
fmars-07-00488 July 6, 2020 Time: 12:10 # 1

ORIGINAL RESEARCH
published: 07 July 2020

doi: 10.3389/fmars.2020.00488

Edited by:
Punyasloke Bhadury,

Indian Institute of Science Education
and Research Kolkata, India

Reviewed by:
Tiago José Pereira,

University of Georgia, United States
Christopher Barrio Froján,

Seascape Consultants Ltd,
United Kingdom

*Correspondence:
Cesar Augusto Marcelino Mendes

Cordeiro
cammcordeiro@id.uff.br

†ORCID:
Cesar Augusto Marcelino Mendes

Cordeiro
orcid.org/0000-0003-4960-450

Specialty section:
This article was submitted to

Marine Biology,
a section of the journal

Frontiers in Marine Science

Received: 26 February 2020
Accepted: 02 June 2020
Published: 07 July 2020

Citation:
Cordeiro CAMM, Harborne AR

and Ferreira CEL (2020) The
Biophysical Controls of Macroalgal

Growth on Subtropical Reefs.
Front. Mar. Sci. 7:488.

doi: 10.3389/fmars.2020.00488

The Biophysical Controls of
Macroalgal Growth on Subtropical
Reefs
Cesar Augusto Marcelino Mendes Cordeiro1,2*†, Alastair R. Harborne3 and
Carlos Eduardo Leite Ferreira1

1 Reef Systems Ecology and Conservation Lab, Universidade Federal Fluminense, Niterói, Brazil, 2 Federal University of Rio
de Janeiro, Rio de Janeiro, Brazil, 3 Tropical Fish Ecology Lab, Florida International University, North Miami, FL, United States

The importance of macro-grazers in controlling macroalgal cover has long been
recognized on tropical and temperate reefs, with fishes of primary importance on
the former and sea urchins on the latter. However, the functional role of herbivorous
urchins and fishes on subtropical marginal reefs remains poorly explored. To evaluate
the relative importance of fishes and urchins on marginal subtropical reefs, this study
used exclusion devices (excluding all grazers, fishes, or urchins) at two depths (1–2,
5–6 m) on Brazilian rocky reefs. Depth influenced responses within cages, with shallow
sites changing from patchy barrens (dominated by crustose coralline algae) to epilithic
algae-dominated within exclusion treatments, and sea urchins being the primary driver
of benthic dynamics. In deeper water, the growth and senescence cycle of Sargassum
species drove benthic dynamics and was associated with the season of higher intensity
of upwelling events. No clear influence of herbivorous fishes was detected on benthic
cover at either depth, despite biomasses similar to comparable tropical reefs where
they do control macroalgal populations. Thus, abiotic factors seem to be a strong
driver of benthic dynamics in the studied region, and top-down processes act only
at shallow depths. Consequently, despite Brazilian subtropical communities being
dominated by tropical species, the ecological drivers of these reefs may be more similar
to temperate systems.

Keywords: marginal reefs, grazers, upwelling, exclusion experiments, Brazil

INTRODUCTION

Herbivory is a critical process controlling the distribution and diversity of macroalgal cover in
many marine ecosystems (Lubchenco and Gaines, 1981; Bonaldo et al., 2014), and consequently
determines the spatial organization and dynamics of benthic assemblages (Horn, 1989; Bozec
and Mumby, 2015). For example, on tropical and temperate reefs, herbivory is an important
process modulating shallow marine benthic assemblages (Steneck et al., 2017). These effects are well
demonstrated on Caribbean reefs, where herbivorous feeding limits algal growth while benefiting
coral demographics, such as increasing larval settlement and consequently increasing reef resilience
(Burkepile and Hay, 2006; Bozec and Mumby, 2015). The role of herbivorous fishes have also
expanded since the mass mortality of the urchin Diadema antillarum in the Caribbean (Lessios
et al., 2001; Lessios, 2016). Reef benthic dynamics are also influenced by abiotic factors including
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depth, wave exposure, and nutrient concentrations (Mumby
et al., 2006; Mumby and Hastings, 2008; Roff et al., 2015).

In temperate regions, sea urchins are recognized as keystone
species in top-down processes (Tuya et al., 2004a), especially
influencing the dynamics of kelp forests and whole ecosystem
energetics (e.g., Estes and Palmisano, 1974; Kriegisch et al., 2016).
However, seasonal variation in benthic composition may create
cycles of expansion and contraction of ‘barren’ zones irrespective
of sea urchins’ grazing action, sometimes masking herbivory
effects (Sala and Boudouresque, 1997). Urchin grazing can also be
significantly affected by declines in predator populations, which
can induce high levels of grazing and bioerosion on benthic
communities, leading to changes that can last for years, and
having direct consequences on reef productivity and diversity
(Sheppard-Brennand et al., 2017).

