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Coastal canopies (e.g., seagrasses, coral reefs, and kelp forests) are vitally important

ecosystems that provide a range of ecological services (e.g., oxygen production,

sediment stabilization and trapping, and recycling of nutrients). The long-term health,

productivity, and survival of these canopies rely heavily on the residence time of

ecologically-significant materials in these environments. Recent studies have shown

that submerged canopies induce a strong mean current over the canopy top, even in

purely wave-dominated environments. Thus, in addition to vertical mixing, the horizontal

flushing of materials (resulting from these canopy-induced currents) will dictate rates of

water renewal and, therefore, residence time in wave-dominated flows over submerged

canopies. Building on this recently-improved understanding, this paper provides (for the

first time) a framework for estimation of material residence time (Tres) and its variation

with core system parameters, including both canopy and wave characteristics. This

is done through consideration of a Péclet number (Pe) which is the ratio of mixing to

advective time scales. Prediction of residence time for a wide and realistic range of marine

canopies (and a correspondingly wide range of Pe) reveals that while Tres decreases

with wave height and increases with water depth, it has a complex relationship with

canopy density and height. Importantly, residence time can vary from orders of seconds

to hours, depending on wave and canopy properties. This has considerable ecological

implications for marine canopies through the direct impact on a range of chemical and

biogeochemical processes within the canopy. The framework presented here represents

a critical step forward in being able to predict residence time in coastal canopies and test

the interacting set of factors that influence the residence time in real, complex systems.

Keywords: coastal canopies, residence time, wave flows, biophysical coupling, ecosystem services

1. INTRODUCTION

Coastal canopies, such as those formed by seagrass meadows, coral communities, and kelp forests
(Duarte, 2002; Rosman et al., 2007), provide food (Connolly et al., 2005), nursery, habitat (Fonseca
et al., 1992), and shelter (Scott et al., 2000) for a wide range of marine organisms (Gambi et al.,
1990; Koch et al., 2006). These canopies influence water quality through the direct uptake of
nutrients (Moore, 2004; Larkum et al., 2006), particulate materials (Gacia et al., 2002), as well
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as the production of oxygen (Larkum et al., 2006). The drag
exerted by aquatic canopies has a significant impact on the
local hydrodynamics by reducing the in-canopy velocity (Lowe
et al., 2005; Abdolahpour et al., 2017a) and dissipating wave
energy (Kobayashi et al., 1993), which in turn leads to enhanced
sedimentation (Gacia et al., 1999), carbon burial (Granata et al.,
2001), and retention of particulate material within the meadow
(Fonseca and Cahalan, 1992).

Most of these ecological functions are tightly limited by
the exchange of water across canopy boundaries and, more
specifically, the canopy residence time (Tres). An accurate
quantification of residence time (i.e., the time scale over which
water parcels are retained within the canopy) is critical as
it improves our ability to predict the availability of materials
to react with biologically or geochemically active surfaces; for
example, the timescale over which a pulse of nutrients is
available for uptake by seagrass leaves. Residence time, and
the specific hydrodynamic processes that control it, can have
significant effects on pollen and seed dispersal (Orth et al.,
1994; Ackerman, 2002) and sediment deposition (Gacia et al.,
1999). The in-canopy hydrodynamics (Helmuth and Sebens,
1993) and turbulence structure (Sebens et al., 1997) have also
been shown to have a tremendous effect on many biological
processes within the canopy. For example, the velocity reduction
within canopies results in a significant increase in the rate of
filter-feeding (Brun et al., 2009), particle capture (Helmuth and
Sebens, 1993; Sebens et al., 1997), and nutrient uptake in coastal
environments (Thomas and Cornelisen, 2003; Weitzman et al.,
2013). In addition to the implications for macrophytes that take
up nutrients from the water column, residence time can play an
important role for biogeochemical cycling within the hyporheic
zone, one of the most significant regions for material storage
(Harvey et al., 2003; Zarnetske et al., 2011).

