current toward the North Atlantic Ocean. The North Atlantic Current carries warmer and relatively salty water northward, with one branch passing to the East and the other to the West of Svalbard. Due to the salinity, this water is denser and sinks below Arctic waters, where it is trapped beneath a density barrier to mixing, created in part by cold, fresh water resulting from melting ice (Rudels et al., 2004). These deep currents form smaller gyres within the Eurasian and Amerasian Basins near the North Pole (Figure 1).
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FIGURE 1. Major ocean currents in the Arctic Ocean, with approximate locations of the geographic regions from which samples were collected for this study. Figure courtesy of Woods Hole Oceanographic Institution. (See https://www.whoi.edu/main/topic/arctic-ocean-circulation).


The Arctic is one of the fastest-warming regions throughout the global ocean, and patterns of circulation in the Arctic Ocean are being dramatically impacted by climate change, including increased sea ice melt, reduced and thinner sea ice cover, and associated changes in water column density structure. Predicted changes include a weakening of the Beaufort Gyre circulation system, changes in water column structure, and increased outflow of Arctic waters into the North Atlantic Ocean (Proshutinsky et al., 2015). Notably, predicted increasing inflow of Atlantic waters into the Eurasian Basin, referred to “atlantification,” is expected to reduce ice cover, impact water column structure, and alter transport pathways (Polyakov et al., 2017). These changes can disrupt the Arctic Ocean ecosystem by decreasing abundance and biodiversity of native Arctic species by shifting species biogeographical ranges and decreasing energy transfer efficiency (Gamfeldt et al., 2015).

Changes in Arctic current systems will also impact pathways of dispersal and transport of zooplankton, which will be reflected in population genetic diversity, structure, and connectivity of species with broad geographic distributions throughout Arctic Ocean regions. Examination of population genetic/genomic characteristics of key species can provide insights into possible ecological and evolutionary impacts of the changing climate, including likelihood of local adaptation, changes in biogeographic distributions, and consequences for pelagic food webs and the ocean ecosystem of the Arctic.



Phylum Chaetognatha

Patterns of abundance and biomass of zooplankton have been found to be consistent across the Arctic basins sampled for this study (Kosobokova et al., 2011). Both abundance and biomass are highest in surface waters, where copepods and chaetognaths are the predominant groups. Throughout the water column, the two groups represent ∼75 and ∼13% of biomass, respectively, on average (Kosobokova and Hopcroft, 2010). In contrast, species composition does differ between Atlantic and Pacific Arctic regions, most notably in the presence of expatriate species, which tend to be restricted to Arctic regions adjacent to their home biogeographic ranges (Kosobokova and Hopcroft, 2010; Kosobokova et al., 2011). Pacific expatriate zooplankton species are found frequently in the Chukchi Sea and adjacent Chukchi Borderland (Nelson et al., 2009; Hopcroft et al., 2010; Questel et al., 2013) and occasionally in the Canada Basin and Beaufort Sea (Hopcroft et al., 2005; Smoot and Hopcroft, 2017a, b).

Chaetognaths are found in abundance throughout the global ocean (Pierrot-Bults and Nair, 1991; Pierrot-Bults, 2008). As a group, chaetognaths are abundant, make up a large portion of zooplankton biomass, and play key roles in pelagic food webs as highly effective predators, frequently targeting copepods (Terazaki, 2000). In the Arctic, chaetognaths may significantly impact patterns of seasonal and geographic variability in food web functioning, which has been best studied at lower trophic levels. In particular, relationships between seasonal ice cover, primary productivity, and trophic relationships, including grazing of zooplankton and consumption of sinking organic matter have been examined (Grigor et al., 2014, 2017) to characterize the impact and consequences of variation in predator distribution and abundance.

Eukrohnia hamata is the species of chaetognath most commonly found in the Arctic Ocean (Kosobokova and Hopcroft, 2010; Kosobokova et al., 2011). The species has been considered to exhibit a global distribution (Pierrot-Bults and Nair, 1991; Baranova et al., 2009), including reports throughout the Antarctic and Atlantic (Alvarino, 1964) and Pacific regions (Terazaki and Miller, 1986). Notably, the life history of E. hamata is quite variable based on geographic location: temperate populations have shorter life spans and are found in the deep ocean, while polar populations can have a lifespan of multiple years and live in the surface ocean (Bone et al., 1991).



Phylogeography and Population Connectivity

Phylogeography integrates biogeography and population genetics to allow examination of the evolutionary history of a species in relation to its environment (Avise, 2000). Patterns of migration and gene flow can be revealed by examination of population genetic diversity, structure, and connectivity. For marine zooplankton, such analyses can provide useful indicators of community responses to environmental conditions and climate change.

The characteristically broad biogeographical distributions typical of many chaetognath species have made them interesting subjects for examining population structure and connectivity (Peijnenburg et al., 2005, 2006). The mitochondrial cytochrome oxidase I (mtCOI) gene, which has been widely used as a barcode for identification and discrimination of zooplankton species (Bucklin et al., 2010), has also been used to identify and discriminate species of chaetognaths (e.g., Jennings et al., 2010). The accurate and reliable identification of chaetognath species based on morphological characters remains challenging, and the routine use of mtCOI barcodes for species identification is a useful first step and best practice for any ecological or population genetic study (Peijnenburg et al., 2005, 2006). Many marine zooplankton species exhibit sufficient intraspecific sequence variation of mitochondrial genes to allow analysis of large-scale population genetic diversity and structure based on mtCOI and 16S rRNA (Bucklin, 2000; Bucklin et al., 2011, 2018; Peijnenburg and Goetze, 2013). Genetic divergence of chaetognath populations has been documented in European seas and in the NE Atlantic (Peijnenburg et al., 2005). MtCOI has been used for examination of phylogeography and population connectivity of copepods in Arctic and sub-Arctic waters (Aarbakke et al., 2014; Questel et al., 2016; Weydmann et al., 2016, 2018). Population genetic diversity and structure of E. hamata have been examined using mtCOI sequence variation, where both studies revealed evidence of significant genetic differentiation of biogeographically defined populations, usually at the scale of ocean basins, suggesting the possible presence of cryptic species (Miyamoto et al., 2012; Kulagin et al., 2014).