How nutrients affect algal cover across tropical and temperate
reefs is still debated, with different approaches leading to
divergent conclusions. Generally, the addition of nutrients
increases algal growth and biomass, but compensation by
herbivores and algal composition can modulate responses
and determine benthic dynamics (Burkepile and Hay, 2006;
Poore et al., 2012). Although, the increase in nutrients is
usually associated with decreasing water quality (D’Angelo and
Wiedermann, 2014), in upwelling systems this condition is
common and beneficial for some reef organisms, such as corals
(Stuhldreier et al., 2016), but the effects of herbivores may be
minimized during upwelling events (Sellers et al., 2019).

Although there is a large and growing literature on herbivory
and nutrients on tropical and temperate reefs, subtropical regions
are rarely considered (Bennett and Bellwood, 2011), despite
their ecological and economic importance. Furthermore, these
marginal systems will probably be the first to experience effects
from species range expansions, especially herbivorous fishes
(Vergés et al., 2014). Understanding the natural functional roles
of different grazers is critical, but the relative importance of sea
urchins and herbivorous fishes in affecting benthic dynamics in
marginal reefs remains unclear.

This study uses exclusion treatments (excluding sea urchins,
fishes, and both) to examine the effects of macro-grazers on
benthic dynamics in the southwestern Atlantic, and the relative
importance of herbivorous fishes and sea urchins, temperature
and nutrients. Since the studied reefs lie in a subtropical zone
dominated by grazing and benthic species with tropical affinities
(Cordeiro et al., 2014, 2016), we hypothesized that herbivorous
fishes are the primary control of benthic cover irrespective of
abiotic drivers (temperature, depth and nutrients).

MATERIALS AND METHODS

Study Site
The Arraial do Cabo region consists of an isthmus and four
islands (Figure 1), mostly surrounded by rocky shores. The
region was declared a marine extractive reserve in 1997,
where only traditional fishers are allowed to exploit natural
resources. However, no-take areas are absent and general
enforcement is limited.

Small-scale upwelling processes often occur in the region
because of the prevailing winds (north-easterlies) and coastal
morphology, where upwelling water is characterized by
temperatures below 20◦C (originating from the South Atlantic
Central Water mass) and higher nutrient loads, especially
nitrate and ammonia (Valentin, 1984; Lanari and Coutinho,
2014). It is worth noting that there is no significant freshwater
input (i.e., rivers) within a 40 km radius. This region of Brazil
has a tropical monsoon climate with dry ‘winters’ (Alvares
et al., 2013), and Arraial do Cabo has very low precipitation
(<850 mm year−1, INMET, 2020). Although this climatic
classification is well established, the oceanographic conditions
are basically wind-driven. Upwelling events are more frequent
and intense during the rainy season (stronger north-easterlies)
roughly from mid-September to March, while the dry season
(April to August) has typically mild winds and a larger influence
of downwelling and cold fronts (S-SW winds) (Mazzuco et al.,
2018). Furthermore, the intrusion of the South Atlantic Central
Water mass on continental shelf biota of this large portion of
the Southwestern Atlantic, which bears majority of its rocky
shores, is widely recognized (e.g., De Léo and Pires-Vanin,
2006; Arantes et al., 2009; Nogueira-Júnior and Brandini, 2018).
Here we treated the meteorological seasons (rainy and dry) as
upwelling and non-upwelling periods to account for the main
temporal processes.

Shallower depths (1–4 m) have higher abundances of sea
urchins, with the presence of mosaics of “barren” patches,
epilithic algal matrix (EAM), and sessile invertebrates (Cordeiro
et al., 2014). The deeper reef areas (>4 m) are mainly covered
by macroalgae and EAM, with the presence of massive coral
colonies (Cordeiro et al., 2014). Epilithic algal matrix is here
dominated by filamentous algae (Supplementary Table S1), with
articulated coralline algae (ACA) considered as a separate group
due to its distinct structural characteristics (Steneck and Dethier,
1994). Surgeonfish are the dominant scrapper-detritivore group,
followed by parrotfishes and sea chubs that are evenly distributed
across depths and sites in the area (Cordeiro et al., 2016).

High nitrogen concentration is a characteristic effect of
upwelling events in the north of Rio de Janeiro state (>2 µM –
dissolved inorganic nitrogen, Valentin, 1984; Gonçalves, 1999;
Fernandes et al., 2017), which enhances local productivity
(Fernandes et al., 2017). Thus, the total nitrogen (NH4

+, NO2
−

and NO3
−) concentration (subsequently “nutrients”) in the

water was measured in the laboratory (following the methods
of Strickland and Parsons, 1972) from samples taken weekly
in triplicates from superficial water from 20 days prior to the
experiment starting and throughout the experimental period to
evaluate the effect of natural eutrophication on benthic cover.
Water temperature was measured at 6-hourly intervals during
the experimental period using a data logger (Tidbit v2 Onset
HOBO, accuracy of ±0.21◦C from 0◦ to 50◦C, calibrated by
manufacturer) installed (at 4 m deep), near the experiments and
used as a second proxy of upwelling effects.