Very few studies have looked at the residence time of
solutes (Worcester, 1995; Harvey et al., 2005; Lara et al.,
2012) and particulate materials (Ackerman, 2002; Defina and
Peruzzo, 2012) within aquatic canopies, the majority of which
focused on current-dominated environments. However, many
aquatic canopies are located in coastal environments and are
exposed to shallow water waves. The oscillatory nature of wave-
dominated flows profoundly influences the hydrodynamics and
turbulent diffusion in these environments (Reidenbach et al.,
2007; Abdolahpour et al., 2017a,b). For example, the in-canopy
velocity (relative to the above-canopy velocity) is significantly
enhanced under oscillatory flow conditions compared to the
corresponding unidirectional flow (Lowe et al., 2005) while
turbulent mixing substantially decreases in wave-dominated
environments (Abdolahpour et al., 2017a). The competing effects
of in-canopy velocity reduction and enhanced turbulent mixing
can greatly alter the residence time of ecologically-important
materials in these environments (e.g., Thomas and Cornelisen,
2003; Falter et al., 2004). Thus, a specific assessment of residence
time in wave-dominated canopy flows is necessary. This research
aims to fill this gap by developing a framework under which a
predictive estimation of residence time across a wide range of
field conditions will be available.

2. MODEL DEVELOPMENT

In coastal ecosystems (where the flow is typically wave-
dominated), there are two important mechanisms dictating
flux across canopy boundaries; namely, (a) vertical mixing
(Abdolahpour et al., 2017a) and (b) horizontal advection (Luhar
et al., 2010; Abdolahpour et al., 2017b). This time-averaged
horizontal advection is generated by the roughness of the
canopy, even though the ambient flow is purely wave-driven.
Both processes are complex functions of the canopy and flow
properties and can have tremendous impacts on transport (and
therefore, residence time) of nutrients (Morris et al., 2008),
pollen (Ackerman, 2002), seeds (Orth et al., 1994), and sediment
(Gacia et al., 1999). Here, we aim to develop a physically-based
framework that incorporates our understanding of these two
important flushing mechanisms to predict residence times in
coastal (and therefore, wave-dominated) canopies.

2.1. Vertical Mixing in Coastal Canopies
In coastal canopies, the drag exerted by the canopy elements
results in a vertical gradient of orbital velocity across the canopy-
water interface (Lowe et al., 2005; Pujol et al., 2013; Abdolahpour
et al., 2017a). That is, the velocity within the canopy, Urms

c

(with the superscript “rms” referring to the root-mean-square
of the orbital velocity and the subscript “c” to the in-canopy
average hereafter), is attenuated from its value far above the
canopy,Urms

∞ (Figure 1A). The difference between the above- and
within-canopy RMS velocities is denoted as 1U. This velocity
attenuation, which increases with canopy density (Lowe et al.,
2005; Abdolahpour et al., 2017a), creates an inflectional shear
layer in the vertical profile of oscillatory velocity. This can lead
to the generation of Kelvin-Helmholtz (KH) vortices across the
top of the canopy (Figure 1A) (Ghisalberti and Schlosser, 2013).
These vortices can significantly enhance the rate of vertical
exchange of dissolved and particulate material, as seen in current-
dominated environments (Ghisalberti and Nepf, 2005).

While these shear-driven vortices dominate vertical exchange
in steady flows, mixing in coastal canopies is dictated by
a coupled contribution of both shear- and wake-driven
mixing (Abdolahpour et al., 2017a). The vertical diffusivity in
rigid canopies (such as hard corals) is given by:

Dt,z = 0.041ULD + 0.58 3

√

d

LD
Urms
c d (1)

In this equation, Dt,z is the vertical turbulent diffusivity, d is the
stem diameter and LD is the drag length scale, defined as:

LD =
1− λP

CDa
(2)

with λp being the solid fraction of the canopy, a the canopy
frontal area per unit volume canopy and CD ≈ 1 the drag
coefficient (after Abdolahpour et al., 2017a). The first term on
the right hand side of Equation (1) represents the contribution
of shear-driven mixing and the second term the contribution
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A B

FIGURE 1 | Interactive effects of wave-dominated flows over submerged canopies. (A) The strong velocity gradient at the canopy top causes the generation of large

scale KH-vortices in this region (gray spirals). These vortices, together with wake turbulence (small circles inside the canopy), control rates of vertical mixing in coastal

canopies. (B) The asymmetry in particle motion (resulted from the canopy drag) causes the generation of a strong mean drift (u) within a confined region above the

canopy (Abdolahpour et al., 2017b). Note, hc and L indicate the height and length of a typical canopy, respectively.

of wake-driven mixing. As seen, the extent of the contribution
of each process varies with wave and canopy properties,
highlighting the complexity of residence time prediction in
these environments.