In recent years, with widespread application of high throughput DNA sequencing, the discovery and simultaneous genotyping of thousands of single nucleotide polymorphisms (SNPs) has become possible using various genotyping-by-sequencing (GBS) approaches that entail high throughput sequencing of a targeted fraction of the genome. Importantly, these approaches do not require pre-existing genomic reference data, making them particularly useful for non-model organisms (McCormack et al., 2013; Schlötterer et al., 2014). One GBS approach is restriction-site associated DNA sequencing (RAD; Miller et al., 2007; Davey and Blaxter, 2010; Reitzel et al., 2013), which allows detection of hundreds to hundreds of thousands of SNPs across a genome (Schweyen et al., 2014). Population genomic studies of a number of zooplankton species have used RAD detection of SNPs (see review by Bucklin et al., 2018), including the copepods, Centropages typicus (Blanco-Bercial and Bucklin, 2016), Tigriopus californicus (Foley et al., 2011), Calanus sinicus (Yang et al., 2014), and Calanus finmarchicus (Choquet et al., 2019); and the euphausiid, Euphausia superba (Deagle et al., 2015), among other marine organisms (see review by Crawford and Oleksiak, 2016). RAD has been applied to a broad spectrum of questions, including tests of selection (e.g., Hohenlohe et al., 2011) and phylogeographic studies (e.g., Emerson et al., 2010). Several cost-effective modifications of the original RAD protocol have been developed, including double-digest RAD (ddRAD; Peterson et al., 2012), which uses two restriction enzymes to reduce genomic complexity and produce a more even distribution of the sequenced DNA fragments across the genome. Phylogeographic analysis of the widely distributed chaetognath, E. hamata, can provide useful insights into how a warming Arctic may affect population structure and connectivity of the pelagic assemblage. This study uses both mtCOI sequences and genomic SNPs detected by ddRAD to examine population genetic/genomic diversity, structure, and connectivity of E. hamata with respect to Pan-Arctic circulation patterns. The overarching goal is to provide new insights into potential impacts of climate change on this abundant predatory zooplankton species, which is an important trophic link in the pelagic food web and a key species in the Arctic Ocean ecosystem.



MATERIALS AND METHODS


Collection and Preservation of Samples

Zooplankton samples containing E. hamata were collected from six regions across the Arctic Ocean during oceanographic research cruises from 2013 to 2016 (Table 1 and Figure 2). Samples from the central Arctic Basins (Eurasian and Amerasian) were collected during a 2011 cruise of the R/V Polarstern (PS11); samples from the Beaufort Sea were collected during 2013 and 2014 as part of the United States–Canadian Transboundary program aboard the R/V Norseman II (TB13/14); samples from the Chukchi Borderland region were collected during a 2016 cruise of the USCGC Healy (HLY2016); samples from Fram Strait were collected during a 2015 cruise of the R/V Helmer Hanssen (HH2015), as part of the SI_Arctic Initiative led by the Institute of Marine Research, Norway; samples from the Labrador Sea were collected during a 2013 cruise of the R/V GO Sars (GOSARS 2013), as part of the EuroBASIN Program.


TABLE 1. Collection metadata for samples from which specimens of Eukrohnia hamata were identified for analysis in this study.
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FIGURE 2. Collection locations of samples from which Eukrohnia hamata was identified and analyzed for mtCOI barcode sequencing and ddRAD SNP detection for this study. Symbol shape and color indicate regional designation: Eurasian Basin, Amerasian Basins, Beaufort Sea, Chukchi Borderland, Fram Strait, and Labrador Sea. Numbers indicate depths (in meters) of the bathymetric contour lines. See Table 1 for collection metadata.


Samples were preserved immediately after collection in either 95% undenatured ethanol or RNAlater Stabilization SolutionTM (Thermo Fisher Scientific). Chaetognaths were removed from each sample and examined using a Leica MZ16 dissecting microscope. Diagnostic characteristics for species identification and measurements of each individual were recorded as described in Fowler (1996), but positive identification was not possible in all cases due to the degradation of fins and corona cilia and distortion to the body from preservation.



DNA Extraction, PCR Amplification, and Sequencing of mtCOI

Specimens were rinsed in sterile MilliQ water to remove traces of ethanol or RNAlaterTM prior to DNA extraction. Genomic DNA from individual specimens was extracted using the DNeasy Blood and Tissue Kit (Qiagen). Final elution occurred in 100–200 μL of elution buffer (Qiagen). DNA was quantified using the Qubit dsDNA HS Assay (Invitrogen) and low concentration samples (<100 ng total DNA) were concentrated using vacuum centrifugation. Extracted DNA was analyzed using two different approaches, including DNA sequencing of the barcode region of mitochondrial cytochrome oxidase subunit I (mtCOI) and detection of genomic SNPs using double-digest restriction-site associated DNA sequencing (ddRAD; see below).