Exclusion Experiments
The experiment was set up in November 2012 and monitored
until June 2013, ending after 205 days. Eighty experimental
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FIGURE 1 | (A) Map of Arraial do Cabo region (RJ, Brazil). The asterisks in the figure on the right show the experimental sites. (B) Experimental design schema
indicating levels of factors, treatments and replication applied-images of treatments are available in the Supplementary Material. AB – Abobrinha (22.985◦S,
41.991◦W), PV – Pedra Vermelha (22.986◦S, −41.993◦W).

plots were assigned to 20 blocks equally divided between two
neighboring sites (Figure 1) at two different depth strata: shallow
(1–2 m) and deep (5–6 m). At each depth, 10 experimental blocks
were composed of replicate patches (25 cm × 25 cm) of benthos,
which were assigned to three treatments and a control (open
plot). The treatments consisted of a fence only (excluding grazing
by sea urchins), a roof only (excluding grazing by fishes >10 cm),
and a full cage (excluding grazing by fishes and sea urchins).
Experimental structures were made of stainless steel (mesh size
of 0.5 cm) with dimensions of 25 cm × 25 cm × 7 cm, except
the rooves. The roof structures were made of a polyethylene net
with mesh size of 2 cm to keep similar light conditions for all
treatments. All structures were anchored to the substratum using
cable ties to screws fixed with epoxy resin for underwater use
(Tubolit R©) at the four corners.

Treatments were visited every 5–7 days for cleaning or
repairing of structures when necessary. The substrate cover
inside treatments was recorded at least fortnightly through digital

photography, totaling 16 samples of each replicate patch. These
images were analyzed with CPCe software (v3.6), using 50
random points for each image of 20 cm × 20 cm (the outer 5 cm
border of images was excluded from analyzed frames to avoid
any edge effects). Substrate cover was determined for each of the
points at the lowest possible taxonomical level, then grouped for
analysis into morpho-functional groups (Table 1) based on Littler
and Littler (1984), Steneck and Dethier (1994) and Ferreira and
Gonçalves (2006). The optimal number of points to be sampled
was calculated based on the asymptote of substrate cover diversity
curves (Lucas, 2013).

Data Analysis
Second-stage NMDS was applied to transformed (arcsin square
root) cover data of all observed benthic groups to identify the
effect of experimental treatments on assemblage structure over
time. The Euclidean distance between replicates of treatments
based on the arcsine square-rooted transformed cover was
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TABLE 1 | Comparative results of PERMANOVA for substrate cover composition and dominant groups among treatments, depth strata and site at Arraial do Cabo (RJ,
Brazil) rocky reefs.

Treatments df All cover groups Macroalgae CCA ACA EAM

Pseudo-F p Pseudo-F p Pseudo-F p Pseudo-F p Pseudo-F p

Stratum (St) 1 4.40 0.039* 0.64 0.510 14.20 0.066 0.01 0.948 29.30 0.032*

Site:Stratum (Si(St)) 2 1.76 0.127 8.69 0.004* 0.42 0.683 3,87 0.048* 0.73 0.509

Between subjects error 16 − − − − − − − − − −

Total between 19 − − − − − − − − − −

Block:Site:Stratum 16 1.13 0.293 0.59 0.869 0.94 0.541 1.73 0.072 0.89 0.577

Treatment (Tr) 3 5.17 0.001 1.81 0.241 13.36 0.006* 1.55 0.279 6.42 0.025*

Control × Cage (Tr1) 1 5.32 0.025* 1.89 0.306 10.67 0.086 0.09 0.792 10.03 0.088

Control × Fence (Tr2) 1 9.25 0.004* 1.99 0.288 14.84 0.058 1.56 0.346 120.99 0.009*

Control × Roof (Tr3) 1 3.18 0.117 2.25 0.272 13.16 0.065 0.55 0.096 2.85 0.236

Tr × St 3 5.64 0.001* 1.18 0.383 14.02 0.005* 11.69 0.008* 5.13 0.043*

St × Tr1 1 8.09 0.005* 0.32 0.629 27.62 0.035* 7.14 0.121 15.14 0.054*

St × Tr2 1 16.11 0.001* 2.34 0.267 23.18 0.043* 47.96 0.022* 86.67 0.009*

St × Tr3 1 0.98 0.491 0.35 0.618 1.93 0.305 1.00 0.419 0.73 0.486

Tr × Si(St) 6 0.62 0.885 0.79 0.586 0.36 0.902 0.47 0.838 0.84 0.548

Si(St) × Tr1 2 0.60 0.756 1.81 0.185 0.31 0.740 0.59 0.577 0.52 0.596

Si(St) × Tr2 2 0.19 0.994 0.36 0.699 0.13 0.878 0.28 0.751 0.02 0.987

Si(St) × Tr3 2 0.32 0.924 1.16 0.337 0.12 0.894 0.05 0.953 0.44 0.646

Within subjects error 51 − − − − − − − − − −

Total within 79 − − − − − − − − − −

CCA, crustose coralline algae; ACA, articulate coralline algae; EAM, epilithic algal matrix. *significant value at p < 0.05.

applied in the second-stage NMDS to create separate similarity
matrices for each time step (i.e., sampling event). Samples
of both sites were pooled in similarity matrices. After, all
time step matrices of each treatment and depth stratum
were compared for correlation (Spearman rank) separately.
This analysis reduces the dimensionality of the corresponding
coverage of the morphological and functional groups at each time
interval into a centroid, and all subsequent comparison matrices
into a single matrix diagram (Clarke and Warwick, 2001). The
spatial variation of the centroids corresponding to each time unit
indicates the trend of change in composition of the substrate
cover through time, particularly indicating the presence of cyclic
changes (Clarke et al., 2006).

