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Aquatic ecologists routinely count animals to provide critical information for conservation
and management. Increased accessibility to underwater recording equipment such
as action cameras and unmanned underwater devices has allowed footage to be
captured efficiently and safely, without the logistical difficulties manual data collection
often presents. It has, however, led to immense volumes of data being collected that
require manual processing and thus significant time, labor, and money. The use of deep
learning to automate image processing has substantial benefits but has rarely been
adopted within the field of aquatic ecology. To test its efficacy and utility, we compared
the accuracy and speed of deep learning techniques against human counterparts for
quantifying fish abundance in underwater images and video footage. We collected
footage of fish assemblages in seagrass meadows in Queensland, Australia. We
produced three models using an object detection framework to detect the target
species, an ecologically important fish, luderick (Girella tricuspidata). Our models were
trained on three randomized 80:20 ratios of training:validation datasets from a total of
6,080 annotations. The computer accurately determined abundance from videos with
high performance using unseen footage from the same estuary as the training data
(F1 = 92.4%, mAP50 = 92.5%) and from novel footage collected from a different estuary
(F1 = 92.3%, mAP50 = 93.4%). The computer’s performance in determining abundance
was 7.1% better than human marine experts and 13.4% better than citizen scientists
in single image test datasets, and 1.5 and 7.8% higher in video datasets, respectively.
We show that deep learning can be a more accurate tool than humans at determining
abundance and that results are consistent and transferable across survey locations.
Deep learning methods provide a faster, cheaper, and more accurate alternative to
manual data analysis methods currently used to monitor and assess animal abundance
and have much to offer the field of aquatic ecology.
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INTRODUCTION

The foundation for all key questions in animal ecology
revolves around the abundance, distribution, and behavior of
animals. Collecting robust, accurate, and unbiased information
is therefore vital to understanding ecological theories and
applications. Some types of data collection methods that are
commonly used in animal ecology, such as tagging, manual visual
surveys, netting, and trawling, can be replaced or supplemented
with camera data.

In particular circumstances, the development and availability
of these devices can provide a more accurate and cheaper method
to collect data, with reduced risk to the operator (Hodgson et al.,
2013). Under these circumstances, they can increase sampling
accuracy as well as replicability and reproducibility (Weinstein,
2017), which form the basis of a sound scientific study (Leek and
Peng, 2015). However, the amount of data now being generated
can be overwhelming. The solution has become the new problem.

Much like the physical collection of data, manual processing
of data is often labor-intensive, time-consuming, and extremely
costly (Weinstein, 2017). This has led to invaluable data collected
over large temporal and spatial scales laying unused in storage
libraries. In Australia, for example, the Integrated Marine
Observing System (IMOS) collects millions of images of coral
reefs every year, yet despite affiliations and partnerships with a
range of universities and management agencies, less than 5% of
these are analyzed by experts (Moniruzzaman et al., 2017). This
apparently never-ending stream of data brings a new challenge
for ecologists, to find or develop the analytical tools needed
to extract information from the immense volumes of incoming
images and video content (Valletta et al., 2017).

Fortunately, recent advances in machine learning technologies
have provided one tool to help combat this problem, deep
learning. Deep learning is a subset of machine learning consisting
of a number of computational layers that process data that
are difficult to model analytically, such as raw images and
video footage (LeCun et al., 2015). Although these multi-layered
networks are not a new technology (Rawat and Wang, 2017),
the relatively recent advances in computing power have spurred
an increase in their application for analyzing image-based data.
In deep learning networks, data are fed into an input layer,
while an output layer is sorted into categories predetermined
by manual training, in a process known as supervised learning
(Rawat and Wang, 2017).

Although deep learning techniques are being implemented
enthusiastically in terrestrial ecology, it is currently an under-
exploited tool in aquatic environments (Moniruzzaman et al.,
2017; Xu et al., 2019). As the global challenges in marine science
and management increase (Halpern et al., 2015), it is critical
for marine science to realize the potential automated analysis
offers (Malde et al., 2019). Relative to terrestrial environments,
however, obtaining useable footage in marine environments to
achieve acceptable computational performance presents a unique
set of challenges. For example, there are often high levels of
environmental complexities in marine environments which can
interfere with clear footage, including variable water clarity,
complex background structures, decreased light at depth, and

obstruction due to schooling fish (Mandal et al., 2018; Salman
et al., 2019). Although these factors may affect the quality
of images and videos, deep learning methods have proven
successful in a range of marine applications (Galloway et al., 2017;
Arellano-Verdejo et al., 2019).

