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The ability of marine microbes to navigate toward chemical hotspots can determine their

nutrient uptake and has the potential to affect the cycling of elements in the ocean. The

link between bacterial navigation and nutrient cycling highlights the need to understand

how chemotaxis functions in the context of marine microenvironments. Chemotaxis

hinges on the stochastic binding/unbinding of molecules with surface receptors, the

transduction of this information through an intracellular signaling cascade, and the

activation and control of flagellar motors. The intrinsic randomness of these processes

is a central challenge that cells must deal with in order to navigate, particularly under

dilute conditions where noise and signal are similar in magnitude. Such conditions are

ubiquitous in the ocean, where nutrient concentrations are often extremely low and

subject to rapid variation in space (e.g., particulate matter, nutrient plumes) and time

(e.g., diffusing sources, fluid mixing). Stochastic, biophysical models of chemotaxis

have the potential to illuminate how bacteria cope with noise to efficiently navigate in

such environments. At the same time, new technologies for experimentation allow for

continuous interrogation—from milliseconds through to days—of bacterial responses in

custom dynamic nutrient landscapes, providing unprecedented access to the behavior

of chemotactic cells in microenvironments engineered to mimic those cells navigate

in the wild. These recent theoretical and experimental developments have created an

opportunity to derive population-level uptake from single-cell motility characteristics in

ways that could inform the next generation of marine biogeochemical cycling models.
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1. INTRODUCTION

The fine-scale interactions between marine bacteria and both dissolved and particulate organic
matter underpin marine biogeochemistry, thereby supporting productivity and influencing carbon
storage and sequestration in the planet’s oceans (Azam, 1998). It has been historically very difficult
to characterize marine environments on the microscales that are most relevant to individual
bacteria. Rather, research efforts have typically sampled much larger volumes of water and made
comparisons from one sampling site to another (Karsenti et al., 2011; Bork et al., 2015). However,
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at the length scales relevant to individual microbes, the ocean
is an intricate and dynamic landscape of nutrient patches, at
times too small to be mixed by turbulence (Kiørboe, 2008;
Stocker, 2012). The capacity for microbes to actively navigate
these structured environments using chemotaxis can strongly
influence their nutrient uptake. Although some work has
examined time-dependent chemical profiles (Zhu et al., 2012),
past investigations of chemotaxis using Escherichia coli and
other model organisms have routinely examined steady chemical
gradients strong enough to elicit a discernible chemotactic
response (Sneddon et al., 2012; Salek et al., 2019). However, the
typical chemical gradients wild marine bacteria encounter are
often very weak, ephemeral in nature, and with low background
concentrations (Stocker, 2012). Shallow gradients are relevant for
marine bacteria because, in general, gradients become weaker as
one moves away from the source. Yet, detecting such gradients
at distance has tremendous value, because they point toward
nutrient sources. Shallow gradients are important precisely
because they can be used to navigate to regions in the vicinity of
sources where gradients become steep, concentrations are high,
and bacteria can acquire resources at a high rate.

Past experiments have typically been limited in duration to
the 1–100 s timescales over which gradient-climbing occurs
(Stocker, 2015), but the timescales over which bacteria respond
to nutrient uptake—through gene regulation and bacterial
reproduction—are much longer. Accurately quantifying the
influence of microscale dynamics in oceanic nutrient cycling
hinges on (1) interrogating bacterial chemotaxis in realistic
microenvironments for extended periods of time and (2)
developing mathematical models that capture the essential
features of chemotaxis in dilute, dynamic conditions. In this
Perspective, we discuss recently developed experimental tools
and mathematical frameworks for furthering our understanding
of bacterial chemotaxis. We examine the various ways in
which noise can enhance or degrade the sensitivity of bacterial
navigation, and outline priorities for future research.