Treatment effects on substrate cover composition was
investigated using PERMANOVA (PRIMER-e v.6 software;
Clarke and Gorley, 2006) applied to same transformed data,
with resemblance matrix obtained from Euclidean distance
similarity. Comparisons of treatments were demonstrated by the
contrasting effects of fence, roof and the combination of these
two (i.e., cages) against controls. Hypothetically, if both groups
of herbivores contributed equally to grazing, we would expect a
higher dissimilarity between the full exclusion treatment and the
controls than between the partial treatments and controls (i.e.,
Cages 6= Roof = Fence 6= Control). Another potential outcome
is different effects of herbivorous fishes (Cages = Roof 6= Fence∼
Control) or sea urchins (Cages = Fence 6=Roof∼Control). Other
combinations would be probably linked to unmeasured factors or
inefficacity of treatment devices (Underwood, 1996).

All analyses were conducted considering block as a random
factor nested in site and depth strata, with treatment (four levels)

and depth (two levels) as fixed crossed factors. Analyses followed
the protocol proposed by Anderson et al. (2016) with a two-step
procedure, first analyzing the within-subjects variation and then
among-subjects variation, in order to best separate the possible
effects of unreplicated levels (i.e., blocks). Additionally, to help
evaluate variation associated with tested variables, confidence
intervals of means for each treatment were calculated together
with the effect size (Cohen’s d) for nested designs using control
plots as the ‘control arm’ following Lai and Kwok (2016).

The relative cover of dominant morpho-functional groups
(>10% of total cover, i.e., EAM, crustose coralline algae – CCA,
macroalgae and ACA) was compared among treatments and
controls using univariate permutational ANOVA in PRIMER
(Clarke and Gorley, 2006), following the same rationale applied
for the whole benthic community.

The mean relative cover of dominant morpho-functional
groups, nutrients concentration, and temperature data were
tested for cross-correlation to examine possible cyclical
interactions. No significant autocorrelation or cross-correlation
was found between nutrients or temperature and morpho-
functional groups tested (Supplementary Figures S1, S2).
Nutrients and temperature were incorporated into the
analysis with a lag of 2 weeks, as indicated by the result of
cross-correlation analysis between these variables (ACF lag
2 = −0.58, see Supplementary Figure S1). Associations between
abiotic variables (i.e., nutrients and water temperature) and
the influence of time in substrate cover were investigated
using dbRDA (distance-based redundancy analysis) following
Anderson et al. (2016). Depth and site were included in the
dbRDA as dummy variables, and only data from control plots
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was used in those analyses in order to avoid confounding effects
from temporal dependency and exclusion treatment effects.
To evaluate the significance of axes and variables to dbRDA
models a permutation-based tests was applied (Legendre et al.,
2011). Ordination analyses were performed using vegan package
(Oksanen et al., 2019) from R software (R Core Team, 2019).

RESULTS

In total, 42 taxa were identified within six benthic morpho-
functional groups (Supplementary Table S1). Considering the
sampling period, structurally less complex morpho-functional
algae taxa were found at shallow settings. Corallinaceae
(46.6% ± 0.9 s.e. of total cover) and epilithic algal matrix
(25.4% ± 0.9) were the most abundant in the shallow stratum,
while macroalgae (42.1% ± 1.1) and EAM (32.7% ± 0.9)
were the predominant benthic morpho-functional groups in the
deep stratum. The upwelling season showed higher variation
in nutrients (1–4 µM) and temperatures (15–25◦C), while the
non-upwelling season was characterized by warmer and more
stable water temperatures (∼23◦C) and less variable nutrients
concentration (∼1 µM) (Figure 2).

The general composition of benthic cover oscillated through
time and among treatments indicating some temporal trends in
benthic composition (Figure 3). These ordinations were the best
bidimensional representation of a multivariate space, and the
interpretation of those is here treated as guidance for observed
general patterns of benthic communities through time, depth and
treatments. The composition of benthic groups of total exclusion
(i.e., cages) treatments at both depths, and sea urchin exclusion
(i.e., fences) at the shallow stratum changed progressively
(Figure 3), i.e., the position of first and last time steps are
distant in the diagram and with few or non-crossing pathways. In
contrast, a cyclical tendency was observed for all other treatments
at shallow and deep settings, with the composition at the last
time step of the experimental period returning to close to the
composition at the first time step (Figure 3).