Efforts to use deep learning methods in marine environments
currently revolve around the automated classification of specific
species. Attempts to classify tropical reef fish have achieved
high levels of performance and have also outperformed
humans in species recognition (Villon et al., 2018). There
have also been suggestions from classification studies on
freshwater fish to incorporate other strategies for increasing
performance, including taxonomic family and order (Dos
Santos and Gonçalves, 2019). Although all marine environments
have challenging conditions, the tropical reef studies by
Villon et al. (2018) and Salman et al. (2019) typically
operate with high visibility, high fish abundance, and highly
variable inter-specific morphology, which makes distinguishing
different species easier (Xu and Matzner, 2018). Conversely,
coastal and estuarine systems often suffer poor visibility due
to complex topography, anthropogenic eutrophication, and
sediment-induced turbidity (Lehtiniemi et al., 2005; Baker and
Sheaves, 2006; Lowe et al., 2015).

Although classification enables the determination of species,
its usefulness for answering broad ecological questions is rather
limited. Object detection allows us to classify both what is in a
frame and where it is and therefore enables us to determine both
the species in an area and their abundance (e.g., Maire et al., 2015;
Salberg, 2015; Gray et al., 2019b).

Here, we use fish inhabiting subtropical seagrass meadows
as a case study to explore the viability of computer vision
and deep learning as a suitable, non-invasive technique using
remotely collected data in a variable marine environment.
Seagrass meadows provide critical ecosystem services such as
carbon sequestration, nutrient cycling, shoreline stabilization,
and enhanced biodiversity (Waycott et al., 2009; Sievers et al.,
2019). However, many seagrass meadows are being lost and
degraded due to a range of anthropogenic stressors, such as
overfishing, eutrophication, and physical disturbances (Orth
et al., 2006). Due to their background complexity, constant
movement, and ability to obscure fish, it may prove to be a
difficult habitat to implement a deep learning solution. Luderick
(Girella tricuspidata) is a common herbivorous fish found along
the east coast of Australia and is abundant in coastal and estuarine
systems, including seagrass meadows (Ferguson et al., 2013).
Unlike most herbivorous fish in seagrass meadows, this species
grazes on both the epiphytic algae that grows on seagrass and
the seagrass itself, making it of interest ecologically (Gollan and
Wright, 2006). Using this ecologically important ecosystem, we
specifically aim to deduce whether deep learning techniques can
be used to determine: (1) the accurate object detection of a
target species, (2) the flexibility of algorithms in analyzing data
across locations, and (3) the comparative performance between
computers and humans in determining abundance from images
and video footage. As far as we are aware, this is the first time
that humans and deep learning algorithms have been compared
in their ability to quantify abundance from underwater video
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footage or that object detection and computer vision methods
have been used in estuarine systems.

MATERIALS AND METHODS

Training Dataset
We used submerged action cameras (Haldex Sports Action Cam
HD 1080p) to collect video footage of luderick in the Tweed River
Estuary in southeast Queensland (−28.169438, 153.547594),
between February and July 2019. Each sampling day, six cameras
were deployed for 1 h over a variety of seagrass patches; the
angle and placement of cameras was varied among deployment
to ensure a variety of backgrounds and fish angles. Videos were
trimmed for training to contain only footage of luderick and split
into five frames per second.

Convolutional Neural Network
The object detection framework we used is an implementation
of Mask R-CNN developed by Massa and Girshick (2018).
Mask R-CNN works by classifying and localizing the region of
interest (RoI). It extends previous frameworks in that it can
predict a segmentation mask on the RoI, and currently, it has
the highest performance output for deep learning models (He
et al., 2017; Dai et al., 2019). To develop our model, we used a
ResNet50 configuration, pre-trained on the ImageNet-1k dataset.
This configuration provides an acceptable balance between
training time and performance (Massa and Girshick, 2018). We
conducted the model training, testing, and prediction tasks on
a Microsoft Azure Data Science Virtual Machine powered by an
NVIDIA V100 GPU. Data preparation and annotation tasks were
carried out using software developed at Griffith University. While
deep learning has begun to be adopted for ecological data analysis
in the last 2 years, its use in the environmental sciences requires
substantial software engineering knowledge, as unfortunately
there is not yet an accessible software package for ecologists
(Piechaud et al., 2019). The development of this interface for
manual annotation, that can be retrained for different species,
takes strides toward an end-to-end, user-friendly application
tailored for ecologists. A trained team in fish identification
manually drew segmentation masks around luderick (i.e., our
RoI, Figure 1) and annotated 6,080 fish for the training dataset.

