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INTRODUCTION

Coastal upwelling is the upsurge of water to the surface of coastal marine environments as surface
waters move offshore. Upwelled waters are typically colder than the surface waters they replace,
so upwelling is normally associated with sea surface cooling. Such thermal changes affect the
ecology of coastal species and influence coastal climate through sea–air interactions. In addition,
upwelled waters bring inorganic nutrients to the surface and thus enhance coastal biological
productivity and fisheries (Varela et al., 2018; Menge et al., 2019; FAO, 2020; Yu et al., 2020).
Thus, considerable efforts have been done to understand the factors that drive coastal upwelling.
On many shores worldwide, coastal winds and the Coriolis force constitute together an important
driver. Alongshore winds blowing with the coast on the left in the northern hemisphere and on the

right in the southern hemisphere generate an offshore surface Ekman transport that triggers coastal
upwelling (Stewart, 2008; Kämpf and Chapman, 2016).

While typical upwelling-favorable winds occur at relatively predictable times of the year,
unpredictable extreme eventsmay cause unexpected spikes in upwelling and coastal cooling. Such is
the case of cyclones, which can significantly cool surface coastal waters in part through wind-driven
coastal upwelling (Doong et al., 2019). A recent example was the arrival of cyclone Dorian to the
Atlantic Canadian coast in the summer of 2019. On two coastal locations to the east of this cyclone’s
path (Barachois Head and Deming Island), Bakun’s upwelling index (UI) reached values more than
700% higher than the week before Dorian and sea surface temperature (SST) dropped by 10–12◦C
just hours after this cyclone’s landfall. Such a marked cooling was consistent with favorable wind
conditions for such a spike in upwelling (Scrosati, 2020a).

The intensity of coastal upwelling depends on wind speed (which determines wind stress) and
also on wind direction relative to the angle of the coast (Stewart, 2008; Kämpf and Chapman,
2016). Therefore, given the spiral (counterclockwise in the northern hemisphere) circulation of
surface winds around a cyclone’s center (Young, 2003; Wang and Wu, 2004; Wang and Toumi,
2018), the position of a coastal location relative to the cyclone’s path could influence the intensity
of the resulting coastal upwelling and cooling. This paper examines data on SST, winds, and UI
measured for a Canadian coastal location to the west of Dorian’s path to test this hypothesis. This
data set is hereby made available also to help future studies that may require in-situ oceanographic
information for the Atlantic Canadian coast.
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FIGURE 1 | Map of Nova Scotia, showing the path of cyclone Dorian’s center (arrows) and the position of Western Head and the two previously studied locations

(Deming Island and Barachois Head) east of Dorian’s track.

MATERIALS AND METHODS

Dorian approached Atlantic Canada as a hurricane from the
south (Ezer, 2020) and made landfall as a post-tropical cyclone
near Halifax (Nova Scotia) at 19:15, local time (Atlantic Daylight
Time = UTC-3), on 7 September 2019 (AccuWeather, 2019;
NOAA, 2020). The two previously studied coastal locations east
of Dorian’s path (Barachois Head and Deming Island) are 136
and 179 km, respectively, from the place where Dorian made
landfall (Figure 1; NOAA, 2020). For the present study, SST
was measured at Western Head (N 43.9896, W 64.6607), which
is a location west of Dorian’s path distant 130 km from the
place where this cyclone made landfall (Figure 1). To evaluate
Dorian’s influence on SST, winds, and UI at Western Head most
clearly, data measured between 1 and 16 September 2019 are
hereby considered.

Western Head is a wave-exposed, rocky intertidal location
that faces the open Atlantic Ocean directly. During the studied
period, temperature was measured in-situ every half hour with
a submersible logger (HOBO Pendant logger, Onset Computer,
Bourne, MA, USA) that was attached to the intertidal substrate
(bedrock) by plastic cable ties secured to eye screws drilled into
the substrate. From the resulting time series of temperature
values (which spanned alternating periods of high and low tide),
SST values were extracted. To do this, first the time of the
successive peaks of high tide was determined using information

for the tide reference station closest to Western Head (Liverpool,
N 44.0500, W 64.7167; Tide and Current Predictor, 2020). Then,
the temperature value recorded by the logger by the time of each
high tide, when the logger was fully submerged, was extracted.
The resulting SST data set is available from the figshare online
repository (Scrosati, 2020b).

Data on hourly wind speed and direction were retrieved
for a weather station nearly 300m from Western Head (also
called Western Head, N 43.9900, W 64.6642; Government
of Canada, 2020). Using such wind data, UI was calculated
hourly following the steps detailed elsewhere (Scrosati
and Ellrich, 2020), considering an orientation of the
coast of 60◦ measured clockwise relative to the north.
This paper expresses UI as cubic meters of seawater
transported per second per 100m of coastline. Positive
UI values indicate upwelling, whereas negative UI values
indicate downwelling (Kämpf and Chapman, 2016). The
resulting data set on wind speed and direction and on
UI is also available from the figshare online repository
(Scrosati, 2020b).