Plots not reached by both fishes and sea urchins (cages) and
only accessible to fishes (fences) in the shallow stratum had an
increase in complexity of morpho-functional group during the
sampling period, switching from an initially bare stage dominated
by crustose algae (>60%) to a low profile dominated by epilithic
algae (EAM) (Figure 4). Open plots (controls) and plot accessible
only to sea urchins (roof) had few changes in composition,
remaining mostly covered by crustose algae (CCA) throughout
the sampling period (Figure 4). These divergences in relative
cover of morpho-functional groups were evident during the
dry season (Figure 4). In contrast, macroalgae and articulated
coralline algae (ACA) showed little variation through time and
among treatments (Figure 4). Treatments excluding sea urchin
and fishes, and only sea urchins had higher values of crustose
algae (CCA) during conditions of high nutrients (i.e., upwelling
season), which steadily decreased during the non-upwelling
season (Figure 4). However, in controls and fish exclusion only
(roof) this increase in crustose algae was not observed during the
upwelling season (Figure 4).

In the deep stratum, the macroalgal dominance (>90%
Sargassum spp.) was clear during the upwelling season for all
treatments and control (Figure 4). No noticeable differences
could be observed in mean cover of the four tested algal groups at
the deep stratum, and groups behave in the same fashion through
time irrespective of treatment (Figure 4 and Table 1). The cover
of epilithic algae (EAM) increased when temperature stabilized
(∼22◦C), and nutrients concentration decreased (<1 µm N2)
after approximately 100 days (Figures 2, 4). The mean cover of
crustose algae (CCA) also increased throughout the experimental
period (Figure 4), as a result of its higher detectability after
the senescence of Sargassum by the end of upwelling season.
Macroalgal cover was composed of foliose algae from the genera
Dictyota and Dictyopteris at the end of the experimental period,
and no Sargassum spp. was found at that time. Higher cover of
articulated coralline algae (ACA) occurred at the very beginning
and end of experimental period, associated with low nutrients
conditions irrespective of temperature, in a complementary cycle
to the macroalgal cover oscillation (Figure 4).

The cumulative changes in composition of substrate cover
were reflected in differences between depths and treatments,
but no effect for site or interaction between site and treatment
(Table 1). No effect was associated with variance within subjects
(i.e., blocks) indicating that the lack of replication at the lowest
level did not influence the overall analysis. An interaction
between treatment and depth was observed for contrasts between
control and cage, and control and fence, indicating no effects of
the roof treatment (Table 1) on benthic composition, i.e., any
effect of grazing by fishes on benthic cover. The same interactions
mirrored the large differences in composition between depths,
which were also observed inside treatments by the end of the
experiment (Table 1 and Figure 3) and reinforced by the lack
of separation of deep treatments. The differences among shallow
treatments can be attributed to the dominance of crustose algae in
control and fish exclusion only treatments, and epilithic algae in
sea urchin only and both grazers exclusions, i.e., fences and cages
(Figure 4 and Table 1). Differences between study sites were only
found for macroalgae and articulated algae (ACA), where mean
cover values were higher in Abobrinha than Pedra Vermelha
for both algae groups (Supplementary Figure S4). The absence
of detectable effects of grazers on benthic cover in the deep
stratum is confirmed by the overlapping in confidence intervals
of treatments and the low effect size of contrasts (Figure 5).
The higher mean cover of articulated (ACA) and epilithic algae
(EAM) cover observed for fence and cage in the shallow stratum,
were also reflected in larger effect sizes (Figure 5). For crustose
algae, the opposite was observed, with lower mean cover observed
for sea urchins and both grazers exclusions, but also with larger
effect sizes for these treatments in the shallow stratum (Figure 5).

The results of ordination analyses of benthic cover from
control replicates showed that depth, site, temperature and time
were significant factors, accounting for 46.8, 12.4, 2, and 0.5%
of the explained variance respectively, while nutrients was not
significant (Table 2). Temperature and time had a small positive
association (Figure 6 and Table 2), reflecting only cumulative
changes in cover toward the end of the experimental period. The
ordination shows a clear division of benthic composition between
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FIGURE 2 | Total nitrogen (NH4
+, NO2

− and NO3
−) concentration (µM) and temperature variation (circles = samples, bar = median, box = 1st/3rd quartiles, and

whiskers = 1.5 × interquartile range) during experimental period of herbivore exclusion at Arraial do Cabo (RJ, Brazil). Shaded area indicates the period of higher
variation in temperature (upwelling season). The dashed line (±SE in light blue) indicated the smoothing spline estimates (k = 4) of mean temperature values. Values
below 20◦C are considered to be from South Atlantic Central Water masses, indicating upwelling events (Valentin, 1984).

depths, where crustose algae and substrate (mainly bare rock)
were more associated with shallow areas, while macroalgae, EAM
and sediment were located in the opposite side of the diagram,
i.e., deep settings (Figure 6). Invertebrate cover and articulated
algae (ACA) did not show associations with any explanatory
variables, and differences between sites (Pedra Vermelha and
Abobrinha) were not clearly observed in the ordination plot. In
general, the patterns observed for average values of algal cover
within treatments excluding sea urchins only (fence) and both
grazers (cage) were reinforced by trends of effect sizes through
time (Supplementary Figure S5). No trends were observed for
algal groups irrespective of treatment in deeper water, while fence
and cage had increasing effects over crustose and epilithic algae in
shallower water.

