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Management strategy evaluation (MSE) provides a simulation framework to test the
performance of living marine resource management. MSE has now been adopted
broadly for use in single-species fishery management, often using a relatively simple
“operating model” that projects population dynamics of one species forward in time.
However, many challenges in ecosystem-based management involve tradeoffs between
multiple species and interactions of multiple stressors. Here we use complex operating
models, multi-species ecosystem models of the California Current and Nordic and
Barents Seas, to test threshold harvest control rules that explicitly address the linkage
between predators and prey, and between the forage needs of predators and fisheries.
Specifically, within Atlantis ecosystem models we focus on how forage (zooplankton)
availability affects the performance of harvest rules for target fish, and how these
harvest rules for fish can account for environmentally-driven fluctuations in zooplankton.
Our investigation led to three main results. First, consistent with studies based on
single-species operating models, we found that compared to constant F = FMSY

policies, threshold rules led to higher target stock biomass for Pacific hake (Merluccius
productus) in the California Current and mackerel (Scomber scombrus) in the Nordic
and Barents Seas. Performance in terms of catch of these species varied depending
partly on the biomass and recovery trajectory for the simulated stock. Secondly, the
multi-species operating models and the harvest control rules that linked fishing mortality
rates to prey biomass (zooplankton) led to increased catch variability; this stemmed
directly from the harvest rule that frequently adjusted Pacific hake or mackerel fishing
rates in response to zooplankton, which are quite variable in these two ecosystems.
Thirdly, tests suggested that threshold rules that increased fishing when productivity
(zooplankton) declined had the potential for strong ecosystem effects on other species.
These effects were most apparent in the Nordic and Barents Seas simulations.
The tests of harvest control rules here do not include uncertainty in monitoring
of fish and zooplankton, nor do they include uncertainty in stock assessment and
implementation; these would be required for full MSE. Additionally, we intentionally
chose target fish with strong mechanistic links to particular zooplankton groups, with
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the simplifying assumption that zooplankton biomass followed a forced time series.
Further developing and testing of ecosystem-level considerations can be achieved with
end-to-end ecosystem models, such as the Atlantis models applied here, which have
the added benefit of tracking the follow-on effects of the harvest control rule on the
broader ecosystem.

Keywords: harvest control rules, California Current, Nordic and Barents Seas, Pacific hake, Atlantic mackerel,
management strategy evaluation

INTRODUCTION

Management strategy evaluation (MSE) provides a simulation
framework to test the performance of living marine resource
management (Sainsbury, 2000; Punt et al., 2016a). MSE has
now been adopted broadly for use in single-species fishery
management, often using a relatively simple “operating model”
that projects population dynamics of one species forward in time.
However, many challenges in ecosystem-based management
involve tradeoffs between multiple species and interactions of
multiple stressors (Link, 2010). Efforts are underway to include
these dynamics in more complex “end-to-end” ecosystem models
that can serve as operating models for MSE, but to date the most
fruitful ecosystem-based MSE approach has often been to strip
the ecosystem model (operating model) down to intermediate
levels of complexity (often 3–5 species) (Punt and Butterworth,
1995; Plagányi et al., 2012; Punt et al., 2016b; ICES, 2018b).
Here we take a different tack, retaining the complexity of the
end-to-end ecosystem models, but stripping down the simulated
assessment in the MSE. We test threshold harvest control
rules (synonymously HCRs or simply “rules”) that explicitly
address the linkage between predators and prey, and between
forage needs of predators and fisheries. Specifically, within
Atlantis ecosystem models we focus on how forage (zooplankton)
availability affects the performance of harvest rules for target
fish, and how these harvest rules for fish can account for
environmentally-driven fluctuations in zooplankton. The same
set of harvest control rules are applied in the California Current
and Nordic and Barents Sea models (Figure 1), where recent
conditions and future scenarios suggest climate-driven shifts in
prey productivity and spatial distribution (Drinkwater, 2005;
Ellingsen et al., 2008; Bond et al., 2015; Cheung et al., 2015;
Leising et al., 2015). For the two systems, we test for common
responses to the harvest control rules.

Single-Species Threshold Harvest
Control Rules
Threshold harvest control rules have been advocated, tested,
and applied in fisheries management, particularly as a robust
means to cope with variability in stock productivity (recruitment)
and uncertainty in stock size and policy implementation.
This originally included simple “constant escapement” policies
(commonly for salmon and capelin) that prohibit fishing below
a certain stock size (the limit reference point), and that harvest
all biomass above that stock size (sensu, Reed, 1979). More
recently this has evolved into proportional threshold control
rules that apply a fixed fishing mortality rate above a limit

reference point. For instance, Engen et al. (1997) found that
this approach outperformed constant escapement policies in the
face of uncertainty in stock size. Lillegård et al. (2005) also
tested proportional threshold harvest control rules for Norwegian
spring spawning herring (Clupea harengus), illustrating the
high performance of this HCR when stock size was uncertain.
Norwegian spring spawning herring are a particularly relevant
example because of their high variability in recruitment and
resulting strong fluctuations in stock size (Toresen and Østvedt,
2000). Sethi et al. (2005) tested the impacts of uncertainty in
stock size, stock productivity (recruitment), and implementation
on optimal policy choices for simulated species. Given highly
stochastic stock size (recruitment) these authors ultimately
advised a proportional threshold harvest control policy with a
limit reference point at approximately 0.3–0.4 of stock carrying
capacity and a constant harvest rate above that of 0.6–0.7 of
the stock. This literature has also led to attempts in fishery
management to more precisely define limit reference points and
target reference points, i.e., the stock size at which maximum
fishing rates are applied (Mace, 1994; Clark, 2002). Most
current applications for marine fish involve a modified threshold
policy (Spencer and Collie, 1997) that specifies “hockey stick-
shaped” increases in fishing mortality rates (or catch) as biomass
increases from the limit reference point to the target reference
point, with constant fishing rates at biomass above that target

FIGURE 1 | Atlantis model domains for California Current and Nordic and
Barents Seas.
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(Figure 2A). Threshold harvest rules are in place for Pacific
hake (Merluccius productus) (US Congress Senate Committee on
Foreign Relations, 2004), other groundfish on the US West Coast
(Pacific Fishery Management Council, 2016), Northeast Arctic
haddock (Melanogrammus aeglefinus) and other demersal fish in
the Barents Sea (ICES, 2018a) and many other stocks. Globally,
simulation testing of harvest control rules, most often variants
on threshold rules, plays an important role in the Precautionary
Approach to fisheries (FAO, 1996; Punt, 2006).