Our recently-improved understanding reveals that canopy
flexibility can have a significant impact on flow, turbulence
and, ultimately, rates of vertical mixing. In particular, rates of
vertical mixing has been shown to be always less in flexible
canopies compared to corresponding rigid canopies (by 35%,
on average). Thus, a correction factor of 0.65 must be applied
for an accurate estimation of vertical mixing in flexible canopies
such as seagrasses (Abdolahpour et al., 2018). Thus, the vertical
diffusivity in these environments can be given by:

Dt,z = 0.0281ULD + 0.38 3

√

b

LD
Urms
c b (3)

with b being the blade width.
While shear layer vortices are a ubiquitous feature (and

control vertical mixing) in current-dominated canopy flows, they
are only generated in wave-dominated flows when particular
wave and canopy conditions are met (see Ghisalberti and
Schlosser, 2013). However, the predictive models in Equations
(1) and (3) consider both shear-layer and wake mixing and
have been tested for conditions in which vortices are both
present and absent. Thus, both formulations can conveniently be
used for estimating rates of vertical mixing in a wide range of
field conditions.

2.2. Horizontal Advection in Coastal
Canopies
In the presence of a canopy, the vertical velocity gradients across
the top of submerged coastal canopies (see the typical velocity
profile in Figure 1A) drive an asymmetry in particle motion over
the wave cycle. This causes fluid particles (located adjacent to
the canopy top) to move faster in the shoreward direction above

the canopy under a crest than in the seaward direction within
the canopy under a trough, leading to the generation of a mean
current in the direction of wave propagation (u) (Abdolahpour
et al., 2017b) (Figure 1B). The maximum current magnitude
(umax) occurs at the top of the canopy, and is observed to be
up to 75% of the above-canopy orbital velocity (Abdolahpour
et al., 2017b). The magnitude of this current depends on the
characteristic velocity far above the canopy (Urms

∞ ) and the
canopy drag length scale (LD) according to:

umax = 0.5 Urms
∞

(

ξT

LD

)0.3

(4)

where ξT is the vertical particle excursion at the canopy top
(Abdolahpour et al., 2017b). In practice, it is more common, and
convenient, to measure wave height rather than ξT ; the two are
related simply according to linear wave theory:

ξT = H
sinh(khc)

sinh(kh)
(5)

where H is the wave height, hc the canopy height, h the water
depth and k is the wave number (Dean and Dalrymple, 1991).
As can be inferred from Equation (4), the magnitude of the
current increases with wave velocity and canopy density (i.e.,
decreasing LD). This shoreward drift, which has been observed
both in the laboratory (Lowe et al., 2005; Luhar et al., 2010;
Abdolahpour et al., 2017b) and field (Luhar et al., 2013), can
have a significant impact on material exchange by introducing
a second method of water renewal through horizontal flushing
of dissolved and particulate material. Thus, although coastal
systems are typically wave-dominated (Koch et al., 2006), the
impact of canopy-induced currents on residence time may not
be negligible.

While Equation (4) has been developed using linear wave
theory (for simplicity), its applicability has been tested and
validated over a wide range of experimental and field conditions
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(including shallow, intermediate and deep water waves, as well
as in both rigid and flexible canopies) (Abdolahpour, 2017). This
model is also in excellent agreement with numerical simulations
(van Rooijen et al., 2020). Thus, we expect the advection model
to be valid in a variety of submerged canopies exposed to a wide
range of water waves (in the absence of ambient mean currents).

In coastal canopies exposed to purely wave-driven flows, the
residence time will depend on two important time scales; namely
Tmix and Tadv which are the diffusive and advective time scales,
respectively, and can be expressed as:

Tmix =
hc

2

Dt,z
(6)

and

Tadv =
L

umax
(7)

with L being the canopy length (Figure 1B).
Note, both mixing (Equations 1 or 3) and advection

(Equation 4) formulations are generalized in terms of the
canopy drag length scale (e.g., LD), instead of species-specific
characteristics. Thus, they are relevant and applicable across all
canopies (e.g., seagrass, coral, kelp), as long as the key canopy
and wave characteristics are known.