DISCUSSION

Our exclusion experiment revealed that both biological
and abiotic factors act in conjunction to structure benthic
communities, with distinct effects related to depth on
southwestern Atlantic rocky reefs. The influence of
macroherbivores on algal dynamics was only significant at
the shallow stratum (1–2 m), where sea urchins were the
major consumers, with increasing cover of articulated (ACA)
and epilithic algae (EAM) and decreasing crustose algae
(CCA) in non-grazed treatments, which also increased the

complexity of benthic cover. However, changes in nutrients
and temperature may have buffered the grazing effects on
benthic cover. Fluctuations of nutrients concentration and
temperature seemed to be associated with substrate changes
in treatments at both depths but were more evident on
macroalgal cover in the deep stratum and associated with
annual cycles, despite nutrients having no significant influence
in ordination analyses. In contrast, in shallow sites, articulated
(ACA) and epilithic algae (EAM) cover increased after the
upwelling season, when nutrients concentrations were stable,
and the mean temperature decreased, possibly associated
with lower grazing activity of sea urchins (Ferreira, 1998).
Higher and less variable mean temperatures in the late
upwelling season appeared to have the opposite effect, and
consequently increased CCA coverage within control and
roof treatments.

The low macroalgal cover in the shallow stratum inside
both cages and controls indicates that macroalgal occurrence
is naturally low at that depth, possibly because of competition
with other sessile groups, such as epilithic algae, articulated
coralline algae and fire corals (Millepora alcicornis). Algal cover
is also affected by depth gradients because of factors including
light intensity and spectrum (Lubchenco, 1980; Carpenter,
1985) and wave action (Hurd, 2001). At shallower depths
light incidence and wave action are more intense, which are
better conditions for fast growing, dislodgement resistant, and
low relief species of algae (Johansson and Snoeijs, 2002),
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such as those found in EAM. Locally, macroalgae are either
abundant at very shallow depths (intertidal to <1 m depth,
a habitat not assessed here) where physical factors (e.g., wave

action, desiccation, and light inhibition) are more intense and
prevent herbivory by macrograzers (Guimaraens and Coutinho,
1996), or below 5 m. Temporal variation in algal coverage
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observed in the deeper stratum was homogeneous among all
treatments, with some variation associated with EAM cover.
Additionally, the temporal unimodal pattern of the macroalgal
cover (mainly Sargassum furcatum) was related to variation of
nutrients concentrations and low temperatures (i.e., upwelling
events), indicating a stronger influence of abiotic than biotic
factors (i.e., macro-herbivores grazing). The effects observed here

captured in detail the transition at a typical subtropical reef
site between upwelling and non-upwelling seasons covering the
main oceanographic features within a climatic cycle. However,
considering the importance of the upwelling to the benthic
dynamics, further investigation considering multi-year and
multi-location sampling would help deepen the understanding
of the interannual differences and the effect of global or regional
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TABLE 2 | Results of redundancy analysis (dbRDA) showing (a) the eigenvalues
and percentage of the overall variance explained by the first two axes, and (b) the
relative contribution to constrained variance of tested variables.

(a)

Axis 1 Axis 2

Eigenvalue 2.49 0.72

Proportion explained 0.72 0.21

(b)

Variables Adjusted explained variance p value

Depth 0.468 0.001

Site 0.124 0.001

Temperature 0.021 0.009

Time 0.005 0.020

Nutrients <0.001 0.167

Sum of eigenvalues for all axes = 3.44.

climatic phenomena (e.g., ENSO, marine heatwaves) on the
grazing pressure and macroalgae dynamics.

Sargassum occupies most of the subtidal rocky reefs in
the study region during the upwelling season (October to

March) associated with upwelling nitrogen inputs (Coelho-Souza
et al., 2012; Lanari and Coutinho, 2014) and decreases in
cover during the non-upwelling season when upwelling events
are less frequent, starting its senescence process (Guimaraens
and Coutinho, 1996; Gonçalves, 1999). The cycle of other
morpho-functional groups was in turn affected by shading
and competition caused by Sargassum cycles and nutrients
availability, such as foliose algae (e.g., Dictyota and Dictyopteris)
that replaced Sargassum after senescence. Due to the two-
dimensional nature of images in the method applied, the canopy
under Sargassum cover could not be easily detected, but CCA
was observed throughout the experimental period at the deep
stratum (CAMMC, personal observation). Sargassum overgrowth
effects are only tolerated by CCA species that thrive under this
dense canopy, due to their low light requirements (Leukart,
1994) and high abrasion resistance (Steneck and Dethier, 1994).
Consequently, after the decrease in macroalgal cover, the high
contribution of CCA was observed, followed by a gradual
increase in the contribution of EAM and ACA, as would be
expected in a natural process of succession for these algae
(Ceccarelli et al., 2011).