Threshold Harvest Control Rules That
Respond to Ecosystem Productivity and
Forage Base
In practice, most harvest control rules applied for fisheries
management assume stock productivity varies only with the size
of the target population or by including predation mortality,
but previous simulation testing has considered harvest rules
that respond to fluctuations in ocean conditions and prey (e.g.,
ICES, 2016b). In particular, fishery managers may take one of
two divergent policies to respond to declining prey resources.
The first perspective treats leaving fish unharvested in the ocean
as an “investment” that is preferable when productivity is high
(Costello et al., 1998, 2001), with the implication that fishing rates
should be lowered during periods of high productivity and raised
during periods of low productivity.

The alternative policy is to increase fishing when productivity
is high, and fish less aggressively when productivity is low. “Less
aggressive fishing” can mean upward adjustments to escapement,
or decreasing fishing mortality rates in step with declining stock

size, or simply maintaining constant fishing mortality rates such
that catch (e.g., in tons) declines with a declining stock size
(Parma, 1990; Walters and Parma, 1996; Carson et al., 2008).
Overall, there is a clear understanding that refinement of harvest
control rules is an important next step toward addressing both
single-species goals and economic and conservation objectives
within ecosystem-based fishery management (Froese et al., 2011;
Levin et al., 2018; Trenkel, 2018).

Goals
Here, we apply an ecosystem modeling approach to test simple
versions of threshold harvest control rules where fishing rates
are adjusted with productivity, focusing on productivity driven
by the abundance of key zooplankton forage taxa. We focus
on major target fish stocks in the California Current and the
Nordic and Barents Seas: Pacific hake and mackerel (Scomber
scombrus), respectively. For these target species, we simulate
alternative threshold harvest control rules that either increase
or decrease fishing rates when forage productivity declines, and
compare these rules to a simpler threshold harvest control rule
that approximates current management policy in these regions.
As a benchmark, we also apply a constant fishing rate based
on maximum sustainable yield (FMSY ). These ecosystem-based
harvest rules that address shifting productivity or threshold
forage biomass are not novel, but here we explore their
implications for different trophic levels and the structure,
function, and catches at the ecosystem level. We adopt lessons
learned from other (mostly single-species) MSE efforts in terms of
how to score, plot, and summarize model performance. Overall,

FIGURE 2 | Top left panel: Threshold harvest control rule and constant fishing mortality rate at FMSY. Top right panel: Threshold harvest control rule that
decreases F when the forage base declines. Bottom panel: Threshold harvest control rule that increases F when the forage base declines.

Frontiers in Marine Science | www.frontiersin.org 3 August 2020 | Volume 7 | Article 652

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00652 August 11, 2020 Time: 11:56 # 4

Kaplan et al. Ecosystem-Based Harvest Control Rules

there is recognition that harvest control rules are key tools
for achieving ecosystem-based fisheries management goals such
as coping with climate change (Kritzer et al., 2019), and for
implementing the precautionary approach (Punt, 2006). Below
we demonstrate that applying end-to-end “operating models”
allows simulation testing of novel harvest control rules that
include ecosystem considerations, and allows us to screen the
implications of those rules on the ecosystem level.

ECOSYSTEMS AND METHODS

California Current Ecosystem
The California Current (Figure 1) is a southward-flowing eastern
boundary current, and the coastal ecosystem is dominated
by episodic upwelling on the scale of days to months, with
long-term variability driven by the basin-scale Pacific Decadal
Oscillation and the El Niño-Southern Oscillation (Checkley and
Barth, 2009). Sardine (Sardinops sagax) and anchovy (Engraulis
mordax) in particular demonstrate decade-long cycles (Chavez
et al., 2003), and other species such as hake and rockfish (Sebastes
spp.) exhibit high inter-annual variability in recruitment (Berger
et al., 2017). Fisheries in this region range from large vessels with
at-sea processing capability to small coastal vessels. Dominant
species in landings include Pacific hake, sardine, and squid
(Doryteuthis opalescens). Major contributors to landed value
also include Dungeness crab (Metacarcinus magister), shrimp
(Pandalus jordani), albacore tuna (Thunnus alalunga), sablefish
(Anoplopoma fimbria), and salmon (Oncorhynchus spp.). Hake
dominate the midwater fish biomass on the continental shelf
and slope, and account for about 12% of total fish biomass
(Marshall et al., 2017). Hake feed heavily on euphausiid species
including Euphausia pacifica and Thysanoessa spinifera, and their
distinct diel vertical migration may track euphausiids’ vertical
movements (Ressler et al., 2007). Larger hake consume more fish
than smaller hake. Nonetheless, recent diet syntheses suggest that
approximately 80% of adult hake diet is euphausiids (Dufault
et al., 2009; Wippel et al., 2017).

Pacific hake are a transboundary stock managed jointly by
the US and Canada following a simple threshold harvest rule.
The default fishing mortality rate when abundance is high is
based on a proxy for MSY, which leads to a spawning biomass
per recruit that is 40% of that without fishing (FSPR = 40%).
The 40:10 threshold harvest rule decreases catch linearly to
zero as spawning biomass declines from 40 to 10% of unfished
levels (Berger et al., 2017). No fishery exists for zooplankton in
the California Current, and in fact such fisheries were recently
banned (NMFS, 2009), but natural fluctuations alone drive strong
oscillations in euphausiid abundance (Ralston et al., 2015).