Polymerase Chain Reaction (PCR) amplification of a 710-base pair (bp) fragment of the mtCOI gene was achieved using 12.2 μL MilliQ water, 5 μL 5X GoTaq® Flexi Buffer, 0.3 μM dNTPs, 2.7 mM MgCl2, 0.25 μL GoTaq® Flexi DNA Polymerase, and 0.4 μM forward and reverse primer, and 2.5 μL DNA template, for a total reaction volume of 25 μL. Consensus primers were used (Folmer et al., 1994): LCO1490, 5′-GGTCAACAAATCATAAAGATATTGG-3′ and HCO2198, 5′-TAAACTTCAGGGTGACCAAAAAATCA-3′. The PCR protocol was adapted from Miyamoto et al. (2012): 94°C for 3 min; 35 cycles of 94°C for 45 s, 50°C for 45 s, and 72°C for 45 s; and 1 cycle of 72°C for 7 min. Amplicons resulting from successful PCR reactions were cleaned using ExoSAP-ITTM Express PCR cleanup (Thermo Fisher Scientific) and sequenced by Eurofins Genomics1.



Analysis of mtCOI Sequences

Forward and reverse mtCOI sequences were aligned with CLUSTAL-W (Thompson et al., 1994, 1997) using BioEdit Ver. 7.1.9 to create a consensus sequence. Confirmation of species identification as E. hamata was based on mtCOI sequences using BLAST searches of the NCBI GenBank database (Altschul et al., 1997) and matches to E. hamata records with E-values = 0, where E is the expected number of matches by chance (Karlin and Altschul, 1990). Sequences were aligned using the Muscle algorithm (Edgar, 2004) and trimmed to 528 bp for analysis using the Molecular Evolutionary Genetics Analysis (MEGA ver. 7; Kumar et al., 2016) software package. Nucleotide (π) and haplotype (Hd) diversity, as well as neutrality tests (Fu’s and Li’s F statistics), for the COI gene were calculated using the software DnaSP Ver. 5 (Librado and Rozas, 2009). A hierarchical Analysis of MOlecular VAriance (AMOVA) was used to examine population genetic structure using the software Arlequin 3.5 (Excoffier and Lischer, 2010). Samples were grouped by geographic region (Table 1). Variance partitions were tested for significance under 10,100 permutations, with α = 0.05, after sequential Bonferroni correction (Holm, 1979). All negative ΦST values obtained were assumed to be zero.

Maximum Parsimony (MP) gene trees were analyzed using the Tamura best–fit nucleotide substitution model (Tamura, 1992) as determined by MEGA Ver. 7 (Kumar et al., 2016). The significance of the substitution model was estimated through 10,000 coalescence simulations using a bootstrap test of 1,000 replicates. Haplotype networks were determined using Haploviewer (Center for Integrative Bioinformatics2).

Gene flow between regions for E. hamata was modeled using the coalescent–based program Migrate–N Ver. 3.6.11 (Beerli, 2012). Migrate–N uses ratios of maximum likelihood or Bayesian inference to estimate migration rates and effective population size (NE) under the assumption of asymmetrical migration rates at different subpopulation sizes (Beerli and Felsenstein, 1999, 2001; Beerli, 2004, 2006, 2012). Custom migration models were chosen based on known pathways of current flow in the Arctic Ocean (Figure 1). Four model scenarios were tested using Migrate–N: Pan-Arctic or Full model (i.e., all known current pathways among sampled regions, considering restrictions due to geographical constraints), Chukchi-to-Fram Strait, Fram-Strait-to-Chukchi, and bi-directional between Chukchi and Fram Strait.

Parameters for each Migrate–N model run were kept at the default settings, with the following exceptions: parameter start settings for theta (θ) and migration rates (M) used the Mode values from the posterior distributions of an initial run’s FST–based θ and M; and long–chain values (1–3) were tested for optimal posterior distributions. Bayesian factor predictions for the four model scenarios are reported.



Detection by ddRAD and Analysis of SNPs

A total of 97 libraries (one per individual) were prepared for analysis using ddRAD protocols based on Peterson et al. (2012). Protocol modifications described by Etter et al. (2011) to optimize protocols originally developed for single RAD protocols were implemented at the University of Connecticut Center for Genome Innovation3. Two high-fidelity restriction enzymes, NsiI and SphI, were selected based on in silico digestion of simulated genomes of 1 GB with 40.3% GC content, derived from published transcriptomes available in GenBank, using the R package SimRAD (Lepais and Weir, 2014). Several combinations of commonly used restriction enzymes were tested; the pair selected offered an intermediate number of fragments expected to provide both good coverage and sufficient levels of variation. Digestion took place with 100–200 ng starting DNA in a 50 μL total volume with 1 μL (20 units) of each enzyme and 5 μL of CutSmart Buffer (New England Biolabs). Samples were digested for 2 h at 60°C and then heat-killed for 20 min at 80°C following manufacturer protocol. Single-strand individually labeled NsiI adapters and degenerated SphI adapters were hybridized to 40 μM using 20 μL of each single-strand oligonucleotide, 10 μL 10× annealing buffer, and 50 μL water at the following thermal profile: 97.5°C for 2.5 min, then decreasing at 1.2°C every 30 s until reaching a temperature of 21°C. Adapters were ligated overnight. Adapter ligations were carried out with 1 μL 10× NEB Buffer 2, 0.6 μL rATP, 0.5 μL concentrated T4 DNA ligase, 4 μL of each adapter, and 50 μL double-digested DNA.