2. BRIDGING THE TIMESCALES OF
MOTILITY AND METABOLISM

Bacterial chemotaxis is one of the most thoroughly understood
behaviors in all of biology (Berg, 2008; Endres, 2013). Many
experimental and modeling approaches have been used to
investigate chemotaxis in fine detail, from early capillary assays
(Adler, 1973; Brown and Berg, 1974) to experiments in controlled
microfluidic environments (Mao et al., 2003; Englert et al.,
2009; Seymour et al., 2010; Son et al., 2015; Salek et al., 2019)
and computational modeling of complete biochemical pathways
(Morton-Firth et al., 1999; Jiang et al., 2010; Long et al., 2017).
Despite the vast literature on bacterial chemotaxis, unanswered
questions still remain. In particular, we still know relatively
little about the types of microenvironments bacteria navigate
in the wild, and how chemotaxis operates and evolves in such
environments (Endres, 2013; Wong-Ng et al., 2016).

The distribution of nutrients in the ocean is highly structured,
varying strongly with depth, across the globe (Hansell et al.,

2009), and with time (Druffel et al., 1996). Moreover, there is
tremendous diversity in the types of organic matter available
(Riedel and Dittmar, 2014; Benner and Amon, 2015), and
substantial exchange of materials between dissolved, particulate,
colloidal and gel phases (Kiørboe, 2001; Verdugo, 2012).
Although bulk concentrations of dissolved organic carbon
(DOC) typically vary between 35 and 70 µM throughout the
ocean (Hansell et al., 2009), the vast majority of DOC exists
in forms either difficult or impossible to use by bacteria. Low
molecular weight, highly labile molecules such as dissolved
sugars, amino acids, or nucleotides, have only nanomolar
concentrations in the bulk and residence times under 1
day (Keil and Kirchman, 1999). These molecules can have
transiently high concentrations in the aftermath of cell lysis,
predation, or nutrient exudation by phytoplankton, but they
are not components of more long-lived hotspots such as gels
or particles (Verdugo, 2012). The majority of labile or semi-
labile organic matter has much higher molecular weight, and
consists of biological macromolecules such as proteins or large
algal polysacharides (Benner and Amon, 2015). Too large to
pass through bacterial cell membranes, bacteria degrade these
molecules into monomers or oligomers using ecto- and exo-
enzymes, allowing for their uptake, but also creating public
goods which feed other bacteria or give them information on the
location of nutrient hotspots.

Dissolved organic matter can be redistributed through
ubiquitous fluid flows in the ocean, but at the length scale relevant
to microbial motion—less than approximately 1mm—molecular
diffusion predominantly drives the redistribution of chemical
cues (Batchelor, 1959). The structure and dynamics of chemical
gradients in the ocean thus emerge from the interplay of DOC
release by living organisms, the aggregation and disaggregation
of DOC into gels and particles, the degradation and uptake of
DOC by heterotrophic bacteria, and fluid turbulence.

Experiments (Blackburn et al., 1998; Stocker et al., 2008;
Smriga et al., 2016) and mathematical theory (Hein et al.,
2016a; Mora and Nemenman, 2019) have begun to assess the
role of dynamic chemical gradients (Taylor and Stocker, 2012),
investigating the interaction between timescales for motility
and timescales for changes in the chemoattractant landscape.
Experiments have revealed that marine bacteria are capable of
rapidly responding to leaking diatoms (Smriga et al., 2016),
pulses of phytoplankton exudates (Seymour et al., 2009), model
marine particles and sinking aggregates (Kiørboe et al., 2002),
exemplifying the importance of chemotaxis throughout the
microbial food web. However, previous work has typically been
limited to one single unsteady source, and to durations of a
few minutes or less. While this may be long compared to
the timescales for cell motility and reorientation (seconds), it
is still much shorter than the timescales over which bacterial
metabolism varies (Lambert and Kussell, 2014) and cell division
occurs (hours to days) (Kirchman, 2016). Observations over
minute-long timescales cannot detect slow modulations or
systematic changes in swimming speed or chemotactic abilities,
which could in principle, strongly affect the collective cell
dynamics. Chemotaxis assays conducted over short timescales do
not necessarily represent the dynamics of wild foraging bacteria
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throughout their lifetime. Beyond determining the chemotactic
ability of wild marine bacteria, it will be critical to assess their
propensity for performing chemotaxis in realistic environments
over extended periods of time.

