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Accurate prediction over the North Pacific, especially for the key parameter of sea
surface temperature (SST), remains a challenge for short-term climate prediction. In
this study, seasonal predicted skills of the First Institute of Oceanography Earth System
Model version 1.0 (FIO-ESM v1.0) over the North Pacific were assessed. Ensemble
adjustment Kalman filter (EAKF) and Projection Optimal Interpolation (Projection-OI) data
assimilation schemes were used to provide initial conditions for FIO-ESM v1.0 hindcasts
that were started from the first day of each month between 1993 and 2017. Evolution
and spacial distribution of SST anomalies over the North Pacific were reasonably
reproduced in EAKF and Projection-OI assimilation output. Two hindcast experiments
show that the skill of FIO-ESM v1.0 with the EAKF data assimilation scheme to predict
SST over the North Pacific is considerably higher than that with Projection-OI data
assimilation for all lead times of 1–6 months, especially in the central North Pacific where
the subsurface ocean temperature in the initial conditions is significantly improved by
EAKF data assimilation. For the Kuroshio–Oyashio extension (KOE) region, the errors
in the initial conditions have more rapid propagation resulting in large discrepancies
between simulated and observed values, which are reduced by inducing surface
waves into the climate model. Incorporation of realistic initial conditions and reasonable
physical processes into the coupled model is essential to improving seasonal prediction
skill. These results provide a solid basis for the development of operational seasonal
prediction systems for the North Pacific.

Keywords: seasonal prediction skill, FIO-ESM, North Pacific, ensemble adjustment kalman filter, assimilation
scheme, sea surface temperature

INTRODUCTION

The seasonal prediction skill of short-term climate prediction systems has received increasing
attention from the scientific community in recent decades (Kug et al., 2008; Kim et al., 2012; Wen
et al., 2012). In the North Pacific, sea surface temperature (SST) is an essential parameter of the
climate system, and its considerable variability has broad impacts on the weather, climate processes,
and ocean environment both locally or around adjacent continents, such as North America and
East Asia (Lau et al., 2004). Accurate prediction of SST based on the advanced seasonal prediction
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systems will provide useful information for disaster prevention
and damage reduction, as well as marine resource management.
Improved skill to predict oceanographic conditions in the North
Pacific is highly desirable.

Accurate prediction of SST anomalies (SSTAs) over the North
Pacific remains a challenge for the seasonal prediction systems
(Wen et al., 2012; Duan and Wu, 2014; Hu et al., 2014).
Current state-of-the-art coupled general circulation models are
unable to accurately simulate climatology and variations of
SST in the North Pacific (Wang et al., 2014). Variability of
SSTAs over the North Pacific, especially at mid and high
latitudes, is mainly influenced by local air–sea interactions,
Pacific Decadal Oscillation (PDO), and the El Niño–Southern
Oscillation (ENSO, Liu and Alexander, 2007; Hu et al., 2014;
Bayr et al., 2019). Associated with atmospheric teleconnection,
ENSO is the primary source of global climate predictability
at seasonal and interannual time scales (Kumar et al., 2014).
Since the coupled ocean–atmosphere system was used for ENSO
predictions (Cane et al., 1986), the seasonal prediction skill of
ENSO has considerably improved, and SST over the equatorial
Pacific can be successfully predicted two seasons in advance
(Barnston et al., 1999, 2015; Luo et al., 2005; Song et al., 2015;
Kim et al., 2017; Liu and Ren, 2017). However, the skill to predict
SSTAs at the mid and high latitudes of the North Pacific is
lower than that for the tropical eastern Pacific. The robust spring
predictability barrier has limited seasonal prediction of ENSO for
a long time (Zheng and Zhu, 2010). In the western central North
Pacific, initial error growth also exhibits a distinctive seasonal
dependence. The prediction skill is lowest in summer, giving rise
to the summer predictability barrier (Zhao et al., 2012; Duan and
Wu, 2014; Wu et al., 2016). Previous researches suggested that a
shallow mixed-layer depth in the North Pacific accompanied by
strong oceanic stratification in summer could result in a relatively
weak correlation between SSTAs in the summer and temperature
in the following winter (Alexander, 1999; Jacox et al., 2019),
which could lead to poor prediction of SSTAs. With the exception
of the Kuroshio–Oyashio Extension (KOE) region, SSTAs over
most of the North Pacific can be predicted with reasonable skill
with a lead time of two seasons (Wen et al., 2012). Hence,
the ability of a model to predict SST over the KOE region is
critical for the model’s skill in short-term climate prediction over
the North Pacific.