2.3. Theoretical Framework
The relative importance of vertical mixing and horizontal
flushing (due to the roughness-generated mean current), i.e.,
the Péclet number (Pe), can conveniently be used as a tool to
identify the dominant time scale that dictates residence time
in wave-dominated canopy flows. Here, the Péclet number is
defined as:

Pe =
Tmix

Tadv
(8)

Through substitution of (6) and (7) into (8), the canopy Péclet
number can be expressed as:

Pe =
umax hc

2

L Dt,z
(9)

When Pe ≪ 1, residence time (Tres) is dominantly controlled
by vertical mixing and can be evaluated through Equation (6)
and the predictive formulation for Dt,z (i.e., Equation 1 or
3). Conversely, when Pe ≫ 1, residence time is controlled
by advection and can be evaluated through Equation (7) and
the predictive formulation for umax (i.e., Equation 4). When
Pe ∼ O(1), both advection and diffusion will influence the
residence time of dissolved and particulate materials in aquatic
canopies. The ecological and environmental implication of this
classification is significant. When transport is mixing-dominated
(i.e., Pe≪ 1), water renewal is expected to occur mainly through
vertical replenishment across the canopy-water interface. Thus,
it is expected that supply of nutrients, oxygen, pollen, spores,
suspended sediments, and contaminants will be limited to the
overlaying water. As an example, in pollen dispersal dynamics,

TABLE 1 | Typical wave and canopy conditions in coastal systems (Cambridge

and Kuo, 1979; Kendrick et al., 2005; Infantes et al., 2009; Mohring and Rule,

2014; Oreska et al., 2017).

Variable Range

Wave conditions

H (cm) O(10−100)

T (s) O(1−10)

h (m) O(1−10)

Canopy conditions

LD (cm) O(1−100)

b (mm) O(1−100)

hc (cm) O(1−100)

L (m)

. 100 (Small)

100−300 (Medium)

& 300 (Large)

this may increase the probability of local pollination success and
reduce the chance of dispersal over longer distance due to more
limited horizontal movement of pollen. In contrast, when the
flow is advection-dominated (i.e., Pe ≫ 1), water renewal will
primarily be controlled by horizontal flushing and the likelihood
of material exchange to and from the overlying water decreases.
Finally, when both processes are significant [i.e., Pe ∼ O(1)],
advection and diffusion are of the same orders of magnitude and
either Tmix or Tadv can be used as an approximate estimation
of residence time. This is further demonstrated in the following
sections through characterization of the Péclet number and,
ultimately, residence time in typical marine canopies.

2.4. The Variation of the Péclet Number in
Coastal Canopies
Both vertical mixing and horizontal flushing are heavily
dependent on wave and canopy conditions, properties that vary
widely between sites, seasons, and species. Typically, marine
canopies exist in coastal regions and are exposed to shallow water
waves. This is mainly due to the light availability in these regions.
Some seagrass species, kelps, and many coral communities,
however, can be found in deeper regions and may be exposed
to transitional or deep water waves (Larkum et al., 2006). This
results in a wide range of wave conditions that canopies are
exposed to in the real system. For example, marine canopies may
exist under swell waves with wave period T ∼ O(1− 10 s),
H ∼ O(10−100 cm), and water depth h ∼ O(1−10 m) (Infantes
et al., 2009; Mohring and Rule, 2014) (see Table 1) which could
include shallow, intermediate or deep water waves. Additionally,
the drag length scale of typical marine canopies is O(1−100 cm)
and the canopy length is O(1−100 m) (Cambridge and Kuo,
1979; Kendrick et al., 2005; Oreska et al., 2017). As an example,
Figure 2 shows the variability of canopy height and density;
in these cases, induced by differences in light availability in a
meadow of P. sinuosa seagrass, in Jurien Bay, Western Australia.
The canopy length was approximately 50 m, and values of height
and dimensionless frontal areas for each case (data from Collier
et al., 2009) are shown on the figure. Clearly, meadows located
in sites with heavy shading are sparser and shorter than those
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A B C

FIGURE 2 | Pictures showing varying canopy density due to imposed light level in meadows of Posidonia sinuosa seagrass, located at Jurien Bay, Western Australia.

Increasing shading (from A–C) reduced canopy density and height (data and pictures from Collier et al., 2009).

FIGURE 3 | Variation of the Péclet number with canopy height (hc) and

dimensionless frontal area (ab). Variables held constant are indicated in the

figure. The blue band represents Pe ∼ O(1). The Péclet number of real

canopies span a wide range and a small variation in the canopy height can

lead to significant changes in Pe. The black diamond, triangle, and circle

markers represent estimated values of Pe of canopies shown in

Figures 2A–C, respectively, highlighting that real canopies can fall within the

Pe < 1, Pe > 1, or Pe ∼ O(1) regimes.

exposed to clear water with high ambient light. This variability
in canopy density and height is a great indicator of how light
reduction from other processes (e.g., high levels of suspended
sediment concentration) would impact canopy properties, and
ultimately, the residence time in these environments. This is
indicative of variability both within individual canopies (over
time) and across different canopies.