3. CHEMOTAXIS IN REALISTIC
MICROENVIRONMENTS

What constitutes a realistic environment varies wildly between
different regions of the ocean, from upwelling of nutrient-
rich deep water (Lauro et al., 2009) to the nutrient-poor
photic zone; and over time with seasons and bloom conditions
(Teeling et al., 2012). The chemical microenvironments are
sometimes driven predominantly through the action of physical
processes (currents, sunlight) whose effects are known a
priori. However, in many cases, the nutrient dynamics are
strongly coupled to the microbial population itself. Moreover,
organic matter may be dissolved (DOM, Figure 1Ai), due to
phytoplankton exudation or sloppy feeding (Jackson, 2012);
particulate (POM, Figure 1Aii) in marine snow and precipitates;
or a combination of DOM and POM in, for example, oil
droplets and phytoplankton lysis events (Smriga et al., 2016)
(Figure 1Aiii).

The precise values of the chemical gradients depend on
many factors, including the quantity of nutrients released, its

molecular diffusivity, the time over which release occurs, the
rate of background uptake by bacteria, and any mixing by fluid
flows. The phycosphere radius, or distance at which bacteria
interact with nutrient pulses, therefore varies from . 10µm
through to several millimeters (Seymour et al., 2017). Sources
can vary in duration from seconds to minutes in the case of lysis
events (Blackburn et al., 1998), or many hours in the case of
continuous leakage.

4. GENERATING CONTROLLED, DYNAMIC
CHEMICAL LANDSCAPES

A promising method for creating custom dissolved (DOM)
nutrient landscapes utilizes the photo-release of caged
chemoattractants (McCray and Trentham, 1989; Jasuja et al.,
1999; Sagawa et al., 2014; Jikeli et al., 2015). Dissolved organic
compounds such as the amino acid glutamate, which naturally
occurs in coastal environments and acts as a chemoattractant
for marine bacteria (Barbara and Mitchell, 2003; Duursma
and Dawson, 2011), can be chemically appended using a “cage”
molecule. When bound to the cage, this attractant is undetectable
by bacteria. Calibrated exposure to light causes photolysis of
the cage, and the precise release of chemoattractant hotspots.
Since the illumination can be easily varied in space and time,
this method facilitates the creation of custom two-dimensional

FIGURE 1 | Structured nutrient landscapes found in the ocean can be quantitatively reproduced in laboratory settings using microfluidics, photolysis of caged

resources, and discrete nutrient particles. (A) Various biological processes produce resources which may be (i) dissolved, (ii) particulate, or (iii) a combination of both.

(B) Realistic microenvironments can be recreated using (i) photolysis of caged compounds to produce custom DOM landscapes (Brumley et al., 2019; Carrara et al.,

2020); (ii) spatial arrays of particles (e.g., chitin or alginate) (Datta et al., 2016); or (iii) both. Within these custom arenas, bacterial chemotaxis and population kinetics

can be tracked over timescales from milliseconds to days. Transitions between planktonic (purple) and surface-attached bacteria (yellow) can also be quantified

(Yawata et al., 2014).
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nutrient landscapes, with exquisite precision (Brumley et al.,
2019; Carrara et al., 2020).

Alginate beads (Yawata et al., 2014), chitin particles
(Datta et al., 2016) and oil droplets (Desai et al., 2018)
can be used to mimic particulate organic matter (POM),
investigate bacterial chemotaxis, and study the physics of
attachment/detachment dynamics (Figure 1). However,
controlled sequential introduction of multiple particles can
be difficult to achieve experimentally. Moreover, particulate
matter in the ocean tends to sediment, making visualization in
realistic environments challenging. Microscopy techniques that
continuously follow individual marine snow particles for days at
a time (Krishnamurthy et al., 2019) have the potential to provide
tremendous insight into the long-time dynamics of bacterial
chemotaxis and particle colonization. Reconciling the known
resource landscape with bacterial trajectories measured using
high throughput techniques (Taute et al., 2015; Waite et al., 2016;
Brumley et al., 2019), is key to teasing apart the mechanisms
bacteria use to navigate their microenvironment.