Nordic and Barents Seas
The Nordic and Barents Seas, where the Nordic Seas include
the Greenland, Iceland, and Norwegian Sea (Figure 1), are
dominated by contrasting water masses, with a large heat
transport into the Barents Sea from the Norwegian Atlantic slope
Current (Orvik and Skagseth, 2005). High seasonal variability
follows changes in light and stratification. The ecosystems

are tightly linked together by an inflow of zooplankton from
the Norwegian Sea to the Barents Sea (Skaret et al., 2014)
and species migrating between the two. The Norwegian Sea
ecosystem is dominated by three pelagic fish species: Norwegian
Spring Spawning (NSS) herring, blue whiting (Micromesistius
poutassou), and mackerel, all of which compete for plankton prey
items including copepods and euphausiids. Mackerel enter the
Norwegian Sea for summer feeding and spend the remaining
part of the year (including spawning) slightly south of the model
domain, where it also spawns. The dominant prey of mackerel
is the copepod Calanus finmarchicus, which has a standing
stock biomass of close to 31 million tons in the Norwegian Sea
(Broms et al., 2016).

Present day management for mackerel in the Norwegian Sea
is complicated. Although three partners (Norway, EU, and the
Faroe Islands) agreed upon a management strategy in 2015 which
should be valid for the subsequent 5 years, the total quotas for
2015 to 2017 have all exceeded the advice from ICES (ICES,
2019). ICES advice, though not followed, was based upon harvest
control rules in 2010 and since 2016 (ICES, 2019). A limited
fishery for Calanus finmarchicus is active in the Norwegian Sea
(Grimaldo and Gjøsund, 2012), though with a low quota (165,000
tons) relative to the standing stock biomass (∼31 million tons)
(Broms et al., 2016).

Atlantis Ecosystem Model
To evaluate the implications of alternative harvest rules on
the broader ecosystem, we implement the end-to-end Atlantis
C++ code framework (Fulton et al., 2004, 2011; Audzijonyte
et al., 2019). As an end-to-end model, Atlantis simulates
oceanography, nutrient cycling, food web dynamics, fisheries,
and other human uses on a three-dimensional domain. In
most applications including ours, simulations involve forward
projections of differential equations, solved on 12 or 24 h time
steps using adaptive-difference techniques. The model tracks
species abundance in terms of nitrogen concentrations per model
cell (for invertebrates and primary producers), and in terms
of numbers-at-age and weights-at-age (in nitrogen units) for
vertebrates. Vertebrates typically are driven by fixed seasonal
migrations or foraging behavior, while plankton are advected
between model cells. Over 30 Atlantis models have now been
implemented worldwide (Weijerman et al., 2016). The Atlantis
code base is maintained by CSIRO Australia and made available
via an online request at https://research.csiro.au/atlantis/.

California Current Atlantis
The California Current Atlantis model has been described in
depth (Kaplan et al., 2017; Marshall et al., 2017). Briefly, the
model includes five primary producer groups, 25 benthic and
planktonic invertebrates, 36 fish groups, 10 marine mammal
groups, three bird groups, and two detritus categories. The
model domain represents 1.475 million km2 with 89 polygons
(Figure 1), including US West Coast waters of the continental
shelf, slope, and offshore to 200 nautical miles (322 km), as
well as portions of Mexican and Canadian waters. The model
is initialized in year 2013, and for most fish species, including
hake, initial conditions for biomass are taken from recent
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stock assessments. Initial conditions for the “Large zooplankton”
functional group (euphausiids) are taken from a summary of
the CalCOFI plankton time series (Lavaniegos and Ohman,
2007), and from zooplankton samples taken along the Newport
Oregon Hydrographic Line (W. Peterson, unpublished data,
NOAA NWFSC, Newport Oregon). The model is forced by
Regional Ocean Modeling System (ROMS) output for 2013, as
in Marshall et al. (2017). This oceanography drives Atlantis daily
temperature, salinity, and currents; in the present application we
do not apply the values of pH from Marshall et al. (2017) to the
biological response of the model. The California Current model
generally does not require a spin-up, and after initialization in
year 2013 reaches quasi-stable behavior (under constant fishing)
by approximately year 30, before our results reporting years
41–50. In other applications, the model has been used to test
implications of ocean acidification (Marshall et al., 2017) and
reductions in forage fish abundance (Kaplan et al., 2017).

Nordic and Barents Sea Atlantis
The Nordic and Barents Sea Atlantis model (Hansen et al., 2016,
2019a,b) includes 54 species and functional groups, and was
constructed to explore combined fisheries and climate scenarios.
Of the 54 components, 3 are primary producers, 20 fish groups,
nine benthic and planktonic invertebrates, two bird groups, 10
marine mammal groups, and three detritus categories. The model
domain represents 4 million km2 with 60 polygons (Figure 1),
which are designed to be as homogeneous as possible. For
this study, the model is initialized representing 2003, and fish
biomasses are taken primarily from stock assessments, including
for mackerel (ICES, 2017). Biomass of the functional group
“Mesozooplankton” (primarily C. finmarchicus) was taken from
surveys in the Norwegian Sea (Skjoldal et al., 2004) and in the
Barents Sea (SJØMIL)1. Daily inputs of temperature, salinity
and currents were interpolated from a set of ROMS models
representing the period used in these simulations (NorESM;
Sandø et al., 2014). This Atlantis model required a 24 year
spin-up period, where the physical forcing was looped 24 times
using the same year (2004). These first 24 years were not used
in any analyses. Mackerel is a migratory species within this
model (Hansen et al., 2016), and only enters the model during
the summer months for feeding. During the period it stays
outside the model domain, it experiences no mortality or growth.
Fisheries prior to 2017 were represented using historical fishing
pressures for the larger commercial stocks (ICES, 2017, 2018a).
Along with the California Current model, the Nordic and Barents
Sea Atlantis implementation has recently been used as part of
a global suite of models to test a range of fisheries policies and
marine protected areas (Olsen et al., 2018), and for a sensitivity
study of the key groups and parameters included in the model
system (Hansen et al., 2019a).