Due to the significant spatial and temporal variation in time
scales of vertical mixing and horizontal flushing, the value
of Pe for marine canopies is expected to be highly variable.
To demonstrate this, Figure 3 depicts how Pe (defined in
Equation 9) may vary in a typical canopy exposed to coastal
waves. While the model developed here is relevant for a range
of coastal canopies (e.g., coral reefs, seagrass meadows, and kelp
forests), we chose typical characteristics of P. australis as an
example to perform analysis and to illustrate themajor variations.

A wave period of T = 10 s (typical of marine ecosystems)
and blade width of b = 1 cm are employed for all calculations
hereafter. The in-canopy velocities were estimated using the
theoretical model proposed by Lowe et al. (2005). This model
provides an estimate of the velocity ratio, α (= Urms

c /Urms
∞ ),

such that knowledge of Urms
∞ and canopy properties (i.e., LD)

leads to the estimation of 1U (= Urms
∞ − αUrms

∞ ). Thus, this
model can conveniently be used to predict the in-canopy velocity
where the typical wave and canopy properties are known. As seen,
the Péclet number varies significantly, depending on wave and
canopy properties (Figure 3). For instance, the canopy height
alone can have a substantial impact on Pe, such that changes
in hc due to, e.g., seasonal (Collier et al., 2007), depth (Bulthuis
and Woelkerling, 1983), and light (Collier et al., 2009) variation
may cause a particular canopy to be in the mixing-dominated
regime in one season (or location) and in advection-dominated
environment in another. This is further illustrated by calculating
values of the Péclet number for canopies shown in Figures 2A–C

(black markers in Figure 3). While the flow is mixing-dominated
when the canopy is short and sparse (i.e., the black circle,
representing the canopy in Figure 2C), both vertical mixing
and horizontal advection become important when the canopy
is longer and denser (i.e., the black diamond, representing the
canopy in Figure 2A). This is due to the fact that changes in wave
and canopy properties could have significantly different impacts
on themagnitude of mixing and advection. It is important to note
that Pe values for the canopies in Figure 2 have been calculated
for a canopy with 50m length.We would expect Pe values to span
a wider range when the length (and other characteristics) of the
canopy also varies in different seasons or locations. Nevertheless,
these examples can clearly demonstrate how evaluation of Pe
serves as a key first step in accurate prediction of material
residence time in natural coastal canopies.

A summary of the framework developed here is presented as a
flowchart in Figure 4. The key input values include canopy (i.e.,
LD) and wave (h, H, and T) properties, with which 1U (from
Lowe et al., 2005) and ξT (using Equation 5) can be calculated.
We can then estimate Tmix and Tadv and ultimately Pe through
Equations (1) to (8). When Pe≫ 1, Tres ≈ Tadv and Equation (7)
can be used for calculating residence time. When Pe≪ 1, Tres ≈

Tmix and Equation (6) can be used for calculating residence time.
When Pe ∼ O(1), Tmix is the same order of magnitude of Tadv,
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FIGURE 4 | Flowchart representing the framework developed here for

estimating residence time in coastal canopies. The input values include wave

(h, H, and T ) and canopy (LD) properties. Using the model developed in Lowe

et al. (2005) (to calculate 1U) and Equations (1) to (8), this framework

represents predictive estimation of residence time in submerged canopies

under wave-dominated flows.

and either diffusion or advection time scale can be used as an
approximation of the residence time of the system (within one
order of magnitude estimate). This is examined in the following
section, where variations of Tres with ranges of wave (H and h)
and canopy (ab and hc) parameters are depicted.

3. RESULTS

For all calculations here, typical ranges of wave and canopy
properties were selected. For a given canopy height and for
conditions examined in each particular analysis in Figures 5A–C,
a short canopy with L < 20 m always falls within the advection-
dominated regime, a long canopy with L > 200 m falls within
the mixing-dominated regime, and a medium-sized canopy with
20 < L < 200 falls in between the two (results not shown).

Thus, L = 20 m and L = 200 m were chosen as representatives
of advection- and mixing-dominated regimes, respectively. A
medium canopy with L = 50 m was chosen in Figure 5D as
the representative of conditions where a canopy experiences the
transitional regime. The selection of these canopy lengths would
also avoid overlapping of residence time values for mixing- and
advection-dominated environments in each plot, providing more
clarity and a better visual judgement of the results for each
particular case. Constant values employed for calculations in each
panel are indicated in the legends.