5. NOISE IN BACTERIAL CHEMOTAXIS

From the stochastic encounters with chemoattractant molecules
to the actuation of the flagellar motors, there are many sources
of noise that can influence the capacity of microbes to detect
and respond to chemical gradients (Sourjik and Wingreen,
2012; Micali and Endres, 2016; Kromer et al., 2018). Individual
microbes experience the chemical environment as a sequence of
encounters with individual molecules (Berg and Purcell, 1977)
(see Figure 2A). The randomness in this sequence is particularly
important within marine environments, where resource hotspots
may be very small (. 1 pmol) (Blackburn et al., 1998; Davis and
Benner, 2007) and short-lived (seconds tominutes) (Smriga et al.,
2016). The discrete molecular nature of the chemoattractant
means that even in a steady, uniform environment, the number
of chemoattractant molecules reaching the surface receptors per
unit of time will fluctuate (Endres and Wingreen, 2008; Mora
and Wingreen, 2010), and may be as small as a few molecules
per second (Brumley et al., 2019). Provided that bacteria rely
on temporal signaling to perform chemotaxis (Macnab and
Koshland, 1972; Segall et al., 1986), a gradient can only ever be
defined in an average sense, and requires integration of the arrival
sequence over an appropriate timescale,T. If the cell’s uncertainty
in the gradient estimate is larger in magnitude than the gradient
itself, a typical measurement will not be able to resolve the signal.
The photo-release of glutamate in sub-picomole quantities—
explicitly designed to mimic an individual lysing phytoplankton
cell (Blackburn et al., 1998)—was used to assess the role of
sensory noise in realistic environments (Brumley et al., 2019).
The chemotactic precision of Vibrio ordalii was found to be
close to the fundamental limit set by this molecule counting
noise. While these results assume sampling through discrete time
intervals, it will be important for future work to examine the
role of continuous integration of ligand binding events (Mora
and Nemenman, 2019), determine exactly how cells average
measurements, and ascertain how noise propagates through
the chemotaxis networks of different model organisms (Micali

and Endres, 2019). Phenotypic variation may also influence the
collective chemotactic response of many cells (Frankel et al.,
2014; Waite et al., 2018).

Intracellular noise can also influence the capacity of bacteria
to respond to chemical gradients (Korobkova et al., 2004) (see
Figure 2A). The discrete nature of signaling molecules places
limits on a cell’s chemotactic ability in a manner similar to
extracellular counting noise (Bialek and Setayeshgar, 2005).
Suppressing internal noise in biochemical networks generally
requires a cell to produce and maintain an increased number
of signaling molecules (Lestas et al., 2010; Govern and ten
Wolde, 2014). Depending on the dynamics of the chemical
environment, the extra cost in noise suppression (Sartori and
Tu, 2015) may exceed the additional resources acquired through
greater sensitivity. For systems in which the noise frequency
is much higher than that of the signal, it may be possible
to filter noise (Andrews et al., 2006). However, for realistic
marine environments, the timescales over which chemoattractant
concentrations vary and signaling molecules fluctuate may be
similar. The conflation of these timescales could thwart the ability
for cells to successfully filter the intracellular noise.

While it is intuitive that noise in the incoming chemical signal
and the internal signaling pathway can degrade chemotactic
performance, there are cases in which cells actually appear to
benefit from noise (Flores et al., 2012). For bacteria with multiple
flagella such as E. coli, stochastic coordination of flagellar motors
can reduce the latency below that of an individual motor, which
can assist in steep gradients (Sneddon et al., 2012). Random
fluctuations in the signal protein CheY-P have also been shown
to increase the chemotactic sensitivity of E. coli at the level of the
flagellar motors (Hu and Tu, 2013; He et al., 2016). Yet, these
particular mechanisms are generally not accessible to marine
bacteria, which typically possess one flagellum (Xie et al., 2011)
and operate in shallow, ephemeral gradients.