Samples were combined in 3 equimolar pools of 27, 33, and 37 individuals and cleaned using a 1.5× AMPure® XP bead cleanup (Beckman Coulter) eluted in 30 μL nuclease-free water. Pools were then size selected from 350–550 bp in 80–100 μL using the Pippin Prep DNA size selector (Sage Science) with a pause at 450 bp. Size-selected libraries were cleaned using a QIAquick PCR Purification Kit (Qiagen) in 30 μL of nuclease-free water. Illumina flow cell adapters and index primers were added to each pooled library using 15 PCR cycles in the following reaction volumes: 12.5 μL Phusion® High-Fidelity PCR Master Mix (New England Biolabs), 0.5 μL reverse indexed primer, 0.5 μL universal forward primer, 2 μL pooled libraries, and 9.5 μL nuclease-free water. The PCR protocol was: 98°C for 30 s; 15 cycles of 98°C for 10 s, 65°C for 30 s, 72°C for 30 s; and 1 cycle of 72°C for 5 min. Successful adapter ligation and amplification were inspected on the Agilent 2200 TapeStation Automated Electrophoresis system with the High Sensitivity DNA ScreenTape. PCR products were cleaned using a 1X AMPure® XP bead cleanup. Amplified libraries were sequenced at Macrogen (Seoul, South Korea) using a paired end, 100 bp kit on an Illumina HiSeq 2500 system. Numbers of reads obtained for each sample averaged 509,783, SD = 119,906 (see Supplementary Table S1).

After demultiplexing, RAD tags were analyzed using STACKS ver. 2.2 (Catchen et al., 2013). Since overlapping was not always attained, analyses included only the forward read, and length was limited to 99 bp. Definitive STACKS parameters were set after following the procedures as recommended in Paris et al. (2017), with final parameters set for M (number of mismatches allowed between putative alleles to merge them into a putative locus) = 2 and n (number of mismatches allowed between putative loci during construction of the catalog) = 2. All parameters tested are shown in Supplementary Figure S1. Populations parameters were set to select loci that had a MAF (minimum minor allele frequency) = 0.05, and were present in all populations in at least 80% of the individuals of each population. A distribution of the pairwise Φ-statistics (FST, F′ST, and ΦST) from the populations package in the STACKS software was obtained after 1,000 iterations. At each iteration, a different set of SNPs per tag was randomly selected among markers with a minor allele frequency (MAF) above 0.05. The potential number of genetic clusters and the membership of each individual were estimated using STRUCTURE Ver. 2.3.4 (Pritchard et al., 2000), which can identify subsets within the data based on detecting allele frequency differences and assign individuals to those sub-populations based on analysis of likelihood (Porras-Hurtado et al., 2013). The model choice criterion implemented in STRUCTURE to detect the number of sub-populations (K) is an estimate of the posterior probability of the data, referred to as L(K), which is calculated for a given K by computing the log likelihood of the data at each step of a Markov Chain Monte Carlo (MCMC); the average of these values is computed and half their variance is subtracted to the mean (Evanno et al., 2005). In cases where the distribution of L(K) does not clearly identify the true K, an ad hoc quantity based on the second-order rate of change of the likelihood function with respect to K (ΔK) can show a clear peak or break in slope at the true value of K (Evanno et al., 2005).

For this study, analyses were run on 100 different combinations of one SNP per RAD tag, rather than running multiple replicates of a single selection of SNPs, with the numbers of genetic clusters (values of K) ranging from 1 to 8. The MCMC simulation was run for 100,000 repetitions, after a burn-in period of 50,000. No admixture model was assumed, and the location information was included as a prior to facilitate detection of the true structure despite a weak signal (Hubisz et al., 2009). The optimal K-value was selected based on the L(K) values and the individual assignment patterns, and also using STRUCTURE HARVESTER Ver. 0.6.94 (Earl and vonHoldt, 2012) to assess the likelihood values at each K and select the optimal value using the ad hoc statistic, ΔK (Evanno et al., 2005). Results from 800 runs (100 for each run) were graphically summarized using the online version of CLUMPAK (Kopelman et al., 2015) with default parameters: LargeKGreedy algorithm, random input order, 2,000 repeats, dynamic threshold for similarity scores, and minimal cluster size threshold = 0.1.

The same analyses were run after markers under selection were identified using two different analyses. The first was BayeScan Ver. 2.1 (Foll and Gaggiotti, 2008), which uses a Bayesian approach to estimate the probability that each locus is under selection, taking into account populations and incorporating uncertainties in allele frequencies due to small sample sizes. This analysis has been shown to be more reliable than alternative methods in detecting outliers and reducing the number of false positives (Pérez-Figueroa et al., 2010; Narum and Hess, 2011). BayeScan was run on all SNPs from all tags from the dataset under default settings, except that prior odds for the neutral model were set at 100 (i.e., the probability of a model under selection for each SNP site is 100 times less likely than a neutral model); and the False Discovery Rate (FDR) was set at 0.05. The second analysis was done keeping the prior odds for the neutral model to 10, and the FDR to 0.1, which probably resulted in several neutral markers being identified as subject to selection. In either case, only markers considered to be neutral were used for calculation of Φ statistics using the populations program in STACKS and for generation of input files for STRUCTURE, using a single SNP per tag. Tags that were identified as candidates for selection were compared to the GENBANK database using BLAST (Altschul et al., 1990), but reliable annotation of the markers was not possible, and these results are not shown or discussed. All scripts used for these procedures are available at: https://github.com/blancobercial/Eukrohnia.



RESULTS


Analysis of mtCOI Sequence Variation

Based on comparison with the mtCOI sequences available in the NCBI GenBank database, all 131 specimens analyzed for this study were confirmed to be E. hamata. The mtCOI sequences clustered within clades described from Arctic regions by Kulagin et al. (2011, 2014) and Miyamoto et al. (2012). The mtCOI sequences also clustered with significant bootstrap values with two barcoded specimens (GenBank Acc. Nos. FJ602472 and FJ602473) reported by Bucklin et al. (2010).

The Arctic population of E. hamata analyzed for this study exhibited high levels of sequence variation: based on the 528 bp (excluding sites with gaps/missing data) region of mtCOI analyzed, there were 78 unique haplotypes among 131 specimens, with haplotype diversity, Hd = 0.939 (SD = 0.017) and nucleotide diversity; Pi = 0.01031 (SD < 0.001); and average number of nucleotide differences, k = 5.44416. The mtCOI haplotype frequencies did not conform to neutral theory expectations: Tajima’s D = −2.16711 (p < 0.01); Fu and Li’s D∗ = −5.28736 (p < 0.02); Fu and Li’s F∗ = −4.70272 (p < 0.02). These statistics suggested genetic changes or lack of equilibrium conditions within the sampled population.