3.1. Variation of Residence Time With Wave
Height
First, consider the variation of residence time with wave height
(Figure 5A); residence time decreases simply with increasing
wave height, in both mixing- and advection-dominated canopies.
This reduction, which can be as high as an order of magnitude, is
due to the enhancement of both mixing and advection with wave
height and ultimately wave orbital velocity as can be inferred
from Equations (3) and (4). The significant impact of the canopy
length is also noteworthy; a shorter canopy will invariably have a
lower residence time compared to a longer canopy, irrespective
of the wave height and canopy density.

3.2. Variation of Residence Time With
Water Depth
Now consider situations where the wave height is constant
(Figure 5B); based on linear wave theory, the magnitude of
wave velocity decreases with increasing water depth (U∞ ≈

0.5H
√

(g/h)), with g being gravitational acceleration), resulting
in diminished vertical mixing (Equations 1, 3) and horizontal
flushing (Equation 4). This ultimately impacts positively on
the magnitude of Tres such that residence time increases
with water depth in both mixing- and advection-dominated
environments. Consistent with Figure 5A, increasing canopy
density (ab) decreases residence time in short, advection-
dominated canopies and increases residence time in long,
mixing-dominated canopies. This is further investigated in the
following section.

3.3. Variation of Residence Time With
Canopy Density
In contrast to wave height and water depth, residence time does
not vary simply with changes in canopy density (represented
here by ab) in mixing- and advection-dominated environments
(Figure 5C). In particular, in mixing-dominated canopies (L ≥

200 m), residence time increases monotonically with ab for
constant water depth and wave period. This is due to the
reduction of both wake- and shear-driven mixing in dense
canopies (due to the diminished in-canopy velocity, see
Abdolahpour et al., 2017a). In small patches, where advection
is dominant (≤ 20 m), Tres decreases with increasing canopy
density, due to the enhancement of canopy drag and ultimately
umax (Equation 4).
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BA

DC

FIGURE 5 | Variation of residence time with wave and canopy properties for a typical seagrass meadow. (A) Residence time decreases with increasing wave height

(H), and (B) increases with water depth (h) (in both mixing- and advection-dominated canopies). (C) While residence time decreases with canopy density (ab) in short,

mixing-dominated canopies, it increases in long, advection-dominated canopies. (D) Increasing canopy height enhances residence time until reaching a threshold

value after which Tres decreases with increasing canopy height (hc). The black diamond, triangle, and circle represent values of Tres in the canopies shown in

Figures 2A–C, respectively. Constant variables for calculations of each plot are indicated in the figure.

3.4. Variation of Residence Time With
Canopy Height
As shown in Figure 3, a small variation in canopy height can have
a significant impact on the transport regime. To demonstrate
how changes in canopy height would impact residence time,
a medium size canopy with L = 50 m (with Pe ∼ O(1),
which would also experience the transitional regime) was chosen
(Figure 5D). In this example, for shorter canopy heights (hc .

40 cm), the flow is mixing-dominated (Pe ≪ 1, Figure 3) and
for taller canopies (hc & 80 cm), the flow is advection-
dominated (Pe ≫ 1, Figure 3). For canopies with 40 cm .

hc . 80 cm, Pe ∼ O(1) and both mixing and advection can
be equally important. The dashed lines in Figure 5D show the
magnitude of Tmix and Tadv within the transitional regime. As
seen, advective and diffusive timescales are of the same order
in this regime, and either Tadv or Tmix can be used for a first

order estimate of residence time, depending on the availability
of key canopy and wave parameters. Moreover, predicted values
of residence time for canopies shown in Figure 2 are also shown
in Figure 5D (black diamond, triangle and circle, respectively). It
is noteworthy that canopy residence time is so strongly governed
by canopy properties that slight morphological changes in these
canopies lead to a significant variation (by a factor of 3) of the
residence time.

While the results presented here nicely demonstrate how
residence time varies in a typical coastal canopy, the method
described in section 2 (also, summarized in Figure 4) must be
followed for residence time estimation for specific wave and
canopy conditions.

Here, we present an analytic framework to estimate the
dominant residence timescale in coastal canopies across a wide
range of wave and canopy properties. The sensitivity of the health
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and function of a given system to the residence time within the
canopy depends entirely on the ecological and biogeochemical
processes of interest. For applications requiring an accuracy of
seconds or smaller, a highly sophisticated numerical model will
be needed to predict a precise residence time.