The influence of the upwelling events on the composition
and biomass of algal community at Arraial do Cabo region has
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been described previously (Guimaraens and Coutinho, 1996;
Lanari and Coutinho, 2014), indicating that nutrients variation
(nitrate and ammonium) is crucial for spatial and temporal
benthic dynamics. The natural levels of nitrogen compounds
measured in this study were close to those observed at
experiments applying artificial eutrophication treatments
associated with herbivory exclusion (e.g., Diaz-Pulido and
McCook, 2003; Sotka and Hay, 2009; Smith et al., 2010), and
similar results (i.e., increase in macroalgae cover) were obtained
under conditions of low herbivory and similar high nutrients
concentrations (review in Littler and Littler, 2007). Thus, as
nutrients are directly associated with temperature and benthic
cover changes, the use of temperature as a proxy for future
modeling of changes in benthic cover is suggested, given that
monitoring temperature monitoring is typically cheaper and
easier than for nutrients.

In shallow areas of subtropical reefs of Arraial do
Cabo, a simultaneous increase in the net primary
production (NPP) of epilithic algal matrix (early upwelling
season/spring = 2.8 g C m−2, and late upwelling
season/summer = 4.8 g C m−2, Ferreira, 1998) due to
higher light and nutrients availability, and a decrease in
consumption by herbivores (especially sea urchins) due
to longer periods of low temperatures, can apparently
generate a surplus of primary production. However, during
the non-upwelling season, lower rates of EAM NPP (early
upwelling season/autumn = 0.8 g C m−2, and late upwelling
season/winter = 0.9 g C m−2, Ferreira, 1998) also reflected
a reduction of macroalgae due to high consumption and
low production. The effects observed here represent all four

conditions predicted by the relative dominance model (RDM)
(sensu Littler and Littler, 1984) for coral reefs, except that massive
coral cover is naturally low when compared to tropical coral
reefs (Oigman-Pszczol et al., 2004; Rogers et al., 2014). Firstly,
under conditions of low nutrients and low herbivory, the algal
community will be dominated by epilithic algae, which was
observed here for all deep treatments, and under urchin grazing
and total exclusions (i.e., fence and cage) at shallow sites. The
opposite was observed for controls and roof treatment in the
shallow stratum, where the dominance of CCA would indicate
high herbivory, and both high and low nutrients conditions
according to the RDM. Lastly, the dominance of macroalgae
during the upwelling season, fueled by the upwelling, reflected a
scenario of relatively low herbivory effects associated with high
nutrients availability.

Guild composition of herbivores, and particularly their diet
and feeding mode, is crucial to understand how these species
interact with, and influence, the benthic assemblages (Bonaldo
et al., 2014; Mendes et al., 2015; Allgeier et al., 2017; Longo
et al., 2019). Sea urchins and herbivorous fishes show wide
variations in their foraging rates and feeding selectivity (O’Leary
and McClanahan, 2010; Mendes et al., 2018), but sea urchins
feed less selectively when compared to fish due to their scraper
apparatus (Black et al., 1984), the Aristotle’s lantern. Besides
having low mobility that restricts their foraging area (∼1 m2;
Carpenter, 1984), sea urchins are less selective with food items
when at high densities (∼above 10 ind m−2) and may act
as functional excavators removing even encrusting coralline
algae and carbonate structures (Benedetti-Cecchi et al., 1998,
1999). Scenarios with CCA dominance and low macroalgal cover
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attributed to sea urchins’ grazing action at shallow depths were
also observed in rocky reefs of Spain (Palacín et al., 1998),
Italy (Bulleri et al., 1999), and Cabo Verde (Entrambasaguas
et al., 2008). In addition, in temperate reefs, where urchins
exert high herbivory pressure over EAM and drift algae, CCA
dominance persists (Scheibling and Hatcher, 2001). However,
on tropical coral reefs, this positive relationship between sea
urchins and CCA is observed only at low densities of sea urchins.
At high densities (>15 ind m−2 for Diadema antillarum), this
relationship is negative because of limited food resources that
leads to the bioerosion of CCA (O’Leary and McClanahan, 2010).