RESULTS

Unlike at Barachois Head and Deming Island, at Western Head
there was no noticeable cooling shortly after Dorian’s passage

Frontiers in Marine Science | www.frontiersin.org 2 August 2020 | Volume 7 | Article 651

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Scrosati Cyclone-Driven Upwelling and Cooling

FIGURE 2 | Temporal changes in (A) sea surface temperature (SST), (B) wind speed, (C) wind direction (angle measured clockwise from the north −0◦− indicating the

direction where the wind came from), and (D) Bakun’s upwelling index between 1 and 16 September 2019 at Western Head. The range of values in the four Y axes are

the same as those used in Scrosati (2020a) to facilitate visual comparisons with that study. In the X axes, the daily tick marks are placed at the beginning of each day.

(Figure 2A). At Western Head, SST averaged 17.2◦C (range
= 15.3–18.9◦C) between 1 and 7 September before Dorian’s
landfall and 17.3◦C (range = 16.7–17.9◦C) between 8 and 9
September (Figure 2A). At Barachois Head and Deming Island,
SST decreased by 10–12◦C during 8 September, reaching 6.8◦C
and 9.7◦C, respectively, just hours after Dorian’s passage through
this region (Scrosati, 2020a).

AtWestern Head, hourly values of wind speed did not surpass
26 km h−1 before 7 September (Figure 2B). Wind speed did
increase with the arrival of Dorian on 7 September, but its highest

hourly value of 54 km h−1 (Figure 2B) was noticeably lower
than for Barachois Head and Deming Island, where hourly wind
speed on that day peaked at 106 and 88 km h−1, respectively
(Scrosati, 2020a). Also, while maximum wind gust was 145 and
126 km h−1 at Barachois Head and Deming Island, respectively,
on 7 September, maximum wind gust only reached 88 km h−1 at
Western Head on that day (Government of Canada, 2020).

At Western Head, wind direction during the hours after
Dorian’s landfall (Figure 2C) was less favorable for coastal
upwelling than for Barachois Head and Deming Island (Scrosati,
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2020a). Ultimately, as a consequence of the less intense winds and
less upwelling-favorable wind direction, UI forWesternHead did
peak near the time of Dorian’s landfall, but this value of 79 m3 s−1

(100m of coastline)−1 (Figure 2D) was considerably lower than
for Barachois Head and Deming Island, where UI peaked at
689 m3 s−1 (100m of coastline)−1 and 411 m3 s−1 (100m of
coastline)−1, respectively, on 7 September (Scrosati, 2020a).

It is also worth noting that a marked downwelling was
recorded at Western Head (Figure 2D) as well as at Barachois
Head and Deming Island (Scrosati, 2020a) shortly before
Dorian’s landfall, but such an occurrence was not expected to
decrease SST because coastal downwelling does not bring cool
waters to the surface.

DISCUSSION AND CONCLUSIONS

The present study supports the hypothesis that the position of
a coastal location relative to a cyclone’s path can influence the
intensity of the resulting coastal upwelling and cooling. At the
two previously studied coastal locations east of Dorian’s path in
Nova Scotia (Barachois Head and Deming Island), winds were
intense and upwelling-favorable with the passage of this cyclone,
triggering a marked coastal upwelling and SST drop shortly after
this cyclone’s landfall (Scrosati, 2020a). However, at Western
Head, located at a similar distance from Dorian’s landfall but
west of its path, winds were less intense and their direction
was less favorable for coastal upwelling, thus resulting in weaker
upwelling and, ultimately, little change in coastal SST even when
measured for 2 days after Dorian’s landfall. A recent study that
focused on a northeast-facing location on the Taiwan coast led
to an equivalent conclusion, as westward typhoons passing south
of that location triggered a stronger coastal SST drop through
wind-driven upwelling than westward typhoons passing north of
that location (Doong et al., 2019). Therefore, for the northern
hemisphere, it seems that coastal locations situated to the right
of a cyclone’s path will likely experience stronger upwelling and
cooling than coastal locations situated to the left of a cyclone’s
path. It is worth noting that surface cooling also occurs in open
oceanic waters with the passage of cyclones and that, although
such SST drops are often smaller than on coastal areas, they are
also generally more pronounced to the right of a cyclone’s path
(Breaker et al., 1994; Subrahmanyam, 2015; Glenn et al., 2016).

Overall, the SST values obtained for this study are particularly
valuable because they were measured in-situ, which is an
approach that avoids the inaccuracies often inherent in SST
estimations done for coastal environments using satellites (Smale
and Wernberg, 2009; Seroka et al., 2016).

Coastal upwelling and the resulting cooling influence
coastal oceanography, climate, and ecology (Varela et al.,
2018; Menge et al., 2019; FAO, 2020; Yu et al., 2020).
Therefore, considerable research is being done to better
understand the factors that regulate the occurrence and intensity
of coastal upwelling. Cyclones can trigger intense coastal
upwelling (Doong et al., 2019; Scrosati, 2020a), although the
position of a coastal location relative to a cyclone’s path
can greatly influence upwelling intensity, as shown by this
study and by Doong et al. (2019). The average intensity
of cyclones is increasing with climate change (Glenn et al.,
2016; Lin et al., 2020). Therefore, it is hoped that the
present study stimulates further research to keep improving our
understanding about cyclone influences on coastal upwelling
and cooling.
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