A mtCOI haplotype network constructed using mtCOI data for E. hamata showed that the most common haplotype (31 sequences) occurred among individuals from all sampling sites, whereas the second most common haplotype (8 sequences) occurred in only 3 locations (Chukchi Borderland, Fram Strait, and Eurasian Basin) (Figure 3). AMOVA analysis of spatial patterns of population genetic variation within and among samples based on mtCOI haplotypes revealed lack of geographic structure based on mtCOI, with no significant genetic differences between regions (results not shown).
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FIGURE 3. Haplotype network for E. hamata based on mtCOI sequences. Each circle represents a unique haplotype. Circle size and color correspond to the number of haplotypes and geographic location, respectively. Cross-bars represent number of mutations between haplotypes. Color key: white: Beaufort Sea; red: Chukchi Borderland; yellow: Amerasian Basin; green: Eurasian Basin; blue: Fram Strait; gray: Labrador Sea.


The mtCOI sequence data were also analyzed using Migrate-N software to determine Bayesian statistics of relative probabilities of hypothesized patterns and pathways of connectivity, which were based on the major Pan-Arctic currents (Figure 1). The Migrate-N results based on mtCOI did not reliably identify Arctic connectivity pathways for E. hamata (results not shown). In general, posterior distributions for each parameter were not consistently recovered between parallel runs, and often showing a flat posterior distribution.



Analysis of Genomic SNPs Detected by ddRAD

After all filtering and quality control, 1,957 RADtags that were present in at least 80% of the individuals across the 6 regional populations were retained for analysis, with a MAF > 0.05. Of these, 1,120 had only one SNP site, 489 had two SNP sites, 185 had three SNP sites, and 163 had four or more SNP sites, totaling 3,455 SNP sites overall. BayeScan analyses identified two of these SNPs as candidates for selection, with prior odds for a neutral model set to 100 and FDR set to 0.05. When prior odds for a neutral model were set to 10 and FDR to 0.1, then 17 SNPs were flagged as candidates for selection (Supplementary Figure S2).

Pairwise distances based on F-statistics calculated for single SNPs per RADtag were much lower within the Pacific Arctic (between Beaufort Sea and Chukchi Borderland) and within the Atlantic Arctic (between Fram Strait and Labrador Sea), than between the Atlantic and Pacific Arctic regions (Figure 4). The central Arctic Amerasian and Eurasian Basins were notably divergent for FST calculations based on single-SNP markers, while higher FST and ΦST most notably distinguished the Eurasian Basin from the Chukchi Borderland (Figure 4). Regarding each metric, in all cases FST > 0, meanwhile ϕST and FST values were in some cases < 0. Removal of more SNPs identified as candidates for selection by lowering probability threshold markedly lowered the differences between samples, however, the major patterns were retained (Supplementary Figure S3).
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FIGURE 4. Box and whiskers plot showing quartiles (box), 95% confidence interval (whiskers) and outliers (circles) of F-statistics between regions, derived from 1,000 iterations using randomly chosen sets of SNPs. The three F-statistics indicate closer relationships between the Chukchi Borderland and Beaufort Sea samples (Pacific Arctic), and between the other four regional samples (Eurasian and Amerasian Basins, Fram Strait, and Labrador Sea). After removal of markers deemed to be candidates for selection, the pattern was less clear, although there remained clear differences. NB: Y-axis units differ between statistics. Key: 1: Beaufort Sea; 2: Chukchi Borderland; 3: Amerasian Basin; 4: Eurasian Basin; 5: Fram Strait; 6: Labrador Sea.


Clustering analysis based on all SNPs differed from patterns using only SNPs identified as neutral, and resulted in a change in the relative likelihood of the number of clusters (K) revealed by the Evanno procedure (Evanno et al., 2005). Combinations from all SNPs available resulted in the selection of K = 2, while inclusion of only neutral markers resulted in K = 3 (Figure 5). Other useful indicators, e.g., the likelihood of each clustering level, L(K), also yielded K = 2 based on all SNPs, however, results were unclear for analysis of only SNPs identified as neutral, with higher likelihoods for K = 1 and K = 3 (Figure 5). Analysis based on two hypothesized clusters (K = 2) in STRUCTURE revealed marked differentiation between E. hamata populations in the Beaufort Sea and Chukchi Borderland versus genetically distinct populations spanning the Eurasian and Amerasian Basins, Fram Strait, and Labrador Sea (Figure 6A). Removal of SNPs identified as candidates for selection only slightly reduced the level of genetic differentiation observed between these two clusters of populations. Removal of SNPs identified as likely to be under selection also provided support for three population clusters (K = 3), including one comprising the Eurasian Basin, Fram Strait, and Labrador Sea, a second comprising the Chukchi Borderland and Beaufort Sea, with the Amerasian Basin comprised of a mixture of all 3 clusters (Figure 6B). This pattern with 3 clusters was observed in 93 of the 100 runs, with no other pattern being consistent among the other runs. Removal of additional SNPs under possible selection did not alter the results further (data not shown); results of all clustering patterns up to K = 8, including minor clustering patterns, are shown in Supplementary Figure S4.
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FIGURE 5. Graphs representing L(K) and ΔK following Evanno et al. (2005) using combinations of one SNP per tag from all SNPs, and after removing candidates for selection. The most likely clustering level is indicated by the modal value of ΔK, in these cases K = 2 for all SNPs, and K = 3 after removal of those candidate for selection as indicated by BAYESCAN. Other indicator, like L(K), did not fully agreed with the clustering level indicated. Note that x-axis scales differ between graphs [1–8 for L(K); 2–8 for ΔK].
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FIGURE 6. Bar plots from STRUCTURE showing with genetic clustering of sub-populations based on ddRAD SNP analysis, with one SNP selected per RADtag for each run, for numbers of clusters, K = 2 and K = 3. (A) Analysis of all 3,455 SNPs from 1,957 RADtags. (B) Analysis of SNPs deemed to be neutral, including 3,438 SNPs from 1955 RADtags. Genetic clusters are represented by colors; bar graphs show average probability of membership (y-axis) of each individual; regions are defined by thick vertical lines. There is a strong differentiation between the Pacific Arctic (Beaufort Sea and Chukchi Borderland) and the Atlantic Arctic (Fram Strait and Labrador Sea) in both graphs. Key: 1: Beaufort Sea; 2: Chukchi Borderland; 3: Amerasian Basin; 4: Eurasian Basin; 5: Fram Strait; 6: Labrador Sea.