FIGURE 1 | Training dataset image demonstrating manual segmentation
mask (white dashed line around fish) denoting the region of interest (RoI);
Girella tricuspidata at Tweed Estuary, NSW, Australia.

Luderick were annotated if they could be positively identified at
any time within the video the image came from.

The utility of the model depends on how accurately the
computer identifies the presence of luderick, which we quantified
in two ways based on the interactions between precision (P) and
recall (R). Precision is how rigorous the model is at identifying
the presence of luderick, and recall is the number of the total
positives the model captured (Everingham et al., 2010). Generally,
an increase in recall results in decreased precision and vice versa
and was calculated as follows:

Precision =
True Positive

True Positive+ False Positive

Recall =
True Positive

True Positive+ False Negative

Firstly, the computer’s ability to fit a segmentation mask around
the RoI was determined by the mean average precision value
(mAP) (Everingham et al., 2010):

mAP =
1
∫
0

P (R) dR

We used the mAP50 value in this study, which equates to how
well the model overlapped a segmentation mask around at least
50% of the ground truth outline of the fish. The higher the value,
the more accurate the model was at overlapping the segmentation
mask. Secondly, the success of our model in answering ecological
questions on abundance was determined by an F1 score. The
F1 score takes into consideration the maximum number of fish
calculated per video (MaxN), as well as the ratio of false positives
and false negative answers given, to assess the performance of
each method’s ability to correctly assess abundance:

F1 = 2×
P × R
P + R

We used the F1 score and mAP50 values to assess the
performance of the computer model.

All predictions were made with a confidence threshold of 90%,
that is, the algorithm was at least 90% sure that it was identifying
a luderick to minimize the occurrence of false negatives. This
threshold was chosen as it typically maximized F1 performance
by filtering out false positives.

Model Validation and Performance Curve
Models were trained using a random 80% sample of the
annotated dataset, with the remaining 20% used to form
a validation dataset (Alexandropoulos et al., 2019). Training
performance was then measured against the validation set to
monitor for overfitting. Overfitting is a phenomenon when
the computer becomes dependent on, and memorizes the
training data, failing to perform well when tested on data it
has not encountered previously (Chicco, 2017). We minimized
overfitting by using the early-stopping technique (Prechelt,
1998). In our case, this was achieved by assessing the mAP50 on
the validation set at intervals of 2,500 iterations and determined
where the performance began to drop (Chicco, 2017).
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The same computer algorithm was used to train three different
models on three different randomized 80/20 subsets of the
whole training data set to account for variation in the training
and validation split. These models were subsequently used to
compare the unseen and novel test dataset, and in the human
versus computer test.

We generated a performance curve to confirm that variation
among models was sufficiently low to ensure consistency in
performance across the three models. Random subsets of still
images were selected from the training dataset. These subsets
of data increased in volume to determine the performance
of the model as training data increase. As the volume of
training data increased, the risk of overfitting decreased, so
the number of training iterations was adjusted to maintain
optimum performance.

Manual annotation cost can be a significant factor to consider
when training CNN networks and can also be monitored by
using the performance curve. Time stamps were added to the
training software to record the speed at which training data were
annotated to infer total annotation time of the training data by
humans. We used these data to determine how much training is
required by this model to produce high accuracy and thus also the
effort needed to produce a consistent and reliable ecological tool.

Model Performance
The 80/20 validation test is an established method in machine
learning to assess the expected performance of the final model
(Alexandropoulos et al., 2019). However, using deep learning to
answer ecological questions requires another testing procedure
to accurately reflect the usability of the model when analyzing
new data. We therefore also tested the model against annotations
from two types of new footage not used for the training dataset.
We used unseen footage from the same location in the Tweed
River Estuary (“Unseen”), as well as from a novel location
(“Novel”), being seagrass meadows in a separate estuary system
in Tallebudgera Creek (−28.109721, 153.448975). A t-test was
used to compare the performance of the three models between
the unseen test-set from Tweed Estuary and the novel test-set
from Tallebudgera.