Seasonal prediction skill is controlled by physical processes
in the dynamical model as well as the initial conditions (Rosati
et al., 1997; Zhu et al., 2012, 2017a; Kim et al., 2017). Studies
have found that low resolution and omission of critical physical
processes in models can lead to systematic biases, which limit
the seasonal prediction skill (Wen et al., 2012; Suranjana et al.,
2014; Zhu et al., 2017a). With ensemble initialization, increased
resolution, and comprehensive physics, seasonal prediction skill
of coupled dynamical models can be considerable improved
(Zhu et al., 2013). For example, Zhao et al. (2019a) show that
incorporation of surface wave processes can effectively improve
the simulation and prediction skills of SST in the North Pacific.
In addition, small perturbations in initial conditions can lead
to very different final results (Lorenz, 1969); therefore, more
accurate initial conditions based on high-quality observation and

data assimilation schemes are important for improving seasonal
predictions (Alessandri et al., 2010; Zhu et al., 2012).

In recent decades, availability of ocean observation data
and dramatically increased computer resources promotes the
development and application of different data assimilation
technologies, which combine the numerical model with
observational data optimally to provide more accurate
initial conditions for short-term climate prediction systems
(Ratheesh et al., 2012). Several assimilation schemes, including
optimal interpolation, three- or four-dimensional variational
assimilation, and Kalman filtering have been widely used in
weather and climate predictions (Eddy, 1964; Jones, 1965; Ezer
and Mellor, 1997; Anderson, 2001; Yin et al., 2010). The Optimal
Interpolation (OI) scheme requires few computing resources
and is relatively simple and easy to implement. Yin et al. (2010)
developed the improved Projection-OI scheme by projecting
observed data obtained at the ocean surface onto layers below.
The ensemble adjustment Kalman filter (EAKF) can make a joint
adjustment on related variables; for example, the upper-ocean
temperature, salinity, and velocity are in accordance with each
other during the prediction (Anderson, 2001; Bishop et al.,
2001; Chen et al., 2015). In addition, the ensemble method
in EAKF effectively eliminates uncertainties caused by initial
errors. Examining the impact of initial conditions, obtained from
different data assimilation schemes, can benefit the development
of prediction systems and improve seasonal prediction skills
over North Pacific.

In this study, we evaluate the skill of FIO-ESM v1.0 in seasonal
prediction of SST in North Pacific. The hindcast was initialized
by EAKF and the Projection-OI data assimilation scheme. In
addition, the effect of surface waves on the prediction skill is
discussed. The remainder of the paper is organized as follows:
climate model, assimilation schemes, hindcast experiments, and
observed data used for validation are described in section
“Model and Data Assimilation Schemes”; the assimilation results
from two schemes are compared in section “Comparison of
Assimilation Outputs”; in section “Evaluation of Prediction Skill”,
we investigate the seasonal dependence of prediction skill over
the North Pacific, and we close with discussions and conclusions
in section “Discussion”.

MODEL AND DATA ASSIMILATION
SCHEMES

Introduction of FIO-ESM v1.0
Hindcasts were conducted using FIO-ESM v1.0, which has been
developed by the First Institute of Oceanography, Ministry of
Natural Resources of China. There are five components in FIO-
ESM v1.0. These include the Community Atmosphere Model
Version 3.0 (CAM3.0) with a horizontal resolution of T42 (about
2.875◦ in latitude and longitude) and 26 vertical layers, the
Community Land Model Version 3.5 (CLM3.5), the Los Alamos
Sea Ice Model Version 4.0 (CICE4), the Parallel Ocean Program
Version 2.0 (POP2.0), which is an ocean circulation component,
and the wave model developed by the Key Laboratory of
Marine Science and Numerical Modeling (MASNUM), Ministry
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of Natural Resources of China. The horizontal resolution of
POP2.0 and CICE4 is 0.3–1.1◦, and there are 40 vertical layers
in the ocean model. More details about FIO-ESM v1.0 can be
found in Qiao et al. (2013).