Analysis of population connectivity using SNPs supported the primary migration pathway via flow from the Atlantic to the Pacific, consistent with the population genetic analysis using STRUCTURE. The results are shown as the relative likelihood from Bayesian analysis (Table 2) of pathways hypothesized based on circulation patterns shown in Figure 1.


TABLE 2. Migrate-N results based on SNP data.
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DISCUSSION


Population Genetic Diversity, Structure, and Connectivity Based on mtCOI

All E. hamata specimens collected from diverse Arctic regions yielded mtCOI sequences that clustered in one mtCOI lineage (Eh-3) reported by Kulagin et al. (2014), who described the collection locations of this clade as including two areas in the Arctic Ocean: Nansen Basin (north of Svalbard) and Kara Sea. Based on global phylogeographic analysis using mtCOI, Kulagin et al. (2014) concluded that one panmictic population of E. hamata was distributed throughout Arctic and North Atlantic regions. The two most frequent haplotypes observed in our analyses were identical to two sequences (NCBI GenBank Acc. Nos. FJ602472 and FJ602473) from E. hamata collected from the Arctic Canada Basin and reported by Bucklin et al. (2010).

The cosmopolitan-but-disjunct distribution of E. hamata has been examined using mtCOI sequence variation (Jennings et al., 2010; Kulagin et al., 2011, 2014; Miyamoto et al., 2012). Miyamoto et al. (2012) also noted the difficulty of discriminating E. hamata from Eukrohnia bathypelagica based on mtCOI, which complicated interpretation of their results. Kulagin et al. (2014) found evidence of five distinct mtCOI lineages of E. hamata, largely defined by biogeographical distribution, and concluded that the lineages represent distinct, cryptic species. Evidence for species-level differences was based on Kimura-2-Parameter (K2P) genetic distances between lineages (K2P = 0.043–0.135; Kulagin et al., 2014) that were higher than the intraspecific mean for 14 chaetognath species (K2P = 0.015) analyzed by Jennings et al. (2010). Genetic divergence between geographic populations has been reported for several chaetognath species (Peijnenburg et al., 2006; Marlétaz et al., 2008; Miyamoto et al., 2010), suggesting the possibility of cryptic species within their wide-spread or global biogeographical distributions.

The high levels of mtCOI haplotype diversity observed for E. hamata in this study, with 78 unique haplotypes from 130 specimens (Hd = 0.939), are comparable to previous observations in diverse populations of this species throughout the global ocean (Miyamoto et al., 2012; Kulagin et al., 2014), although this is in contrast to findings of low diversity for allozymic loci for the species by Thuessen et al. (1993). High haplotype diversity may increase resilience of E. hamata to Arctic-wide environmental changes.

Patterns of population genetic diversity and structure have been used to infer evolutionary potential and demographic history of marine zooplankton species (e.g., Aarbakke et al., 2014; Questel et al., 2016; see review by Peijnenburg and Goetze, 2013). For E. hamata, mtCOI revealed high haplotype diversity and low nucleotide diversity, with haplotype frequencies that did not conform to neutral theory expectations (Fu’s F statistic = −4.88; p < 0.02). These findings suggest that E. hamata may have undergone a recent population expansion, perhaps similar to that hypothesized for the Pan-Arctic copepod, Calanus glacialis (Weydmann et al., 2018). In contrast, Peijnenburg et al. (2005) concluded that patterns of haplotype diversity for mitochondrial cytochrome oxidase II, with high diversity that did not conform to neutral theory expectations, provided evidence that the chaetognath species, Sagitta setosa, was impacted by population bottlenecks from biogeographic range shifts caused perhaps by climatic perturbations during the Pleistocene era.



Population Genetic Diversity, Structure, Connectivity Based on Genomic SNPs

Genomic SNPs can provide markedly improved resolution of population genetic structure over mitochondrial gene markers (Helyar et al., 2011; Reitzel et al., 2013; Crawford and Oleksiak, 2016), and are especially useful for high gene flow species, such as most marine zooplankton (Blanco-Bercial and Bucklin, 2016; Bucklin et al., 2018; Choquet et al., 2019).

In this study, the finding of limited exchange between Atlantic Arctic and Pacific Arctic populations of a cosmopolitan – if not circumglobal – species of zooplankton warrants careful and thorough consideration. The migration patterns for E. hamata found to be most probable based on SNP markers are notably different from those inferred and predicted based on Pan-Arctic assessments of ecosystems and ocean circulation (e.g., Wassmann, 2015), as well as recent studies of the population genetics and connectivity of Arctic Ocean zooplankton. Questel et al. (2016) found no evidence of population structure based on mtCOI for copepod species of Pseudocalanus, and recent studies using mitochondrial and microsatellite makers concluded that Arctic populations of the copepod C. glacialis are panmictic (Weydmann et al., 2016, 2018), but see Nelson et al. (2009). Patterns of COI haplotype diversity also supported Pan-Arctic dispersal of the pteropod Limacina helicina, with evidence of population expansion during Pleistocene glaciation (Abyzova et al., 2018).