Biomass values account for both size and abundance of
specimens (density is the most common metric in sea urchin
studies, e.g., Palacín et al., 1998; Tuya et al., 2004b; Lessios,
2016), which is crucial when comparing populations that are
not homogeneous in size structure, as reported for Arraial do
Cabo (see Cordeiro et al., 2014). Few studies have considered
the biomass of sea urchins as a variable on tropical reefs,
especially in the Caribbean, despite this being the most robust
metric for assessing effects of grazing (Suskiewicz and Johnson,
2017). Studies in East Africa coral reefs indicated biomass
values between 50.1 to 609.5 g m−2 (Humphries et al., 2014)
in areas where sea urchins showed significant control over
macroalgal cover. Similar to these studies, in Arraial do Cabo,
the genus Echinometra is considered as the dominant species,
but other less abundant species (e.g., Lytechinus variegatus,
Paracentrotus gaimardi, Arbacia lixula) contribute to total
grazing pressure. Average biomass values for sea urchins
observed in Arraial do Cabo (3.2–7.1 g m−2) were lower
than those observed at Kenyan reefs, and yet significant effects
over substrate cover were observed. However, generalizations
on the association of biomass values and algal cover should
be inferred with caution because the effects of herbivores on
benthic coverage are directly related to the balance between NPP
(e.g., because of different temperatures) and consumption, which
may be affected by species-specific grazing rates irrespective of
similar biomass values.

Herbivorous fishes have higher foraging mobility when
compared to sea urchins, being able to explore larger areas and
allowing a greater selectivity of items (Ferreira and Gonçalves,
2006; Burkepile and Hay, 2011; Mendes et al., 2015). This high
mobility tends to keep algae in an initial growth stage (Ferreira
et al., 1998), while sea urchins maintain the substrate clean of
complex groups of algae, usually leaving only encrusting coralline
algae (Scheibling and Hatcher, 2001). The high mobility of roving
herbivorous species also leads to spatially variable herbivory
pressure throughout the foraging area (Sandin and McNamara,
2012). On tropical reefs, the grazing of most abundant nominally
herbivorous fishes (i.e., Scarinae) is predicted to be restricted
to a maximum of ∼30% of reef area (Mumby, 2006), although
it is not clear whether this is also true for subtropical reefs.
These factors, coupled with the high availability of EAM and its
high turnover rate (Russ, 2003; Bonaldo and Bellwood, 2011),
may limit the effect of herbivorous fishes on benthic cover in
this study. For example, small-bodied parrotfish species (e.g.,
Sparisoma radians and Sparisoma tuiupiranga) may have been
able to forage under roof structures, but they did not influence

partial exclusion plots. The biomass of nominally herbivorous
fishes in subtropical reefs is considerable when compared to other
groups of fishes (Morais et al., 2017; Longo et al., 2019). It is likely
that those fishes have an important function on subtropical reef
food webs through the detritus cycle, but their control of benthic
dynamics (at least at the scale of habitats analyzed) was limited
when compared to the Caribbean, and yet to be compared with
tropical reefs of Brazilian coast. Biomass values for herbivorous
fishes reported for the Caribbean (2–17.1 g m−2, Williams and
Polunin, 2001; up to 36 g m−2, Suchley and Alvarez-Filip, 2017;
7 to >71.1 g m−2, Kuempel and Altieri, 2017) were similar to
those found at Arraial do Cabo, but the exclusion of herbivory by
fishes did not significantly affect algal growth in the present study.
These findings were contrary to the study’s initial hypothesis,
where fish would have a major role as grazers due to the tropical
affinity of local biota. Instead, only sea urchins were found to
significantly influence the benthic cover by their intense grazing.
It is also hard to know whether the apparently limited top-down
control of macroalgae by fishes in the studied subtropical reefs
is natural or due to reduced local populations (i.e., overfishing,
Floeter et al., 2006), as the biomass of parrotfishes has been
drastically decreased in the last two decades (Bender et al., 2014).
Thus, there is still need for precautionary management action
for herbivorous fishes in reefs along the Brazilian coast, as their
functional role is still poorly explored.

These are the first results of caging experiments on benthic
succession available for subtropical reefs in the South Atlantic.
Studies related to the biology and ecology of sea urchins are also
scarce in the South Atlantic (Ventura et al., 2013), which is a
significant data gap given the high abundance of these important
functional herbivores in reef environments. Most populations
of sea urchins are r strategists and controlled by top-down
mechanisms (Bonaviri et al., 2012), making these populations
more susceptible to population outbreaks and mass mortality
events, as observed for Diadema antillarum in the Caribbean
(Lessios et al., 2001). Mass mortality events of sea urchins have
been recorded at Arraial do Cabo associated with blooms of
toxic dinoflagellates (Ferreira, 2006), and subsequent events have
been observed occasionally in the region (personal observation),
but little is known about the long-term consequences to local
sea urchin populations. In addition, information about past
conditions on Brazilian reefs is rare, not only including scenarios
where herbivorous fishes had higher abundance and could exert
a top-down control over macroalgae, but also where lower
biomass of sea urchins (controlled by predation) would limit
barren formation. Moreover, the primary effects of nutrients
input (i.e., upwelling) and sea urchin grazing over benthic
cover dynamics on these subtropical reefs may indicate more
similarities with the functioning of temperate systems than
tropical reefs, which is crucial information for local managers
facing possible regime shifts.
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