Simulation Design
For both ecosystems, we simulate 50-year forward projections
of the harvest control rules described in detail below. The
simulations are based on the parameterizations described in

1http://poseidon.imr.no:8080/sjomil/

Hansen et al. (2016, 2019a) and Kaplan et al. (2017), recently
applied jointly in Olsen et al. (2018). In the California Current
simulations, fishing rates for all species other than our “target”
(Pacific hake) were held at 2013 fishing mortality rates (F units of
yr−1). In the Nordic and Barents Seas simulations, fishing rates
for all species other than “target” mackerel represented historical
F rates until 2017, when they switch to average, representative
values for each component based on the fishing pressure for
the last decade.

We tested six harvest control rules (Table 1). To establish
parameters for the harvest rules, prior to the simulations
described here, estimates of B100 (unfished biomass) and FMSY
for the target fish groups were calculated iteratively from multiple
simulations, by varying (or turning off) fishing rates on one
target species and holding all other species at base case fishing
rates. The calculated FMSY was applied in the “Constant FMSY ”
simulations, and was also used to define the maximum fishing
mortality rate in the threshold harvest rule simulations (Figure 2
and Table 1, Rule 1). The B100 was also used to define B40
(40% of unfished biomass) and B10 (10% of unfished biomass),
which we used to define Btarget (target biomass) and Blim (limit
reference point below which harvest is stopped) in the threshold
rules, respectively (Figure 2 and Table 1, Rule 2). (We adopt the
terminology “target” following common usage on the US West
Coast (Punt et al., 2008), but note that readers from other regions
may have other terminology, such as Btrigger).

Due to the strong feeding preference from hake and mackerel
on euphausiids and copepods respectively, we designed harvest
rules with precautionary reductions in fishing on target stocks
that were triggered when their zooplankton prey declined below
threshold levels. Specifically, we reduced fishing mortality rates
(F, yr−1) on target fish when zooplankton fell below either
50% of average biomass (Table 1, Rule 3) or below 25% of
average biomass (Table 1, Rule 4). Fishing mortality was reduced
proportional to the diet fraction comprised of the zooplankton.
For the California Current, this was a 79% reduction in fishing
mortality rate from the simple threshold rule (based on 79%
of hake diet from euphausiids in the base case; Wippel et al.,
2017), and for the Nordic and Barents Seas this was similarly a
75% reduction in fishing mortality rate (based on Iversen, 2004).
This strong reduction in fishing illustrates a case where fishery
managers institute very precautionary policies, assuming little
ability of hake or mackerel to locate zooplankton aggregations or
switch prey when productivity declines.

In addition, we tested the possible effects of increasing the
fishing pressure on the target fish when its main zooplankton prey
fell below the threshold. For this specific harvest control rule, we
increased the fishing mortality rate by 25% when the zooplankton
fell below either 50% (Table 1, Rule 5) or 25% (Table 1, Rule 6) of
average biomass.

Time Series of Plankton Productivity
The threshold harvest rules are intended to adjust to shifts in
stock abundance and productivity, and hence we simulate an
ensemble of fluctuating time series of zooplankton productivity
that will drive these shifts (Figure 3). California Current
euphausiids and Nordic and Barents Seas copepods are major
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TABLE 1 | Simulations performed.

Simulated harvest rule

1. FMSY for target fish (“control” simulations)

2. Simple threshold harvest rule for target fish

3. Threshold harvest rule for target fish that decreases fishing if productivity declines (if zooplankton < 50%)

4. Threshold harvest rule for target fish that decreases fishing if productivity declines (if zooplankton < 25%)

5. Threshold harvest rule for target fish that increases fishing if productivity declines (if zooplankton < 50%)

6. Threshold harvest rule for target fish that increases fishing if productivity declines (if zooplankton < 25%)

“Target fish” is Pacific hake in the California Current, mackerel in the Nordic and Barents Seas. For each simulated harvest rule, we ran 14 simulations per ecosystem (a
baseline simulation plus 13 simulations with zooplankton biomass forcing).

FIGURE 3 | Biomass trajectories of euphausiids from the California Current Atlantis model (top) and of copepods from the Nordic and Barents Seas Atlantis model
(bottom). For each ecosystem, simulations 1 and 5 are shown as examples. The pattern is shifted by 2 years between each simulation, e.g., simulations 1 and 5 are
8 years lagged. Biomass trajectories are forced based on zooplankton abundance time series for the Norwegian Sea (copepods, 1995–2017), and the California
Current (euphausiids, 1990–2017), with the time series “looped” to stretch the duration of the Atlantis simulations.

prey items for Pacific hake and mackerel respectively (Dufault
et al., 2009; Bachiller et al., 2016; Wippel et al., 2017), and
sensitivity analyses support the key role of zooplankton for
fish food webs (Hansen et al., 2019a). For the California
Current, we drive ecosystem productivity with observations of
annual euphausiid abundance from midwater net surveys off
Central California, for 1990–2017 (Sakuma et al., 2016). For the
Nordic and Barents Seas, we drive the ecosystem model with
a Norwegian Sea copepod survey for 1995–2017 (Broms et al.,
2016). We scaled the plankton time series for each ecosystem
such that the mean of the time series was 1. We then created
13 replicates of the time series (for a total of 14), each with a
distinct starting point in the original survey data (e.g., starting
years 1,3,5,. . .,27), and then we “looped” or repeated the time
series for the simulation duration (50 years). We used each of
these 14 time series as annual multipliers of base zooplankton
biomass, and used these time series of zooplankton biomass to
drive the 14 replicates testing each harvest rule listed in Table 1.
Performance of a harvest rule in each simulation (e.g., Simple

Threshold harvest rule for hake with zooplankton time series #1)
was calculated by comparing to outputs from an FMSY simulation
forced by the identical zooplankton time series (e.g., zooplankton
time series #1). The choice of 14 replicates was driven by practical
considerations related to available computer processing power:
14 × 6 harvest rules × 2 ecosystems represents approximately
8,000 h of compute time.