FIO-ESM v1.0 is a fully coupled ocean–atmosphere general
circulation model that considers ocean surface wave effects based
on the theory of non-breaking surface wave-induced mixing
(Qiao et al., 2004, 2010). A set of coordinated experiments,
including historical and future scenarios simulations without flux
correction, has been conducted and included in the Coupled
Model Intercomparison Project phase 5 (CMIP5). The model
can capture major features of the observed climatology in the
historical period (Qiao et al., 2013), specially, it can reproduce
SST distribution and evolution in historical experiments. By
incorporating surface wave effects, the FIO-ESM v1.0 hindcasts
are skillful in predicting SST over most of the North Pacific
with lead times of 1–6 months (Zhao et al., 2019b). The
reliable SST representation at mid-latitudes leads to improved
simulated precipitation through the air–sea interaction (Chen
et al., 2015). More details about model performance can be
found in Zhao et al. (2019a).

Data Assimilation Schemes and
Observation Data
The initial condition of the ocean state plays a crucial role
in seasonal prediction. Outputs from two data assimilation
methods, EAKF and Projection-OI, were used to initialize FIO-
ESM v1.0.

Data assimilation using the EAKF includes ten ensembles
spreading within a suitable scope. Ensembles were produced
using the three-dimensional ocean temperature perturbation
method with the magnitude of 10−3◦C.

Tpert
i,j,k =

(
1+ α · βi,j,k

)
· Ti,j,k (1)

where the coefficient α is equal to 10−3, βi,j,k is a random number
between -1 and 1 varying at each grid, and Tpert

i,j,k is the ocean
temperature after perturbation. The perturbation simulation
was conducted for 2 years before assimilation. During the
perturbation simulation, the tiny perturbation grows, gradually
stabilizes, and is used as the initialized condition for EAKF
assimilation experiments (Chen et al., 2015). The EAKF avoids
the perturbed observations in the traditional ensemble Kalman
filter (Evensen, 1994); instead, background error covariance
in the EAKF is calculated using ensemble samples. Spatial
and temporal evolutions of covariance are determined by the
dynamical processes of the model. Multiple variables are jointly
adjusted in the EAKF, maintaining consistency of the dynamic
relationships between elements before and after adjustment,
thus ensuring rationality of the initial conditions. In addition,
the method of the ensemble mean can effectively eliminate
uncertainties caused by initial biases.

Projection-OI uses vertical projections to project observations
at the ocean surface onto the three-dimensional model space
(Yin et al., 2010). Differences between surface observations and
model estimates were first calculated. Weight βSST representing

the covariant relations between the surface and the lower layer
were then used to adjust the three-dimensional model state.
Temperature variation in each layer is 1T, βSST · 1SST is the
corresponding variation obtained through vertical projection,
and Z is the difference between the two terms:

Z = 1T − βSST ·1SST (2)

To minimize discrepancies, βSST was determined using the least-
square method by maintaining the gradient of Z at zero.

βSST =
cov(1T, 1SST)

σ2
1SST

(3)

The time series of 1T and 1SST were constructed from
anomalies. The Projection-OI assimilation experiment was
conducted using a single member.

Two data assimilation experiments using the EAKF and
the Projection-OI schemes were conducted for January 1993–
December 2017 directly based on the fully coupled model
FIO-ESM v1.0. Seasonal hindcasts under two initial conditions
were started on the first day of each month. The same
aerosol radiative forcing and greenhouse gas concentrations
prescribed to the observation data in the historical experiments
of CMIP5 were used. Influences of initial conditions on the
skill of the model to predict seasonal SST in North Pacific were
quantified by the same validation metrics.