Human vs. Computer
Creating an automated data analysis system aims to lessen the
manual workload of humans by creating a faster, yet accurate,
alternative. Therefore, it is crucial to not only know how well
the model performs but also assess its capabilities in speed and
accuracy, compared to current human methods. This “human
versus computer” method analysis compared citizen scientists
and experts against the computer: (1) Citizen scientists were
undergraduate marine science students and interested members
of the public (n = 20); (2) Experts were fish scientists with a Ph.D.
or currently studying for one (n = 7); and (3) The computer
models (n = 3). We compared these groups using both video
footage (n = 31) and images (n = 50) and analyzed differences
in test speed and performance. Both the image sets and videos
were run through the three deep learning models to account for
variation in performance in the 80% of training data used to
train the models. The number of false negatives, false positives,

FIGURE 2 | Performance curve showing the computer’s ability to fit a
segmentation mask around the luderick (performance scored by mAP50) and
in accurately identifying abundance (performance scored by F1).

proportion of accurate answers (observed answers divided by
ground truth) as well as the overall F1 score were recorded.
Citizen scientist and experts were provided with a package that
contained a link to the video test uploaded to YouTube, the
image set sent as a zip file, instruction sheet, example images
of the target species, and datasheets. This process was set up
to minimize bias in training the human subjects that may
have occurred if the test was explained verbally. Humans were
instructed to only record the target species if they could visually
identify the luderick with confidence. Participants were required
to estimate the MaxN of luderick in any single frame per video
and per still image, simulating the most popular manual method
currently used in analyzing videos (e.g., Gilby et al., 2017). Start
and end time of each test was also recorded to compare how
quickly the participants completed the task, compared to the deep
learning algorithm. The still image dataset was randomly selected
from the “unseen” test video footage and used as the ground
truth for images. The video footage was expertly annotated
at five frames per second and used as the ground truth for
videos. Luderick were only annotated if they could be positively
identified at least at one instance in the video. This enabled us
to quantitatively compare the human and computer accuracy
in determining MaxN, assessed using the overall F1 score for
each test. While MaxN was used by the humans and models to
determine the target abundance, the rate at which each analysis
method incorrectly identified false negatives and false positives
is also important, since these errors can potentially cancel each
other out to give an “accurate” MaxN count. We therefore present
these individual components of the F1 calculation.

RESULTS

Performance Curve
Based on the computer algorithm curve, F1 performance began to
plateau earlier than mAP50 (Figure 2). F1 varied only 0.9% from
2,000 annotations to 6,000 annotations compared to an increase
of 3.1% by mAP50 at the same annotations. At lower volumes
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FIGURE 3 | The performance of the three model’s F1 and mAP50 scores (mean, SE) for the unseen test footage from the same location and novel footage (Unseen:
32 videos, Novel: 32 videos).

of training annotations (between 0 and 1,000), the performance
of both mAP50 and F1 fluctuated. Even with our streamlined
process for annotation, the average time for an operator to
annotate one fish was 13.5 s, and the total time to annotate all
6,080 images was in the order of 23 h (not including breaks).

Model Performance
Performance was high for both the unseen and novel test sets
(mAP and F1 both >92%). Based on F1 scores, the computer
performed equally well (t-test; t =−0.01, p = 0.99) on the unseen
(92.4%) and novel (92.3%; Figure 3). Similarly, the difference in
performance for mAP50 was non-significant (t = 1.4, p = 0.29) on
the unseen (92.5%) and novel (93.4%) test-sets.

Human vs. Machine
The computer algorithm achieved the highest mean F1 score in
both the image (95.4%) and the video-based tests (86.8%), when
compared with the experts and citizen scientists. The computer
also had fewer false positives (incorrectly identifying another
species as luderick) and false negatives (incorrectly ignoring
a luderick) in the image test. The computer models also had
the lowest rate of false positives in the video-based test when

compared to both human groups, but had the highest rate of
false negatives. The computer performed the task far faster than
both human groups. Experts on average performed better (F1)
than the citizen scientists in both tests and had higher accuracy
scores (Table 1).

F1 scores were most variable for the citizen scientist group,
with the difference between the lowest and the highest score for
the image and video tests being 40.1 and 35.1%, respectively. The
computer achieved the lowest variance, with these values only
3.1% for the video test and 1.7% for the image test (Figure 4).

DISCUSSION

Our object detection models achieved high performance on
a previously unseen dataset and maintained this performance
on footage collected in a novel location. It outperformed both
classes of humans (citizen scientists and experts) in speed and
performance, with high consistency (i.e., low variability).