Performance Metrics
We evaluated performance of the harvest rules in terms of
ecosystem metrics, following Olsen et al. (2018). The ecosystem
metrics largely follow those from the IndiSeas project (Shin and
Shannon, 2010) and others (Fulton et al., 2005; Rice and Rochet,
2005; Methratta and Link, 2006). We calculated seven metrics of
ecological community properties and eight metrics of fisheries
and economic properties, averaging over the last 10 years of each
fifty year scenario (Table 2). The economic properties are very
simple, only taking the value of the catch (current value) into
consideration, using values from Olsen et al. (2018). Consistent
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with other MSEs (e.g., Tommasi et al., 2017), we also plotted
the biomass, catch, and coefficient of variation of catch, for both
target fish species (hake or mackerel).

The biomass responses of modeled groups in the last 10 years
of the simulation were plotted relative to biomass in the FMSY
case, and were also aggregated into 11 guilds, as in Olsen
et al. (2018): “mammals,” “seabirds,” “shark,” “demersal fish,”
“pelagic fish,” “squid,” ”filter feeder,” ”epibenthos,” ”zooplankton,”
”primary producer,” and “infauna.”

RESULTS

Example of Dynamic Outputs: California
Current Harvest Control Rules for Hake
The simulations implemented the harvest control rules specified
in Figure 2 and Table 1, and projected impacts on stock
dynamics. For example, the California Current hake threshold
rule decreasing F when prey abundance declined had the
expected upper and lower limbs corresponding to periods with
high or low euphausiid abundance (Figure 4, corresponding to
harvest rule #4 in Table 1). Frequent (annual) adjustment of the F
rates led to high variability in hake F and catch. Similar diagnostic
plots for other harvest control rules suggest the simulations were
able to recreate the set of rules listed in Table 1.

Threshold Harvest Rules for Target Fish
For both the California Current and Nordic and Barents Seas, as
expected, the scenarios suggest higher target fish biomass (hake
or mackerel, respectively) in the final years of the simulation
under a threshold harvest control rule than under constant FMSY
(rule #2 in Table 1, Figures 5, 6 top left panels, Supplementary
Table S1). This was due to lower average F imposed at low
biomasses under this harvest rule (Figure 2A). Variation in

TABLE 2 | Ecological and fishery indicators used as performance metrics.

Ecological metricDescription

Pel bio/PP Ratio of pelagic biomass to primary production

Bio/PP Ratio of total biomass to primary production

MTL bio Mean trophic level (MTL) of biomass

Predfish prop Proportion of fish biomass that is predatory fish

Dem/pel fish Ratio of demersal to pelagic fish biomass

Dem/pelagic Ratio of total demersal to total pelagic biomass

Dem bio/PP Ratio of demersal biomass to primary production

Fishery metrics

Pel catch Catch of pelagic species

Total catch Total catch

MTL catch Mean trophic level (MTL) of catch

Fish exp rate Exploitation rate (summed catch/summed biomass) of fish only

Exp rate Exploitation rate of all targeted species biomass

Value Value of catch

Fish cat Catch of all fish

Dem cat Catch of demersal species

Abbreviations are used in Figure 5 and related figures.

FIGURE 4 | Example time series of Pacific hake biomass and F (top panel),
zooplankton biomass (middle panel), and F versus biomass (bottom panel)
from the California Current Atlantis model. These are outputs from a threshold
harvest rule for target fish that scales fishing in step with productivity (if
zooplankton falls below < 25%; Table 1, Rule 4). More specifically, for this US
example, F rates from the 40/10 hake threshold rule are decreased by 79% if
euphausiid abundance falls below 25% of baseline euphausiid abundance.
Note the high variability in F for this harvest rule (top panel, gray symbols
linked by gray lines). In the top panel the solid black line indicates the
BTARGET reference point below which the fishing mortality rate is reduced
(B40), and the dashed black line indicates the BLIM reference point below
which harvest is stopped (B10). In the middle panel, points indicate whether
zooplankton abundance is below 25% (red), between 25 and 50% (orange),
or above 50% (blue). In the bottom panel, the solid gray horizontal line
indicates the maximum fishing mortality rate (FMSY ), the solid black line
indicates the BTARGET reference point, and points are colored identically to the
middle panel.

catches with the threshold rule, as compared to variation in
catch under FMSY , was higher for mackerel, and only slightly
higher for hake (Figures 5, 6, top right panels). Average catches
of both hake and mackerel were within ∼5–10% of average
catches under an FMSY base case. Lower F resulted in lower
average catches for mackerel. For hake in the California Current,
catches were slightly higher under this threshold rule (and all
variants of the threshold rule below) than the FMSY case. This
was due primarily to the trend in hake biomass in the base
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FIGURE 5 | Fishery and ecological metrics for the California Current results, with Pacific hake as target fish. These performance metrics are scored against
comparable base cases with target fish F = FMSY . Each of the pairs of simulations here is forced with a different time series of euphausiid biomass. Top left panel:
Performance metrics for simulations with a simple threshold harvest control rule (rule #2 in Table 1). Middle left panel: Performance metrics for a threshold rule for
target fish that decreases fishing if productivity declines (if zooplankton < 25%). This threshold rule is #4 in Table 1. Bottom left panel: Performance metrics for a
threshold rule for target fish that increases fishing if productivity declines (if zooplankton < 25%). This threshold rule is #6 in Table 1. Right panels: Coefficient of
variation of catch. In all panels, boxes span the lower to upper quartiles, horizontal black lines within each box represent median values, and whiskers extend to the
highest and lowest values excluding outliers. Outliers are indicated by open circles, defined as points beyond 1.5 times the interquartile range.

run (decline followed by recovery over years 25–50), and the
fact that lower Fs in the threshold rule during the early part of
the recovery led to higher biomass and catch by the final years
of the simulation. The hake stock starts the simulation at 3.8
million metric tons, which is 67% of the model’s estimate of
unfished biomass (5.7 million metric tons), but approximately
double the model estimate of BMSY (1.94 metric tons). The
decline below BMSY is driven primarily by model internal
dynamics (physical forcing and trophic interactions, including
effects of management on other commercial species), rather
than by fishing rates on hake; however, the recovery from
this decline is influenced by hake F and harvest rule. In both
ecosystems, target fish biomass trends were slightly modified by
the zooplankton forcing, but were consistent enough that we
see moderate or little variability in target species biomass and
catch across the 14 simulations, as demonstrated by the narrow

range of biomass outcomes for hake and mackerel (Figures 5, 6,
top left panels).