Genomic SNPs that show evidence of selection can provide markers of micro-evolution and local adaptation to environmental conditions (Gagnaire et al., 2015). After removal of SNPs showing impacts of selection, a similar pattern of two primary population genetic clusters of E. hamata in the Arctic was observed, although more mixing was detected and, in particular, the distinctiveness of the Amerasian and Eurasian Basins was less clear (Figure 6). The exclusion of SNPs under selection in particular resulted in higher likelihood of three genetic clusters across Arctic populations of E. hamata (Figure 5), with the third cluster distributed primarily in the Atlantic Arctic regions, especially the Labrador Sea (Figure 6). Analyses including combinations of all SNPs most frequently yielded results with only one genetic cluster (ranging from 91 to 100% of probability, with the exception of the Amerasian region). In contrast, the maximum probability for a single cluster for each population dropped to 41–81% after removal of candidates for selection. Such comparative analyses suggest the possibility of local adaptation of regional populations of E. hamata throughout the Arctic.



Additional Factors Determining Population Genetic Diversity and Structure

Patterns of distribution and abundance of Arctic zooplankton may be explained in large part by differences in their vertical distributions (Kosobokova et al., 2011). Arctic Ocean water mass structure and circulation patterns in the Arctic are highly dependent on water depth, with wind-driven surface currents and density-driven currents at depth (i.e., >1,000 m). In the Pacific Arctic, Atlantic Water predominates between 200 and 1,000 m, which almost certainly contributes to the observed connectivity of the central Arctic with the Atlantic. In addition, surface flow in the Beaufort Gyre would transport zooplankton from the Chukchi Borderland and Beaufort Sea into the Amerasian Basin, and may restrict flow from the Pacific to the central Arctic. However, deeper current flow is in the reverse direction, and would carry zooplankton from Fram Strait, into the Eurasian Basin, and potentially toward Pacific Arctic waters.

Chaetognaths are exceptional among marine zooplankton in their active swimming behavior and position-keeping capabilities (Kosobokova et al., 2011). Chaetognath species, including E. hamata, are most abundant in the mesopelagic zone (200–1,000 m) of the Arctic Ocean, and are major contributors to biomass of the zooplankton assemblage of the deep-sea ecosystem below 1,000 m (Kosobokova and Hopcroft, 2010). Eukrohnia hamata is reported to occur over a broad depth range (0–3,000 m) and is one of the top 10 species contributing to patterns observed in Arctic zooplankton communities over a wide range of depth zones, including 50–100, 100–200, 200–300, and 500–1,000 m (Kosobokova et al., 2011). Ulloa et al. (2000) described the annual cycle of E. hamata off the coast of Chili, where the species is found in surface waters from August to December, descending in May to 400–900 m (the maximum depth sampled). Another study (Gjøsæter et al., 2017) reported that chaetognaths exhibited diel vertical migration in the Arctic. The limited number of samples analyzed and the lack of vertically stratified sampling for this study makes it impossible to determine sub-regional scale patterns of dispersal or the impacts of water column stratification on migration pathways of E. hamata. However, published reports of the wide vertical distribution and active swimming behaviors, including likely vertical migration, of E. hamata provide a basis for confidence that our analyses accurately reflect the overall patterns of connectivity among geographic regions of the Arctic Ocean. In addition, the similarity of zooplankton assemblages among Arctic regions suggests effective exchange and lack of faunal barriers (Kosobokova et al., 2011).

This study provided evidence of the complexity of population genomic inferences from SNPs. Comparative analysis of different combinations of randomly selected unique SNPs per RADtag, revealed overall similarities in general patterns of population genetic diversity and structure. However, in some instances (7 of 100 runs) there were notable differences in numbers and distributional patterns of clusters, with associated variation in F-statistic values and significance. This finding reveals an important issue for studies using SNP markers detected by various RAD protocols. In particular, random selection of subsets of SNPs impacted by different ecological and (micro) evolutionary drivers can result in misleading or erroneous results (e.g., false positives or negatives). If by chance the SNPs selected correspond to a minor clustering pattern, this may bias F-statistic values. In this study, the 100 different runs selected for analysis by STRUCTURE, and even the 1,000 combinations used for calculation of F-statistics, helped minimize the probability of selecting a biased set of SNPs. Here >50% of the SNPs were analyzed in all calculations, since they were the only variant in our dataset of nearly 2,000 different stacks. However, there were significant differences among the results in 7 of the 100 runs, due presumably to the SNPs that were allowed to change. This finding should urge caution in the interpretation of results and encourage analysis of multiple combinations of SNPs, rather than replicate analyses of one set of single SNP sites per tag. In fact, addressing this issue is computationally relatively straightforward, as demonstrated in the scripts used in this study4.



CONCLUSION

Direct comparisons between results of population genetic analyses using single gene markers and genomic SNPs are key to accurate understanding of patterns of population genetic structure and pathways of population connectivity. Studies of marine zooplankton are particularly needed, given their widespread biogeographical distributions, possible occurrence of cryptic species, and complex patterns and pathways of population connectivity.

The large populations and relatively short lifespans of these species suggest their usefulness as rapid-responders to environmental perturbations driven by climate change. Analysis of genomic adaptation and micro-evolutionary changes in response to environmental variation and global climate change are key elements in improved understanding and prediction of alterations of species distribution and abundance, and consequences for food webs and ecosystems of the Arctic Ocean.