We clearly show that our model is fully capable of accurately
performing the same on novel footage from locations beyond
the data used for training. Few previous demonstrations of
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TABLE 1 | Summary of performance measures comparing averaged scores from
computer versus humans (citizen scientists and experts).

Analysis
method

False
negatives

False
positives

Accuracy
(prop. ±)

F1 (%)
(SE)

Speed
(sec/mins)

(SE)

Images

Citizen Scientist 28.6 7.2 −0.14 82.0 (2.8) 12.6 (1.4)

Expert 18.1 5.6 −0.08 88.3 (8.4) 14.3 (4.0)

Computer 11.7 4.7 −0.12 95.4 (0.9) 0.4 (0.0)

Videos

Citizen Scientist 20.9 12.6 −0.10 79.0 (2.4) 2.4 (2.4)

Expert 12.1 11.9 +0.06 85.3 (6.9) 2.8 (4.4)

Computer 24.3 2.7 −0.10 86.8 (1.6) 1.2 (0.3)

Accuracy is displayed as the observer answer divided by the ground truth. Speed
is measured as seconds per image and minutes per minute of video. The F1
score denotes the ability and performance of all methods (human and computer) in
identifying the MaxN per image and per video. Images N = 50, Videos N = 31.

the utility of deep learning have tested algorithms under these
novel conditions, but it is a factor which should be considered
to determine how transferable the model is to environmental
scientists. While our results suggest the algorithm is robust and
flexible under different environmental conditions which vary
with tides, water clarity, ambient light, and differences in non-
target fish species and backgrounds, further work to quantify
these differences would be needed before conclusive statements
can be made. In a study conducted by Xia et al. (2018) on sea
cucumbers, a novel test dataset comprised of internet images
demonstrated an accuracy of 76.3%. This performance was
significantly lower than the test dataset the model was trained
on which achieved an accuracy of 97.6%. Similarly, Xu and
Matzner (2018) attempted to monitor the effects of water turbines
on local fish species at three different sites, but their model
only generated a 53.9% accuracy. All three sites exhibited their
own unique challenges to underwater data collection, including
occlusion due to bubbles from fast-flowing water and debris,
that made fish detection difficult even for a human observer.
Their study demonstrates the aforementioned environmental
challenges marine scientist face in using computer vision. One
potential reason that our models produced high-performance
results for the novel location could be the broad variation in
environmental conditions and camera angles in the training data.
Future work on this topic could extend the novel test to include
an even wider array of novel locations and compare a series of
novel sites that range from very similar environmental conditions
to less similar conditions to determine when and why the deep
learning algorithms lose efficacy.

The computer’s high performance, speed, and low variance
compared to humans suggest that it is a suitable model to replace
manual efforts to determine MaxN in marine environments.
Deep learning may be the solution for researchers to avoid
analytical bottlenecks (Gray et al., 2019a) as the computer
performed the image-based test considerably faster on average
than humans. The image test results are consistent with other
deep learning related models comparing human and computer
performance. Villon et al. (2018) trained a classification model

FIGURE 4 | Overall test performance in determining abundance (F1) by
computer versus humans (citizen scientists and experts) based on identical
tests using 50 images and 31 videos. The citizen scientist group had the
highest variance and lowest performance, while the computer had the lowest
variance and highest performance. Solid line denotes median, and dashed line
denotes mean.

which outperformed humans by approximately 5% in classifying
still images of nine coral reef fish species. Similar results
were found by Torney et al. (2019) using object detection to
accurately survey wildebeest abundance in Tanzania at a rate
of approximately 500 images per hour. Torney et al. (2019)
calculated that computer analysis could reduce analysis of surveys
from around 3 to 6 weeks done manually by up to four wildlife
experts, down to just 24 h using a deep learning algorithm.
Additionally, they found accuracy was not compromised, with
the abundance estimate from deep learning within 1% of that
from expert manual analysis. Like humans, the computer is
reliant on the quality of the image it receives. Deep learning
methods tend to decrease in performance when the picture
quality is blurred or subject to excessive noise (Salman et al.,
2016). In low light or high turbidity situations, image processing
to improve the quality of the picture (such as canceling noise and
improving contrast) can improve the performance of the model
(Salman et al., 2016).