The ecosystem-level performance of the threshold harvest
rule differed little from the FMSY scenario. Other than metrics
related directly to target fish, the ratios of ecological metrics
(Figures 5, 6, top left panels) in these two scenarios were
generally near 1, especially in the California Current. Guild-level
biomasses for the most part did not differ substantially between
the scenario with this threshold rule and the corresponding FMSY
simulations (Figure 7). Hake and mackerel are both categorized
for these purposes as pelagic fish, and were the only species
in the pelagic guild that exhibited strong increases in biomass.
Other guilds showed minimal responses. For the California
Current, the strongest impact (∼+15%) was in the demersal
fish guild, for Large Piscivorous Flatfish (halibut); empirical
diet studies suggest adult halibut have a diet of 38% hake
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FIGURE 6 | Fishery and ecological metrics as in Figure 5, but for the Nordic and Barents Seas, with mackerel as target fish. Each of the pairs of simulations here is
forced with a different time series of copepod biomass.

and juveniles have diet of 6% hake (Wippel et al., 2017). For
the Nordic and Barents Seas, the strongest impacts were on
individual zooplankton and primary producer groups, but these
were generally less than 30% and were present in a minority
of the 14 simulations. One caveat is that the direct forcing of
copepod biomass (see “Time Series of Plankton Productivity”
above) can lead to stronger responses in the lower trophic levels
than might exist if copepod biomass dynamics were limited by
model feedbacks.

Threshold Rules That Scale Fishing
Mortality Rate With Forage Productivity
Threshold harvest control rules that decrease fishing on target
fish if forage productivity declines (i.e., zooplankton abundance
declined below 25%) led to frequent abrupt declines in F (as
exemplified in Figure 4), resulting in lower average F, high target
fish (hake or mackerel) biomass and very high variability in catch

(Figures 5, 6, middle panels). In the California Current this
variability resulted in higher target fish (hake) catches compared
to the fixed FMSY scenario; this pattern was consistent with
hake catch results in the simple threshold rule, as described
above. In the Nordic and Barents Seas, this variability resulted
in target fish (mackerel) catch similar to levels in the fixed
FMSY scenario. Target fish biomass was higher than under the
simple threshold harvest rule (i.e., compared to top panels in
Figures 5, 6).

As compared to FMSY scenarios, threshold harvest control
rules that increase fishing if productivity declines also exhibited
lower average F, high target fish biomasses and high variability
in catch (Figures 5, 6, bottom panels). However, compared
to scenarios that decrease fishing on target fish if productivity
declines, threshold harvest control rules that increase fishing on
target fish if productivity declines led to lower target fish biomass,
but also lower catch variability (Figures 5, 6, bottom panels,
Supplementary Table S1). Catches outperformed FMSY scenarios
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FIGURE 7 | Guild-level biomasses for simulations with a simple threshold
harvest control rule for target fish (rule #2 in Table 1), scored against
comparable “control” simulations with target fish F = Fmsy. Each simulation is
represented by a unique color. Vertical bars represent the range of functional
group responses, grouped by guilds, within each simulation. Small triangles
are individual functional group responses, and black circles are the average
responses per simulation. Top panel: California Current results for Pacific
hake as target fish. Lower panel: Nordic and Barents Seas results for
mackerel as target fish. Both target fish are in the pelagic fish guild.

by ∼10% for hake, but not for mackerel; this was consistent with
catch results in the simple threshold rule, as described above.

As would be expected, the harvest rules that adjusted to
more moderate (50%) declines in zooplankton (Rules #3 and
#5; Supplementary Figures S1, S2) have even more frequent
adjustments in F and larger variation in target fish catches,
i.e., trends for target fish catch and biomass are more extreme
examples of those in Figures 5, 6, middle and lower panels.

For the harvest rule that decreased fishing on target fish
if productivity declined, ecological performance differed little
from the FMSY scenario. Other than metrics related directly to
target fish, the ratio of ecological metrics (Figures 5, 6, middle
panels) in these two scenarios was generally near 1. Guild-level
biomasses for the most part did not differ substantially between
the threshold rules that scaled fishing with productivity and the
corresponding FMSY simulations (Supplementary Figure S3).
Similar to results from the simple threshold rule, for the
California Current the largest effect on a species other than hake
was a 19–22% increase in Large Piscivorous Flatfish. For the
Nordic and Barents Seas, the largest effect at the guild level,
other than for pelagic fish (i.e., mackerel), was for individual
zooplankton and primary producer groups in a minority of the 14
simulations, consistent with results testing the simple threshold
harvest rule for mackerel.

In contrast, for the harvest rule that increased fishing on
target fish if productivity declined, ecological performance was
more variable, particularly for the Nordic and Barents Seas
(Figures 5, 6 lower panels and Supplementary Table S1).

Median effects across simulations were as high as 15%, and
the performance of individual simulations varied, particularly
for metrics related to primary production (“PP”) and also for
Mean Trophic Level of Biomass. Under this harvest rule, the
Nordic and Barents Seas experienced high variability (across
simulations) in terms of the guilds Epibenthos, Zooplankton,
and Primary producers, and some variability in the Demersal
fish guild, as well as increases in Pelagic fish (mackerel)
(Supplementary Figure S4). In the California Current, guild-
level effects were more rare.

DISCUSSION

Acknowledgment of and attempts to incorporate variability and
directional change in environmental conditions into fisheries
management is increasing as ecosystem-based management
approaches gain popularity (Marshall et al., 2018; Haltuch et al.,
2019). Many countries now embrace the principles of ecosystem-
based fisheries management (Pitcher et al., 2009), even if the
implementation of these management approaches has been
somewhat slow (Skern-Mauritzen et al., 2016). While future
ocean conditions will be driven by warming, ocean acidification,
deoxygenation, and interactions with multiple anthropogenic
stressors such as fishing and nutrient loading (Gattuso et al.,
2015), climate change is not required to demonstrate the potential
value of responsive harvest control rules. However, we expect
some of the most dramatic future changes to occur in sub-
arctic and arctic ecosystems such as the Nordic and Barents
Seas (Cheung et al., 2010; Fossheim et al., 2015), and eastern
boundary currents such as the California Current that are
marked by upwelling of deep, nutrient rich water (Gruber
et al., 2012). Future scenarios involve not only projections
of the biophysical responses, but also aspects of governance,
economy, and management (Maury et al., 2017). Management
response to variable and changing ocean conditions may require
flexible, responsive policies that adapt to changing productivity
and fishery demands (Pinsky and Mantua, 2014; Schindler and
Hilborn, 2015). Here we have evaluated the ecosystem and fishery
consequences of one set of such responsive policies for key
pelagic species for the California Current and Nordic and Barents
Seas ecosystems.