4. DISCUSSION

The framework developed here allows predictive estimation of
the canopy residence time, relevant tomany significant ecological
processes, under a wide range of wave and canopy conditions.
Table 2 presents values of residence time inside a canopy of
Sargassum fusiforme (Harvey) Setchell exposed to high energy
wave conditions (data from Nishihara et al., 2011) along with
predicted values of residence time in the same canopy, using
the model developed here. As seen, the predicted values are
in excellent agreement (in order of magnitude terms) with
those observed in the real coastal canopies. To the best of
our knowledge, this is the only available field measurement
of residence time in coastal, and thus, wave-dominated
canopies. There have been a limited number of previous
studies where material residence time has been measured
directly within submerged and emergent macrophyte canopies
under current-dominated environments. Table 2 summarizes
key system characteristics and residence times observed in
these studies. Although a direct comparison between our model
predictions (developed for wave-dominated environments) and
residence times measured in current-dominated canopies is not
straightforward, canopy residence timescales predicted here are
quite comparable [i.e., O(100 s)] to available field estimates in
such systems. An essentially-important next step is to assess
model predictions in real systems, where a wider range of canopy
and hydrodynamic complexities are present.

While direct field measurements of canopy residence time
and its impact on biological and biogeochemical processes inside
the canopy are extremely limited, there is a large number of
studies from which an indirect impact of residence time on such
processes can be inferred. For example, it has been shown that
the morphological characteristics of the canopy (branch spacing,
shapes, intra-canopy complexity, etc.) can have a profound
impact on the rate of food intake in suspension-feeders (Riisgård
et al., 2007; Brun et al., 2009), mass flux (Helmuth et al.,
1997), and macroinvertebrate density inside the canopy (Gartner
et al., 2013). This can plausibly be explained by the indirect
effects of the variation of the canopy residence time (due to the
presence of canopies or changes in their structural properties) on
such biological and ecological processes. Moreover, there are a
number of studies that have investigated the relative importance
of turbulent mixing and advection on important ecological
processes and their indirect impact on canopy morphology.
These studies suggest that the dominant transport mechanism
(whether it is mixing or advection), can also have a non-negligible
impact on structural adaptations of the canopy. For example,
the morphological characteristics of aggregates in stony corals
drastically change with the Péclet number (Kaandorp et al.,
1996). In particular, stony corals have more compact cluster

shapes when Pe≫1 (or advection-dominated environments) and
more branching shapes when Pe ≪ 1 (or diffusion-dominated
environments). This morphological adaptation was related to
the variation of residence time and thus nutrient availability in
each transport regime, further highlighting the importance of
being able to predict canopy residence times for understanding
biogeochemical cycling within the canopy.

Results obtained here also revealed that residence time in
real coastal canopies may vary significantly, from orders of
seconds to hours. This variation is strongly related to wave
and canopy properties such that a slight change in the canopy
morphology may result in a significant alteration in the residence
time (see e.g., Figure 5C). This has considerable ecological
implications for marine habitats through the direct impact on
a range of ecological and environmental processes within the
canopy. In particular, a longer residence time provides a longer
exposure time and therefore greater material availability for
active surfaces. Previous studies have employed the Damköhler
number (Da), a dimensionless parameter that represents the
ratio of exposure and processing timescales to characterize the
dynamics of the system. When Da ≪ 1, the exposure timescale
(which is equivalent to Tres) is much less than the processing
timescale and the material does not have sufficient time to
react during the transport (i.e., a conservative system). For filter
feeding organisms living in a canopy this would mean that there
is not sufficient time for the organism to filter the particles out
of the water before they are advected (or diffused) out of the
system. Similarly, for seagrasses, there is insufficient time to take
up dissolved nutrients through the leaf surface. In contrast, values
of Da ≫ 1 indicate that the exposure timescale is longer than
the processing timescale, and filter feeders and seagrasses would
have adequate time to remove particles or nutrients from the
water column (i.e., a reactive system). When Da ∼ O(1), the
system is considered highly dynamic and the balance between
being conservative or reactive, is greatly sensitive to changes in
wave and canopy conditions (Oldham et al., 2013).