Greater chemotactic abilities do not necessarily lead to
enhanced resource acquisition or growth (Ni et al., 2020). The
level of bacterial chemotaxis which confers the greatest advantage
for individual cells depends on the structure of the chemical
microenvironment (Celani and Vergassola, 2010). For bacteria
in the vicinity of a single isolated nutrient source, a greater
chemotactic precision will generally lead to an enhancement
in the nutrient exposure and uptake rate (Smriga et al., 2016).
However, in an environment with multiple nutrient sources of
different magnitude, a cell which perfectly follows the gradient
may become trapped in a locally favorable, but globally sub-
optimal position (see Figure 2Bi). Sources of noise which reduce
the cell’s chemotactic sensitivity may actually improve the overall
nutrient acquisition by allowing the cell to more thoroughly
explore its environment (see Figure 2Bii). The optimal bacterial
behavior will therefore be sensitively linked to the precise
spatiotemporal dynamics of the chemical microenvironment
(Passino, 2002). Theoretical frameworks linking organismal
navigation with the overall resource landscape structure (Hein
et al., 2016b; Seymour et al., 2017; Hein and Martin, 2019)
provide predictions about the optimal strategies for bacterial
foraging, which can be explicitly tested, for example using
microfluidic platforms.
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FIGURE 2 | (A) The discrete nature of dissolved chemoattractants introduces molecule counting noise into the bacterium’s measurement of the gradient. In

conjunction with other sources of noise in the signaling pathway, the flagellar response as well as rotational diffusion, the cell executes an effective chemotactic

response. (B) The level of chemotactic precision governs the ability of bacteria to navigate toward, and reside at, regions of high DOM concentration. (i) High

chemotactic precision may result in sub-optimal localization at local nutrient maxima; (ii) intermediate precision allows for both exploration and exploitation; and (iii) low

precision results in undirected motility. (C) Highly coupled nutrient-bacteria dynamics in chemotactic foraging cycle. The traditional means of studying chemotaxis is to

assess the motility response to prescribed nutrient landscapes (seconds to minutes). However, over timescales of hours to days, feedback loops exist which have the

capacity to reshape the nutrient landscape and modify the chemotactic response.

6. BACTERIAL UPTAKE KINETICS IN
STRUCTURED MICROENVIRONMENTS

Because of fluctuations in nutrient exposure within the
structured microenvironments of the ocean, the generation
times, and therefore biomass production, of wild bacteria
are likely to be fundamentally different from those measured
during experiments in homogenous batch culture (Fenchel,
2002; Azam and Malfatti, 2007). In fact, temporal fluctuations
can drive distinct growth physiologies and strategies (Yan

et al., 2017), even for environments with the same mean
nutrient concentration. Bacterial chemotaxis has the capacity to
systematically redistribute the cells, and therefore may provide
a feedback loop between the microbial population and the
resource landscape (Cremer et al., 2019). In cases where there is
strong two-way coupling between the bacterial dynamics and the
nutrient field—i.e., nutrient field drives chemotaxis, and bacterial
consumption shapes nutrient profile—it is important to study
the system for an extended period of time (Carrara et al., 2020).
This will provide great utility in determining realistic cell growth
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rates that are often very difficult to measure in situ (Kirchman,
2016).

Chemotaxis, as well as plasticity in physiology and behavioral
strategy, can enhance the ability of bacteria to respond to
spatial and temporal variation in resources. This, in turn,
has the potential to influence ecosystem level processes such
as remineralization rates or carbon export fluxes. Rates
of these microbially mediated processes exhibit considerable
regional variation (Hansell et al., 2012; Mouw et al., 2016),
and they also strongly influence the distribution of carbon
throughout the oceans and atmosphere (Kwon et al., 2009).
Global-scale biogeochemical models rely on highly simplified,
phenomenological parameterizations of remineralization of
particulate and dissolved organic matter, which prevents them
from detecting carbon-cycle feedbacks induced by the ecological
dynamics of marine microbes (Mislan et al., 2014). The ability to
assess long-term changes in microbial motility presents a unique
opportunity for determining the influence of physiological states
in bacterial chemotaxis (Jordan et al., 2013; Cremer et al., 2019),
which is a key step to understanding how to link microbes
and biogeochemistry.