A daily-averaged advanced very high resolution radiometer
(AVHRR) SST from the National Oceanic and Atmospheric
Administration (NOAA)/National Climate Data Center (NCDC)
with horizontal resolution of 0.25◦ and sea level anomaly
(SLA) from the Archiving, Validation and Interpretation of
Satellite Data (AVISO) with horizontal resolution of 0.25◦ were
assimilated in two hindcast experiments (Ducet et al., 2000;
Reynolds et al., 2007). Observation data have higher horizontal
resolution than the model and contain the signals of mesoscale
processes. To ensure alignment with model resolution, spacial
running averages of the observation data over 1.5◦ grid were used.

Monthly observed SST from NOAA Optimum Interpolation
(OI) SST v2 for the period of 1993–2017 was used as the
validation dataset (Banzon et al., 2016). Monthly subsurface
ocean temperatures were obtained from version 4 of the Met
Office Hadley Centre EN series of data sets (EN4), which is a
global quality-controlled ocean temperature objective analysis.
The horizontal resolution of EN4 is 1◦, and there are 42
vertical layers (Good et al., 2013). Observation data were linearly
interpolated to match the model grid.

SST is one of the key indicators to represent climate
variabilities. In this study, we examined the skill of FIO-ESM
v1.0 to predict SSTAs relative to monthly climatology averaged
for 1993–2017 with different lead times. Several criteria are
used to evaluate model performance. Specifically, the anomaly
correlation coefficient (ACC), which is widely used to measure
the relationship between predicted and observed anomalies,
was used to quantify the prediction skill. Three-month running
averages were applied before correlation analysis.
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COMPARISON OF ASSIMILATION
OUTPUTS

Climatology and evolution of SST from the assimilation output
were compared with those from the validation dataset to
examine whether the assimilation output can be used reliably
to initialize prediction. Area-averaged time series of SSTAs
over the North Pacific (20◦–70◦N, 110◦E–100◦W) are shown in
Figure 1. Seasonal, interannual, and inter-decadal variabilities
of SSTAs in EAKF and Projection-OI assimilation outputs are
highly consistent with those of OISST v2 SSTAs. The correlation
coefficient between OISST v2 and EAKF SSTAs (0.935) is
higher than that between OISST v2 and Projection-OI (0.905),
indicating that the ability to reproduce observed SSTAs is higher
in EAKF than in Projection-OI. Figure 2 shows the spacial
distribution of ACC between OISST v2 and SST from two data
assimilation experiments. High ACC scores indicate that the
model with the data assimilation scheme has high ability in
reproducing SST. For EAKF runs, the ACC reaches 0.9 over most
of the North Pacific and is higher in the east than in the west.
The same observation data are assimilated using Projection-OI
scheme, but the ACC in the Projection-OI run is apparently
lower than that in EAKF. For Projection-OI, ACC reaches 0.9
only distributing in the eastern North Pacific, off the coast of
California. In general, SSTAs were reasonably reproduced with
ACC exceeding 0.7 over most of the North Pacific, except for
the western boundary region and the mid-latitudes of the central
North Pacific where ACC is relatively lower. The FIO-ESM v1.0
with EAKF assimilation produces initial conditions for prediction
that have higher accuracy than those produced by FIO-ESM v1.0
with Projection-OI assimilation.

Surface observation data, including SST and SLA, were
assimilated into FIO-ESM v1.0 using EAKF and Projection-OI
assimilation schemes. The ocean subsurface layer is considerably

FIGURE 1 | Time series of area-averaged SSTAs (units: ◦C) over the North
Pacific (20–70◦N, 110◦E–100◦W) with respect to climatology for 1993–2017.
Three-month-running smoothing is applied. The black line represents SSTAs
from OISST v2 observation; red and blue lines represent EAKF and
Projection-OI assimilation results, respectively. The values in brackets are
correlation coefficients between assimilation results and observation.

A

B

FIGURE 2 | The anomaly correlation coefficient (ACC) of sea surface
temperature (SST) between OISST v2 and assimilation results for 1993–2017.
(A) EAKF; (B) Projection-OI. ACC is significantly greater than zero at the 95%
confidence level. Only the 0.8 and 0.9 contours are plotted.