Previous studies comparing humans versus computers have
predominantly used images rather than videos. When analyzing
video footage, there is an assumption that humans have
the comparative advantage when addressing uncertainty and
ambiguity (Jarrahi, 2018). Fish that could not be positively
identified early in the video may be identifiable later and vice
versa. Humans can move back and forward within the video to
correctly identify each fish when calculating MaxN, an ability
our deep learning model lacks. The results show that even
when humans seem to have the spatio-temporal advantage, the
computer model still outperforms both the experts and citizen
scientists. In our setup, inference time for video footage by the
computer was about half that of humans. Analytical time could
be further reduced by using multiple GPUs or by implementing
parallel processing using multiple virtual machines.

Quantifying population trends is critical to understanding
ecosystem health, so ecologists need measurements of population
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size that are consistent. We found less variation in computer
measurements than for human observers. Human errors in
observations are attributable to individual observer biases
(Yoccoz et al., 2001) and can be standardized by having a single
observer across all datasets. However, analyzing all data with
a single observer is unrealistic because of the large volumes of
data generated by video monitoring (Weinstein, 2017). Observer
effects can alternatively be partitioned statistically by including
each observer as a random factor in the statistical model.
Nevertheless, the level of standardization achieved by deep
learning methods, both within and among datasets, will improve
the accuracy of population trend estimates.

Although recent advances in deep learning can make image
analysis for animal ecology more efficient, there are still some
ecological and environmental limitations. Ecological limitations
include the difficulty in detection of small, rare, or elusive species,
and therefore, abundance may not be able to be estimated
in situ. Nevertheless, even plankton classification using deep
learning has been attempted (Li and Cui, 2016; Py et al., 2016).
This approach may be used to calculate the relative abundance
of these microscopic organisms and therefore estimate a wild
population density. This may be particularly useful in predicting
and monitoring outbreaks of nuisance species such as crown-
of-thorns sea stars (Hock et al., 2014) or stinging sea jellies
(Llewellyn et al., 2016). Another key ecological issue when using
computer vision is low sampling resolution due to the limited
field of view from cameras, limiting the accuracy of determining
abundance. Campbell et al. (2018) discovered that using cameras
with a 360-degree field-of-view improved the accuracy of fish
counts compared with single-camera MaxN counts. In future,
it would be useful to combine deep learning with a 360-degree
camera aspect when assessing abundance. The current limitations
in computer vision imply that this technology is not suitable for
all facets of animal ecology. Environmental conditions such as
water clarity and light availability currently dictate the useability
of footage in marine environments which subsequently affects
the performance of the model (Salman et al., 2019). In addition,
light penetration can be limited in many aquatic environments,
drastically reducing the utility of cameras across all habitat types
or during all sampling times.

The performance curves for our models suggest that they
may be just as useful in determining fish abundance with fewer
annotations than our full training set of 6,080 annotations.
Therefore, less time was needed for training the algorithm as
the accuracy of the model’s ability to predict the whole fish
(mAP50) is not needed to determine abundance. As our model
took approximately 60 h to train, running a performance curve
while training we can see that the time to reach optimum
performance could be two-thirds quicker at 20 h. Creating a
performance curve is a useful step when calculating the cost-
benefits of implementing a high performing model as well as
monitoring algorithm issues such as overfitting. However, this
does not take into account the time for human to be trained on
which species to annotate. Fish identification experts may not
need additional training while citizen scientists may. However,
studies have shown that citizen scientist annotated data for
deep learning can be as reliable as expertly annotated data

(Snow et al., 2008) providing an additional low-cost solution
for model training.

Deep learning methodologies provide a useful tool for
consistent monitoring and estimations of abundance in marine
environments, surpassing the overall performance of manual,
human efforts in a fraction of the time. As this field
advances, future ecological applications can include automation
in estimating fish size (Costa et al., 2006), estimating abundance
for multiple species simultaneously (Mandal et al., 2018),
studying animal behavior (Valletta et al., 2017; Norouzzadeh
et al., 2018), and monitoring pest species populations (Clement
et al., 2005). Future technological advances in the application of
interconnected devices and computer-to-computer information
transfer may also provide ecologists with fully automated
management systems via remote sensors connected to machine
learning algorithms to achieve continuous environmental
information at high temporal resolution (Allan et al., 2018).
Given the significant advantages that these algorithms can
provide, deep learning can indeed be a highly successful and
complementary tool for marine animal ecology in the future.
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