Our main results agree in many ways with those from previous
single-species simulation studies, but the application of the full
ecosystem model identifies two dimensions of tradeoffs that are
not apparent with simpler operating models. Consistent with
studies based on single-species operating models (see review by
Deroba and Bence, 2008), we found that compared to constant
F = FMSY policies, threshold rules led to higher target stock
biomass for Pacific hake in the California Current and mackerel
in the Norwegian Sea. Performance in terms of catch varied
depending partly on the biomass and recovery trajectory for
the individual target stocks, largely due to the dynamics of the
individual target stocks.

The first major tradeoff illustrated by applying the full
ecosystem model was the increased catch variability apparent
for all the harvest control rules that link fishing mortality
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rates to prey (zooplankton) availability, due to rapid and
frequent changes in those fishing rates. In these two systems
zooplankton abundance is highly variable (Figure 3), and this
tradeoff stems directly from the structure of the harvest rule,
rather than from modeled trophic dynamics. Variability in
catches is often reported as a performance metric (Punt et al.,
2016a), and if one goal of fisheries managers and fishers is
to minimize fluctuations in catch, we expect that they would
be unwilling to accept management strategies with order-of-
magnitude increases in catch variability. For example, threshold
rules that decreased fishing when zooplankton declined led to
extremely high variability in catch. Overall our simulations found
little benefit to this policy versus either the simple threshold
rule or constant F = FMSY scenario. Previous authors have also
suggested that constant F rates often perform well in terms of
single species performance metrics such as catch or natural log
of catch (Parma, 1990; Walters and Parma, 1996), dampening
variability in biomass and yield. Simple threshold rules are an
extension to this which accounts for stochasticity and uncertainty
in stock size (Lillegård et al., 2005; Sethi et al., 2005).

The second major tradeoff illustrated by our results stems
from the full representation of the ecosystem in the operating
model, and in particular when testing the threshold rules that
increase fishing when productivity (zooplankton) declined. This
perspective treats leaving fish unharvested in the ocean as an
“investment,” meaning that they should be harvested more
heavily when productivity declines. Our application of end-to-
end ecosystem models here illustrates a possible disadvantage
to this policy, the potential for stronger ecosystem effects
across other species. These effects were most apparent in
the Nordic and Barents Seas model, where higher fishing on
mackerel ultimately led to shifts in phytoplankton abundance,
and subsequent effects on Epibenthos, Zooplankton, and Primary
producers. The direction of these shifts varied across our
simulations, but our results suggest a destabilizing effect of
added fishing mortality on mackerel. Nordic and Barents Seas
mackerel had maximum F (FMSY ) of 0.15, compared to roughly
0.08 for hake in the simulated California Current, and this
higher F led to stronger effects when fishing rates on mackerel
were increased (to 1.25∗FMSY ). Additionally, copepods are a
higher proportion of the animal biomass in the Nordic and
Barents Seas than are euphausiids in the California Current
(23% versus 15% in our base Atlantis models). Overall, the
Nordic and Barents Seas simulations that increased fishing when
zooplankton declined suggest that frequent strong adjustments
to a relatively high fishing rate on a major ecosystem component
(mackerel) may lead to highly variable responses across the
ecosystem, and low predictability (evidenced by performance
differences among simulations that varied only in the timing
of the zooplankton forcing). These results suggest that episodic
or “bang-bang” harvest policies, which have some parallels
to constant escapement policies (sensu Reed, 1979), may lead
not only to high variability in yield and profits (Deroba
and Bence, 2008), but also to high ecological variability. The
difference between regions illustrates the value of having multiple
models and species in our tests – a strength of this multi-
region comparison.

Though this tradeoff between increased fishing (to 1.25 ∗
FMSY ) versus stability in the ecosystem arose in our simulations
for the Nordic and Barents Seas, overall most of the threshold
rules considered here for both ecosystems had only minor effects
across ecological metrics and other species guilds. We expect
that this insensitivity of the simulated ecosystem is because
these policies alter harvest of only single target stocks. Other
applications of these Atlantis model have tested the effects of
fishing on California Current forage fish (Kaplan et al., 2017)
and Nordic and Barents Seas zooplankton and key fish stocks
other than mackerel (Hansen et al., 2019a,b), and have found
stronger effects across the food web. Nonetheless we note that
spatially explicit, full ecosystem-scale models like Atlantis often
have dampened predator-prey dynamics compared to non-spatial
food web models. This is in part because they include prey refuges
in size and space, age structure, and additional density dependent
mechanisms besides prey limitation (Walters et al., 2016).