FIGURE 3 | The ocean temperature changes along 45◦N in the North Pacific
as the EAKF scheme compared with the Projection-OI assimilation scheme.
This change was calculated according to Eq. (4) for 1993–2017 (units: ◦C).
The negative value indicates improvement with EAKF data assimilation.

changed under the data assimilation. Here, the difference between
EAKF and observed temperatures was calculated to estimate the
error of the EAKF scheme; similarly, the difference between
Projection-OI and observed temperatures was calculated to
estimate the error of the Projection-OI scheme:

Temperature changes = |TEAKF − TOBS|−|TProjections−OI − TOBS|

(4)
where temperature changes refer to the difference between the
absolute values of the errors of the two schemes; negative
temperature changes indicate that the absolute difference
between EAKF and observed temperatures is smaller than that
between Projection-OI and observed temperatures. Figure 3
shows temperature changes along 45◦N in the North Pacific.
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Negative temperature changes centered around 170–140◦W from
the surface to a depth of 300 m, and along the western coast at a
depth of 100 m, indicating that EAKF is superior to Projection-OI
in assimilating observed ocean temperatures for these locations.
The EAKF and Projection-OI schemes use different projection
methods to assimilate and project observed SST and SLA onto the
subsurface vertical profile. The EAKF scheme uses the covariant
relationship among different ensemble members, adjusting the
temperature profile while also adjusting the current velocity
coordinately, resulting in improved temperature simulation
below the sea surface, which are superior to those obtained
with the Projection-OI scheme. Distributions of subsurface
negative temperature changes (centered around 170–140◦W and
140–150◦E in Figure 3) are consistent with that of high ACC
skill (located in the central and western North Pacific as shown
in Figure 2), indicating that the subsurface ocean temperature
changes are directly associated with data assimilation techniques.
Besides, this improvement is possible to be amplified via air–sea
interaction in the coupled system. The improved SST, in turn,
may derive inferior winds that contribute to better estimates of
subsurface thermal conditions (Luo et al., 2005; Zhu et al., 2017a).

EVALUATION OF PREDICTION SKILL

Initialization of hindcasts with EAKF and Projection-OI data
assimilation were conducted for 1993–2017. Figure 4 shows ACC
of SST with lead times of 2, 4, and 6 months between OISST
v2 dataset and hindcast results. We explore the impact of two
different data assimilation schemes on the seasonal prediction
skill for SST in the North Pacific. For lead times of 2, 4, and
6 months, the skill of FIO-ESM v1.0 to hindcast seasonal SST
in the North Pacific is higher with EAKF data assimilation and
lower with Projection-OI data assimilation. ACC at a 2-month
lead time exceeds 0.5 over most of the North Pacific and is
higher than 0.9 in the eastern Pacific. The prediction based on
Projection-OI assimilation shows lower prediction skills with the
ACC below 0.5 in most parts of North Pacific. As the lead time of
prediction increases from 2 to 6 months, values of AAC gradually
decreased. For lead times of 2, 4, and 6 months, the spacial
distribution of ACCs indicates low skill in SST prediction over the
KOE region where the active mesoscale processed combined with
strong air-sea interactions is present. The remarkable predicted
bias over the KOE region is consistent with results from previous
research (Wen et al., 2012) and is a common problem in seasonal
prediction over the North Pacific.

To show the prediction skill initialized by two data
assimilation methods more clearly, we examine the differences
between ACC from EAKF and that from Projection-OI were
calculated for each lead month. Figure 5 shows a clear difference
over the Western central Pacific, particularly in the Okhotsk Sea,
Japan Sea, and China Seas in the first lead month. Starting from
a 2-month lead, large positive values are found in the Bering Sea
and the Gulf of Alaska of the eastern North Pacific and extend
along the northeast–southwest banded area in central Pacific.
This positive value indicating improvement with EAKF method
varies with increasing lead months and remaining in place for

lead times of 5 and 6 months. Due to the coordinated adjustment
at the surface and the entire water column in vertical in EAKF,
SST hindcasts with EAKF data assimilation are superior to those
with Projection-OI data assimilation. The difference between the
two ACCs does not decrease with increasing lead time. Prediction
skill strongly depends on initial conditions, and the dependence
can last for lead times of up to two seasons.