To demonstrate how changes in residence time may impact
ecological and biogeological processes inside the canopy, values
of Da from a range of studies are presented as a function of the
Keulegan-Carpenter number (KC) in Figure 6. The Keulegan-
Carpenter number is a dimensionless parameter that represents
the relative magnitude of wave horizontal excursion (A∞) to drag
length scale (LD) and can be calculated as:

KC =
Urms
∞ T

LD
(10)

Since this parameter encompasses both wave and canopy
properties, it can conveniently be used as a generalized parameter
to represent canopy-wave interactions of each system. In
particular, KC controls the in-canopy oscillatory flow and, when
small, is indicative of rapidly reversing flow and, when very large,
is more dynamically similar to unidirectional flow. Thus, it is an
ideal (and relevant) parameter to investigate the variation of Da
with wave and canopy properties. Here, we present Da for the
process of nutrient uptake in a wide range of canopies, including
corals (Atkinson et al., 2001), seagrass meadows (Thomas and
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TABLE 2 | Available field measurements of canopy residence time.

References Canopy type
L

(m)

H

(cm)

Velocity

(cm/s)
ad Tracer Flow condition

Tres (s)

(Measured)

Tres (s)

(Predicted)

10 (70–150)† 95–110

14 (40–120)† 65–0

20 (30–80)† 60–70

Nishihara et al., 2011 Sargassum fusiforme 6 23 (0.1–0.2)† Fluorescein Wave-dominated (25–60)† 55–65

25 (25–60)† 50–60

27 (20–55)† 45–55

36 (25–45)† 40–45

Harvey et al., 2005 Emergent canopy 7 – 0.2 (0.02–0.04)† Sodium bromide Unidirectional 3,000 –

Nepf et al., 2007 Submerged canopies – – 2–13 (0.02–0.05)† Fluorescein Unidirectional 6–60 –

Defina and Peruzzo, 2012 Emergent canopy 6 – 3–17 (0.005–0.02)† Particulate materials Unidirectional 0.5 –

Lara et al., 2012 Patch edges of Z. noltii – – 3.5–4.5 (0.02–0.05)† Fluorescein Unidirectional 2.6–5.6 –

†
These values are best estimates based on the limited information provided in each study.

Cornelisen, 2003), and macroalgae (Weitzman et al., 2013). The
processing time scales for nutrient uptake in each canopy have
been calculated using the uptake rate constant and the method
developed by Pujol et al. (2019). Values of residence time for each
canopy and wave condition have also been predicted using the
model developed here.

As seen in Figure 6, Da in the canopies examined here can
span a wide range [Da ∼O(0.01−1)]. Moreover, any variation in
wave and canopy conditions (represented here by KC) may have
a significant impact on the canopy uptake rate such that changes
in KC can lead a canopy to transition between conservative and
reactive states. Note, these results only represent the range of
uptake rate for the canopies examined here. Real coastal canopies
may experience a wider range of uptake rate (or Da) when wave
and canopy properties vary from season to season or location to
location.

Finally, it is important to note that the efficiency of mixing
processes and, therefore, the overall residence time is tightly
controlled by numerous factors and complexities present in
natural systems such as particle characteristics (e.g., seeds, pollen,
larvae, and sediment) and canopy intra-diversities. Further,
this study examines flow and mixing in canopies exposed to
(idealized) monochromatic sinusoidal waves. Thus, although the
framework developed here allows predictive estimation of the
canopy residence timescales for a wide and realistic range of
wave and canopy properties, a fundamentally-important next
step is testing the framework developed here in the complexity
of a real multi-specific coastal canopy across a wider range of
wave conditions.

5. CONCLUSION

Quantification of the Péclet number (Pe), the ratio of
diffusive to advective time scales, simplifies the prediction of
residence time in typical coastal canopies. This can be done
through classification of coastal canopies into three distinct
environments; i.e., (a) mixing-dominated exchange (Pe≪ 1), (b)

FIGURE 6 | Variation of Damköhler number (Da) with Keulegan-Carpenter

number (KC). Values of Da calculated for nutrient uptake in canopies of corals

(Atkinson et al., 2001), seagrasses (Weitzman et al., 2013), and macroalgae

(Thomas and Cornelisen, 2003). Changes in wave and canopy properties

(represented here by KC) lead to variation of nutrient uptake from dynamic to

conservative environment. Vertical bars represent the standard deviation of

Da estimates.

advection-dominated exchange (Pe ≫ 1), and (c) a transitional
regime [Pe ∼ O(1)]. The framework developed here has enabled
predictions of dominant residence timescales in all three regimes.
Further, the results obtained here revealed that canopy residence
time depends heavily on wave and canopy properties and
may vary significantly (from orders of seconds to hours) from
season to season or location to location. Finally, while there
is reasonably good agreement between model predictions and
available field measurements, testing of the model presented here
for a wide range of field conditions is a critically important
next step.
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