Punt et al. (2013) suggested that Atlantis ecosystem models
could be applied as operating models for MSE related to the
changing climate and ocean conditions, particularly due to
expected future shifts in predator-prey relationships. Here we
demonstrate one such application, showing that end-to-end
models can be used to test ecosystem-level effects of rules that
respond to shifts in target species and prey productivity in the
California Current and Nordic and Barents Seas. Understanding
how yields of target species vary according to other ecosystem
factors is not confined to theoretical research, but is beginning to
enter tactical fisheries management. Capelin (Mallotus villosus)
in the Barents Sea has been managed since 1991 via a constant
escapement strategy where the consumption by Northeast Arctic
cod (Gadus morhua) is taken into account when setting the
capelin quota (ICES, 2015). The capelin quota is therefore
dependent on the abundance of cod in the region. HCRs
dependent on environmental or feeding conditions are also
beginning to be developed. The most recent MSE for Northeast
Arctic cod (ICES, 2016a) evaluated 10 different HCRs, including
fishing harder at high stock sizes to account for density
dependent effects and fishing harder at high cod stock sizes under
conditions of low prey (capelin) abundance. Both of these sets
of rules attempt to explicitly account for food availability in the
management of a high trophic level target species, and the HCR
implemented in management accounts for density dependent
effects. A more wide ranging approach is proposed for the Irish
Sea in ICES (2018b), where it is suggested that the choice of target
F for the groundfish species in the region could be allowed to vary
within pre-defined precautionary FMSY -ranges (ICES, 2016a)
depending on the environmental conditions in the region. Studies
of the kind described here are therefore critical in providing the
theoretical understanding to support this ongoing move toward
more holistic fisheries management.

Caveats
The analysis presented here is a stepping stone that allows
simulation testing of harvest control rules within two ecosystems,
however, full MSE would include uncertainty in monitoring,
stock assessment, and implementation (Punt et al., 2016a). In
essence we have taken shortcuts by assuming that the tested
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harvest control rules have perfect knowledge, and this may
have important consequences. For instance, Sethi et al. (2005)
suggest that high uncertainty in stock size may argue for
lower thresholds and higher exploitation rates. Implementation
uncertainty may be particularly important, as annual harvest
advice may often be ignored in practice (Patterson and Résimont,
2007). Embedding all sources of uncertainty in MSEs within
computationally-intensive end-to-end models is challenging but
technically possible (see Fulton et al., 2016; Dichmont et al.,
2017). However, end-to-end models such as Atlantis can also be
used to screen or winnow harvest policies before further MSE
with models of simpler taxonomic and ecological resolution (e.g.,
MICE models, Plagányi et al., 2012; Punt et al., 2016b).

The threshold rules that we tested here assume that managers
have accurate and timely surveys of prey (euphausiid or copepod)
abundance. Though such surveys exist (Ohman and Smith, 1995;
Peterson et al., 2014; Broms et al., 2016), it is challenging to
directly link these to the drivers of productivity of target fish
stocks, and ultimately to real-world fisheries management. In
the context of harvest control rules for single species, other
authors have pointed out the dangers of mis-identifying shifts
in recruitment and their underlying mechanisms (Haltuch and
Punt, 2011; Szuwalski and Punt, 2012), and the importance of
timely action in relation to climate and productivity shifts (Brown
et al., 2012). However, Kritzer et al. (2019) showed that a simple
threshold control rule outperformed fixed fishing mortality for
a range of species in the face of directional climate-induced
changes in stock productivity. This suggests that simple threshold
control rules may be sufficient in many cases. We intentionally
chose and tested strong mechanistic links in our operating
model, between target fish (Pacific hake and mackerel) and
planktonic prey that they feed heavily upon. Weaker relationships
between prey or environmental variables and fish production
(recruitment) may be common, and problematic for use in
fisheries management (De Oliveira and Butterworth, 2005).
Nonetheless there is continued interest in zooplankton surveys,
and interest from fishery managers in understanding these trends
in the context of broader ecosystem status and productivity
(Zador and Yasumiishi, 2017; Harvey et al., 2018).

The Atlantis models used here are best viewed as operating
models or “testbeds,” rather than exact representations of the
California Current and Nordic and Barents Seas. This is
consistent with the overall strategic role of end-to-end models
such as Atlantis (Fulton et al., 2011). Key assumptions include
those related to predator-prey functional responses, density
dependence in some species’ stock-recruit relationships, and
representation of most fisheries as constant mortality rates
applied uniformly in space and across all age classes. Complex
end-to-end models, such as these applied here, do introduce
structural uncertainty due to the explicit representation of
complex ecological processes and the associated large number of
parameters (Link et al., 2012). As an example of one such process,
in the Nordic and Barents Seas model, the mackerel necessarily
was impacted by its role (and parameterization) as a migratory
species, not spending its whole life-cycle within the model
domain. A separate, large omission in our work above is that
social and economic aspects of fisheries and related performance

metrics are not considered for either ecosystem here, but have
been in other recent studies using Atlantis models (Fulton et al.,
2019). Also, we note that for simplicity, zooplankton biomasses
were directly forced in our tests of harvest control rules for hake
and mackerel, eliminating the feedback-loop from zooplankton’s
predators and prey. From other studies (e.g., Pantus, 2007;
Hansen et al., 2019a), parameter perturbations at the lower
trophic levels, and in particular zooplankton, potentially have
a large impact on the ecosystem in the Atlantis models.
Thus, our assumptions regarding zooplankton forcing affect the
simulations, though we control for this by pairing each scenario
(i.e., simulation of a harvest control rule) with a comparable FMSY
simulation forced by the identical zooplankton time series.

CONCLUSION

The proposed control rules that we test here are intentionally
narrow, focused on the value of including predator-prey
considerations into harvest strategies for target stocks. We
undertook this analysis in the same spirit as Tommasi et al.
(2017) careful exploration of the value of incorporating sea
surface temperature information into harvest control rules for
Pacific sardine (Sardinops sagax), simulating control rules that
affect fishing on a single target stock, and intentionally neglecting
some aspects of uncertainty. Expanding beyond such focused
control rules, Link (2005) and Fay et al. (2015) suggested broader
ecosystem-level indicators (such as total pelagic biomass) and
corresponding warning thresholds and limit reference points
that could directly be incorporated into harvest rules. Further
development and testing of such ecosystem-level considerations
can be achieved with end-to-end ecosystem models, such as
the Atlantis models applied here, which have the added benefit
of tracking the follow-on effects of the control rule on the
broader ecosystem. For the California Current and Nordic and
Barents Seas, our explorations with the harvest rules tested here
represent bi-directional effects: from the ecosystem to the forage-
dependent harvest rule, via information about variability in
zooplankton; and from the harvest rule to ecosystem, via follow-
on food web effects and variable responses across lower trophic
levels, particularly in the Nordic and Barents Seas model under
tests of relatively high fishing rates.
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