The times series of area-averaged (30–50◦N, 150◦E–150◦W)
SSTAs differences between hindcast and OISST v2 for 1993–2017
for different lead times is shown in Figure 6. Biases of SSTAs
from EAKF and from Projection-OI are similar, characterized
by strong interannual variation. When the bias from the EAKF
experiment is positive, there is also a positive bias in the
Projection-OI prediction, and vice versa, indicating that the
direction of prediction SST shifts is probably related to the model,
regardless of which data assimilation method is used. However,
the prediction bias initialized with Projection-OI is considerable
larger than those from EAKF. The EAKF scheme performs better
in restraining the shifts of model due to coordinated adjustment.
Generally, the prediction bias for a lead time of 6 months is larger
than biases for lead times of 2 or 4 months, either for EAKF or
Projection-OI experiments.

Seasonal dependence of prediction skill over the North
Pacific was further investigated, and variation of ACC with
horizontal axis of hindcast length and the vertical axis indicating
the forecast starting month is shown in Figure 7. Hindcasts
with EAKF data assimilation and that start from May are
consistently high in skill, while the prediction skill is lower for
hindcasts that start from November. The skill of Projection-
OI hindcast is relatively low, but their ACC has the same
characteristics of seasonal dependence as ACC of hindcasts with
EAKF data assimilation. For both data assimilation schemes,
hindcasts started from summer are lower in skill, which is
consistent with the summer predictability barrier that is often
encountered in short-term predictions. The differences show that
the prediction skill is improved for all lead times by EAKF,
especially for hindcasts that start in spring and autumn. The
significant change with the differences exceeding 0.3 exists for
lead times of 2–4 months. The FIO-ESM v1.0 with EAKF
data assimilation tends to represent atmospheric and oceanic
conditions relatively well and shows high skill of SST prediction
over North Pacific.

To explore the factors underlying the superior performance
of hindcasts with EAKF data assimilation, temperature changes
(as defined in Eq. 4) in the subsurface layer in the initial
condition and difference of prediction skills between EAKF
and Projection-OI hindcasts averaged for 1–6 lead months are
illustrated in Figure 8. The significant improvement of prediction
skill distributes in the banded area from 160◦E to 160◦W and in
the high latitudes. Realistic initial conditions improve a model’s
ability to capture climate variability and can improve the model’s
skill to predict ENSO with a lead time of up to two seasons
(Song et al., 2015). Signals from the tropics can have profound
impacts on subtropical regions. Previous studies suggest that
SSTA evolution in the North Pacific is strongly influenced by
ENSO because of atmospheric teleconnections (Kim et al., 2015;
Zhu et al., 2017a). The well-predicted ENSO can also improve
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FIGURE 4 | Distributions of ACC between IOSST v2 and hindcasts using the EAKF and Projection-OI data assimilation methods for the 2-, 4-, 6-months lead in the
North Pacific. Only the line of the 0.5 contour is plotted.

FIGURE 5 | The differences of ACC between the EAKF and Projection-OI hindcasts in each lead month averaged for 1993–2017. Only the line of 0.3 contour is
plotted.

skill to predict SSTA over the mid and high latitudes. In addition,
we found that significant improvement of ocean temperature
in the subsurface layer of the initial condition up to 3◦C is
shown to be located over the central North Pacific between
160◦E and 160◦W, which is generally in accordance with the
region where the prediction skill is much improved. It reveals

that the accurate subsurface structure in the initial condition
could improve seasonal prediction skill in this region. However,
more accurate ocean temperatures in the initial conditions are
insufficient to remove all prediction errors, for example over
the KOE region, characterized by active air–sea interactions and
mesoscale processes.
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FIGURE 6 | Time series of area-averaged SSTAs prediction biases over the
North Pacific (30–50◦N, 150◦E–150◦W; units: ◦C) with respect to OISST v2
for 1993–2017. The lines in different colors represent SSTA biases at the 2-,
4-, and 6-lead months in EAKF and Projection-OI predictions, respectively.