Following early evidence that aspects of E. coli chemotaxis
are independent of uptake or metabolism (Adler, 1969), research
has largely overlooked the capacity for uptake or physiological
states to influence motility. Studies of microbial motion often use
highly specific culturing conditions. If the nutrients are too scarce
cells may not grow, swim or navigate. Similarly, cell motility and
chemotaxis may also be reduced by overly abundant nutrients,
since they are not advantageous when resources are plentiful
(Ni et al., 2020). Additional work suggests that E. coli (Taylor
and Zhulin, 1998), Azospirillum brasilense (Alexandre et al.,
2000) and other species of bacteria (Alexandre and Zhulin, 2001)
exhibit metabolism-dependent chemotaxis. Bacteria appear to
modulate the way they perform chemotaxis—and indeedwhether
they even swim at all—based on their metabolic state, which
presumably helps cells cope with the conditions they experience
in natural environments (Ni et al., 2020). Correlations between
cellular motility and other copiotrophic traits (Koch, 2001), such
as ribosomal copy number, hydrolytic enzymes, and genes for
environmental sensing and signaling (Lauro et al., 2009; Roller
et al., 2016) hint at the capacity for motile bacteria to rapidly
expand their population, to adapt their behavioral and trophic
strategies in response to their environment, and to structure
local nutrient fields by being the primary degraders of biological
macromolecules. The feedback loop between nutrient exposure,
swimming speed (Son et al., 2016) and ultimately chemotactic
sensitivity (Hein et al., 2016a; Ni et al., 2020) exemplifies the need
to interrogate bacteria in realistic environments for extended
periods of time, and investigate temporal variations in motility
and chemotactic performance (see Figure 2C), within and

between successive generations. Since biogeochemical cycling

will be driven not only by the spatial distribution of cells with
respect to the nutrient field, but also by their metabolic state,
modeling both of these processes (Egbert et al., 2010) may prove
to be important in predicting nutrient cycling in the ocean.

7. PRIORITIES FOR FUTURE RESEARCH

The capacity to generate controlled, dynamic chemical
landscapes, while simultaneously visualizing bacterial responses
from milliseconds through to days, represents a uniquely
powerful approach to investigating marine microbial processes.
An important area for future exploration will be considering
multiple interacting species of bacteria and other organisms
(Amin et al., 2012; Hol et al., 2016; Raina et al., 2019), where
population and community dynamics may depend on the
nutrient properties and organismal phenotypes. This will
be particularly important in assessing the spatial patterning
of metabolic handoffs (Anantharaman et al., 2016), density
dependent competition dynamics (Gude et al., 2020), and the
role of quorum sensing (Hmelo, 2017).

Investigating the rich interplay between multiple
chemoattractants represents another important direction
for future research. Except in some simplified domains (Kalinin
et al., 2010), bacterial chemotaxis is routinely studied in response
to single molecular species. Yet, phytoplankton exudates and
other dissolved organic matter exist as complex mixtures of
compounds which differ in their abundance, diffusivity and
propensity to elicit chemotaxis (Davis and Benner, 2007;
Duursma and Dawson, 2011). Emerging analytical methods of
characterizing chemical microenvironments, exudation rates
and nutrient exchanges (Wessel et al., 2013) will further inform
models for microbial motion (Keller and Segel, 1970; Jackson,
1987; Bray et al., 2007; Desai et al., 2019) through to ocean-scale
dynamics of microbial populations (Barton et al., 2010; Worden
et al., 2015; Kuhn et al., 2019).
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