A primary goal of this study was to carry out fully parallel investigations, based on analysis of DNA sequence variation of the barcode region of mtCOI and allelic variation of genomic SNPs detected by ddRAD, of the population genetic diversity, structure, and connectivity of an important member of the Arctic Ocean zooplankton assemblage, the chaetognath E. hamata. Analysis of the same specimens in samples collected from six regions across the Arctic Ocean allowed direct comparison of the results from the different molecular markers in terms of detection and resolution of patterns and pathways of genetic exchange via the major currents flowing through the region. Importantly, this study allows further examination of previous studies using mtCOI to examine global-scale patterns of species diversity, distribution, and phylogeography of E. hamata based on the mtCOI barcode region, including evidence for a distinct population of the species in Arctic regions (Miyamoto et al., 2010; Kulagin et al., 2014). A primary finding of the study is that genomic SNPs detected by ddRAD provided clear evidence of genetic differentiation of Pacific Arctic and Atlantic Arctic populations of E. hamata, although mtCOI haplotype frequencies revealed no genetic differentiation among regional populations of E. hamata across the Arctic Ocean. Of the 131 analyzed specimens, mtCOI sequences and genomic SNPs detected by RAD-seq identified two genetically distinct populations between the Atlantic Arctic and Pacific Arctic regions, with evidence of some mixing across geographic boundaries. After removal of SNPs shown to be under selection, there was additional evidence of mixing, suggesting the possibility of local adaptation of populations of E. hamata among regions of the Arctic Ocean.
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Region Date collected Cruise - station Specimens Specimens Sampling Sampled Time (UTC) Latitude Longitude Lab code Specimens Specimens

sequenced for sequenced for gear depth (m) sequenced for sequenced
COI (N) ddRAD (N) CDI (total N) for ddRAD
(total N)
Beaufort Sea 08-August-2013 TB13 A2-500 8 % ultine 0-500 07:42 70.562 N 142.031 W Ch19.25 19 16
Beaufort Sea 26-August-2013  TB13 MAC-200 4 3 ultine 0-200 01:15 60.833 N 138.369 W Ch19.24
Beaufort Sea 28-August-2014  TB14 TBS-200 4 6 ultine 0-200 11:29 70.280 140.300 W Ch19.23
Chukchi Borderland ~ 18-July-2016 HLY1601-5 10 5 ultine 0-500 02:48 76.216 N 160.032 W Ch19.14 31 21
Chukchi Borderland ~ 19-July-2016 HLY1601-6 11 7 ultine 0-500 20:47 77.066 N 161.827 W Ch19.13
Chukchi Borderland ~ 28-July-2016 HLY1601-11 10 9 ultine 0-500 08:27 76.428 N 162.678 W Ch19.20
Amerasian 28-August-2011 PSII-225 5 4 Bongo Net 0-2564 00:30 87.652 N 157.607 W Ch19.21 14 8
Amerasian 29-August-2011 PSII-227 9 4 ultine 0-2598 08:12 86.366 N 139.303 W Ch19.22
Eurasian Basin 11-August-2011 PSII-196 10 10 Bongo Net 0-1500 17:49 83.800 N 60.000 E Ch19.26 18 15
Eurasian Basin 18-August-2011 PSII-210 1 1 ultine 0-4026 04:23 87.30N 60.000 E Ch19.27
Eurasian Basin 19-August-2011 PSII-212 1 1 ultine 0-4256 12:00 88.000 60.000 E Ch19.28
Eurasian Basin 21-August-2011 PSIl-215 6 g ultine 0-2414 00:24 89.199 N 60.000 E Ch19.29
Fram Strait 23-August-2015 HH2015-ST69 6 4 WP-2 0-500 15:16 81.939 N 15.646 E Ch19.15 31 16
Fram Strait 24-August-2015 HH2015-ST70 9 2 WP-2 0-500 05:32 82.106 N 156.146 E Ch19.16
Fram Strait 31-August-2015 HH2015-ST85 4 3 WP-2 0-400 04:55 81.324 7.536 E Ch19.17
Fram Strait 083-September-2015  HH2015-ST90 4 1 WP-2 0-500 09:40 79.692 N 7.842 E Ch19.18
Fram Strait 03-September-2015  HH2015-ST91 4 4 WP-2 0-500 23:46 79.658 N 8472 E Ch19.19
Fram Strait 05-September-2015  HH20I5 ST93 4 2 WP-2 0-270 18:31 79.674 N 9.768 E Ch19.33
Labrador Sea 25-May-2013 GOSARS174 8 4 1.5m Ring Net 0-200 06:04 63.691 N 53.427 W Ch19.32 18 21
Labrador Sea 26-May-2013 GOSARS175 6 8 WP-2 0-100 23:41 63.081 N 55.151 W Ch19.30
Labrador Sea 27-May-2013 GOSARS177 4 6 T80 0-100 07:03 60.829 N 55. 029 W Ch19.31
Totals 131 97 131 97

See Supplementary Table S1 for detailed collection metadata for each specimen, GenBank Accession numbers for COl barcode sequences, and SRA Biosample numbers for ddRAD SNP data.
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Raw T. Score Bezier Harmonic Relative
likelihood
Full (all pathways) —519568.06 —416992.61 —326270 4
Atlantic-to-Pacific —514322.46 —415149.83  —328304 1
Pacific-to-Atlantic —517054.97 —417855.53 —331233 2
Major currents —518778.56 —424453.73  —329934 3

The analysis supports the primary migration pathway via flow from the Atlantic to
the Pacific, consistent with the population genetic analysis using STRUCTURE. The
results are shown as Relative Likelihood rankings (1-4) based on Bayesian analysis,
with 1 being the most likely. See text for detailed explanation of hypothesized

current pathways.
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