DISCUSSION

In this paper, the impacts of initial conditions on the skill of
FIO-ESM v1.0 to predict seasonal SST over the North Pacific
were assessed. Several assimilation and hindcast experiments
for 1993–2017 were conducted using FIO-ESM v1.0 and the
EAKF and Projection-OI data assimilation scheme. Evaluation
of data assimilation output shows that simulated SST in the
North Pacific from the EAKF scheme has a higher accuracy
than that from Projection-OI runs. Seasonal SST variability in
assimilation outputs is consistent with those in observations,
with ACC exceeding 0.7 over most of the North Pacific. Both

EAKF and Projection-OI assimilate the same surface observation
data, however, the model with EAKF data assimilation has higher
accuracy than that with Projection-OI in simulating subsurface
ocean temperature.

Oceanic initial conditions play an important role in improving
seasonal prediction skill. We analyzed hindcasts initialized
by EAKF and Projection-OI data assimilation for the lead
times of 1–6 months for 1993–2017. Prediction skill, as
represented by ACC, is higher in hindcasts with EAKF
than those with Projection-OI. ACC exceeding 0.5 is found
over almost the entire North Pacific at a 2-month lead
time and even over the eastern North Pacific at the 6-
month leading time with EAKF initialization. Specifically,
significant improvement of ACC distributes over the central
North Pacific, as well as from the Bering Sea to the
eastern North Pacific. Seasonal dependence of prediction
skill was further assessed, and we found that, like other
prediction systems, FIO-ESM v1.0 also encounters the North
Pacific summer predictability barrier. EAKF can mitigate the
prediction bias in contrast to Projection-OI for all lead times
of 1–6 months, especially for the prediction starting from
spring and autumn.

The prediction skill of FIO-ESM v1.0 over the KOE region
is relatively low, because the complex dynamic environment
with strong air–sea interaction in this region, which is difficult
to parameterize correctly in climate models. Previous research
suggested that the SST evolution and climate variability
in extratropical Pacific are influenced by ENSO through
atmospheric teleconnection and other associated dynamic
processes (Hu et al., 2014). The skill to predict SSTAs in the
central Pacific increases under ENSO remote forcing during the
cold phase (Zhu et al., 2017a). If the model fails to simulate
the teleconnection pattern, it may limit the prediction skill
over the North Pacific (Kim et al., 2015). Realistic oceanic

A B C

FIGURE 7 | Evolution of area-averaged ACC over the North Pacific (20–70◦N, 110◦E–100◦W); the horizontal axis represents the length of hindcasts, and the vertical
axis indicates the starting month. (A) EAKF; (B) Projection-OI; and (C) EAKF–Projection-OI.
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FIGURE 8 | The temperature changes between EAKF and Projection-OI
averaged at the 50–150 m vertical depth (shaded; units: ◦C) in the initial
condition and the differences of ACC between the EAKF and Projection-OI
hindcasts averaged in all lead months (contour, only 0.3 and 0.4 contours are
plotted). The depth of 50–150 m covers the annual variation of mixed-layer
depth.

A

B

FIGURE 9 | (A) Zonal mean ACC (110◦E–100◦W) between IOSST v2
datasets and hindcast results in EAKF (solid line) and Projection-OI (dashed
line) runs. Red, green, and blue lines represent for 2-, 4-, 6-month lead,
respectively. (B) Zonal mean SSTAs (110◦E–100◦W; units: ◦C) with respect to
1993–2017 climatology in observation (black), Exp.wave (red) and Exp.nowa
(blue) mean averaged for 1–6 lead months, and gray solid and dashed lines
represent the different lead month in Exp.wave and Exp.nowa.

initial conditions improve ENSO predictions, which in turn have
profound impacts on SSTAs predictions over the extratropical
Pacific. In this study, we found that the EAKF data assimilation
scheme improves the subsurface layer temperature in the
initial condition and results in highly predicted ACC over the
central North Pacific, indicating that accurate oceanic initial
conditions, especially in the subsurface layer, can effectively
improve prediction skill over the North Pacific. The projection
method of the data assimilation scheme in the subsurface layer
or deep waters can improve the prediction system’s performance.
Development of short-term climate prediction systems has
considerably improved seasonal prediction of SST over the
North Pacific. For example, version 2 of the NCEP Climate

A

B

C

FIGURE 10 | The differences of absolute predicted biases between Exp.wave
and Exp.nowa in 2016. (A) Annual mean; (B) Jan-Jun mean; and (C) Jul-Dec
mean. The hindcasts with or without wave are respectively compared with
OISST v2 to show the predicted biases. Then the difference of absolute values
of the biased between Exp.wave and Exp.nowa are calculated. As definited
above, the negative value, indicating that the absolute difference between
EAKF and observation is smaller than that between Projection-OI and OISST
v2, represents the improvement due to the surface wave effects.

Forecast System (CFSv21), which belongs to the new generation
of operational climate forecast systems and has improved physics
and increased resolution in the atmosphere–ocean–land coupled
model. The skill of seasonal forecasts of 2-m temperatures over
the United States from CFSv2 is nearly double of that from the
old version of the prediction system. Global SST forecasts are
also considerably improved with CFSv2 (Suranjana et al., 2014).
Guan et al. (2014) show that the maximum skill based on CFSv2
hindcasts is confined in the tropical Pacific, and the prediction
skill at the mid-latitudes of North Pacific remains low. Compared
with CFSv2, FIO-ESM v1.0 exhibits improved prediction skills
in the mid and high latitudes ocean. As shown in Figure 9, the
zonal mean of ACCs (110◦E–100◦W) varies between 0.7 and 0.4
for 1- to 6-month lead (latitudes ranging from 35 to 50◦N) in the
EAKF experiment. Except for the influences of initial condition
on prediction, it demonstrated that the physical process, such as
wave effect, also plays a constructive role in climate prediction
in North Pacific. To show the impacts of wave-induced mixing
on seasonal prediction, the hindcast without waves is conducted
using FIO-ESM v1.0 for 2016 (denoted as Exp.nowa), and the

1http://cfs.ncep.noaa.gov
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results were compared with the FIO-ESM v1.0 hindcast with
EAKF data assimilation for 2016 (denoted as Exp.wave). Two
experiments were started from each month of 2016 and initialized
with the same initial conditions using the EAKF and ensemble
method. When non-breaking wave-induced mixing effects are
taken into account, the prediction bias of SSTAs is reduced by
about 0.4◦C for average lead times of 1–6 months at mid and
high latitudes of the North Pacific (Figure 9B). Furthermore,
bias reduction is found from the Okhotsk Sea across the mid-
latitudes of the North Pacific (Figure 10) where low seasonal
prediction skills have been persisting in other climate prediction
systems. The prediction skill improvement due to surface wave
exhibits seasonal dependence. Surface wave mixing has a stronger
influence when the prediction starts in spring or early summer.
As the prediction initiated from the second half of the year,
ocean surface waves have little effect on prediction skill. The
mixed-layer depth in the high latitude is shallow in summer, with
the larger temperature gradient in the upper ocean. The enhanced
vertical mixing bringing more cold water from the subsurface to
the surface reduces SST. At low latitudes of the Pacific, the deep
mixed-layer depth with weak wave-induced mixing results in a
slight reduction in SST. In winter, the mixed-layer depth is deep,
and the temperature gradient in the upper ocean is small. Due
to the limitation of penetration depth, wave-induced mixing is
unable to act on the water beneath the mixed layer. Furthermore,
the decrease in the vertical diffusion coefficient reduces vertical
water exchange, preventing downward heat transfer. As a result,
upper ocean temperatures change little or even increase. The
effect of surface wave on seasonal prediction of SST is more
pronounced in summer, because of shallow mixed-layer depth
(Zhao et al., 2019b). Seasonal predictions over the North Pacific
over long lead times can be improved by incorporating realistic
initial conditions produced by effective data assimilation schemes
and reasonable physical processes in climate models.
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