

Corrigendum: Mesozooplankton and Micronekton Active Carbon Transport in Contrasting Eddies

Lian E. Kwong^{1*}, Natasha Henschke¹, Evgeny A. Pakhomov^{1,2,3}, Jason D. Everett^{4,5} and Iain M. Suthers^{5,6}

¹ Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada, ² Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada, ³ Hakai Institute, Heriot Bay, BC, Canada, ⁴ Centre for Applications in Natural Resource Mathematics, The University of Queensland, St. Lucia, QLD, Australia, ⁵ Evolution and Ecology Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia, ⁶ Sydney Institute of Marine Science, Mosman, NSW, Australia

OPEN ACCESS

Edited and reviewed by:

Morten Hvitfeldt Iversen, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Germany

*Correspondence:

Lian E. Kwong lkwong@eoas.ubc.ca

Specialty section:

This article was submitted to Marine Ecosystem Ecology, a section of the journal Frontiers in Marine Science

Received: 01 July 2020 Accepted: 04 August 2020 Published: 04 September 2020

Citation:

Kwong LE, Henschke N, Pakhomov EA, Everett JD and Suthers IM (2020) Corrigendum: Mesozooplankton and Micronekton Active Carbon Transport in Contrasting Eddies. Front. Mar. Sci. 7:708. doi: 10.3389/fmars.2020.00708 Keywords: mesozooplankton, micronekton, southwest Pacific, diel vertical migration, active carbon transport

A Corrigendum on

Mesozooplankton and Micronekton Active Carbon Transport in Contrasting Eddies

by Kwong, L. E., Henschke, N., Pakhomov, E. A., Everett, J. D., and Suthers, I. M. (2020). Front. Mar. Sci. 6:825. doi: 10.3389/fmars.2019.00825

In the original article, there was a mistake in the legend for **Table S-3** as published. Units were not included in the original table legend. The correct legend appears below.

Table S-3. Length to weight relationships used to calculate carbon weight (CW; in mg) for micronekton captured in the MIDOC. Lengths are reported as either total length (TL) or standard length (SL) in millimeters.

Additionally, there was a mistake in **Table S-3** as published. We have re-configured some of the equations within the table to add clarity for those that wish to apply these equations with their own data. In the original table the wet weight to carbon conversions on some of the equations were improperly placed. The corrected **Table S-3** appears below.

The authors apologize for these errors and state that they do not change the scientific conclusions of the article in any way. The original article has been updated.

Copyright © 2020 Kwong, Henschke, Pakhomov, Everett and Suthers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

TABLE S-3 | Length to weight relationships used to calculate carbon weight (CW; in mg) for micronekton captured in the MIDOC.

'haotograth		
Chaetognath	Chaetognath ^{1,2}	$CW = 0.0001352^* T L^{3.1545} * 0.367$
Crustacean	Amphipod ^{1,3}	$CW = 10(2.717 \log_{10}(TL) - 1.911)*0.345$
Crustacean	Decapod ^{1,4}	$CW = 10(3.787*\log_{10}(TL) - 3.972)*0.435$
rustacean	Euphausiid ^{1,3}	$CW = 10(3.23*\log_{10}(TL) - 3.261)*0.419$
rustacean	lsopod ^{1,5,6}	$CW = 10(2.751*\log_{10}(TL) - 1.69)*0.435$
sh	Alepisauridae ⁷	$CW = 0.2^{*}(0.00389^{*}(\frac{7L}{10})^{3.12})$
sh	Alepocephalidae ⁸	$CW = 0.2^*WW$
sh	Anoplogastridae ⁷	$CW = 0.2^{*}(0.00829^{*}(SL)^{2.38})$
sh	Bathylagidae ⁷	$CW = 0.2^{*}(0.00537^{*}(\frac{TL}{10})^{2.98})$
sh	Bramidae ⁸	$CW = 0.2^*WW$
sh	Bregmacerotidae ^{7,9,10}	$CW = \hat{e}(3.143*\ln(1.312*\frac{Sl}{10}) - 4.2475)*84.7$
sh	Carangidae ⁷	$CW = 10(2.8047 \log_{10}(TL) - 4.6581) 0.2$
sh	Carapidae ⁷	$CW = 10(2.8047*\log_{10}(TL) - 4.6581)*0.2$
sh	Caristiidae ⁷	$CW = 0.2^*WW$
h	Centrolophidae ⁷	$CW = 10(2.8047*\log_{10}(TL) - 4.6581)*0.2$
sh	Ceratiidae ⁷	$CW = 0.2^{*}(0.01995^{*}(\frac{1}{10})^{3.01})$
sh	Cetomimidae ⁷	$CW = 10(2.8047*\log_{10}(TL) - 4.6581)*0.2$
sh	Chaunacidae ⁷	$CW = 10(2.8047 \log_{10}(7L) - 4.6581)^{\circ}0.2$
sh	Chiasmodontidae ⁷	$CW = 10(2.8047*\log_{10}(7L) - 4.6581)*0.2$
sh	Dalatiidae ^{7,9}	$CW = (0.00363^* (SL^* 0.1164)^{3.12})^{*84.7}$
sh	Derichthyidae ⁷	$CW = 0.2^{*}(0.00102^{*}(\frac{T_{L}}{T_{L}})^{3.06})$
h	Diretmidae ⁷	$CW = 0.2^* (0.01698^* (\frac{TL}{10})^3)$
h	Emmelichthyidae ⁷	$CW = 10(2.8047^* \log_{10}(TL) - 4.6581)^* 0.2$
h	Epigonidae ⁷	$CW = 0.2^{*}(0.0174^{*}(\frac{\pi}{10})^{2.95})$
h	Evermannellidae ⁷	$CW = 0.2^* (0.00427^* \left(\frac{T_L}{10}\right)^{3.12})$
h	Gempylidae ^{7,9}	$CW = \left(0.00363^* \left(SL^* 0.1164\right)^{3.12}\right)^* 84.7$
sh	Gigantactinidae ⁷	$CW = 0.2^{*}(0.01995^{*}(\frac{TL}{10})^{3.01})$
sh	Gonostomatidae ^{9,11}	$CW = 10(2.945*\log_{10}(SL) - 5.282)*0.053$
h	Grammicolepididae ⁷	$CW = 0.2^{*}(0.02451^{*}(\frac{TL}{10})^{2.891})$
h	Howellidae ⁹	$CW = 0.0847^* (0.01122^* (\frac{T_L}{10})^{3.04})$
h	Leptocephalus ⁹	$CW = 10^{\circ} (1.857^* \log_{10} (SL) - 1.877)^{\circ} 0.0847$
h	Linophrynidae ⁷	$CW = 10^{\circ}(2.52^{*}\log_{10}(SL) - 1.593)^{*}0.046$
h	Macroramphosidae ⁷	$CW = 0.2^* (0.0312^* \left(\frac{7L}{10}\right)^{2.268})$
sh	Melamphaidae ^{9,11}	$CW = 10(3.259 \log_{10}(SL) - 2.164) 0.039$
h	Melanocetidae ⁷	$CW = 10^{\circ}(2.52^*\log_{10}(SL) - 1.593)^{*0.046}$
h	Microstomatidae ⁷	$CW = 0.2^{*}(0.00537^{*}(\frac{\pi}{10})^{2.98})$
h	Myctophidae ^{9,11}	$CW = 10(2.902*\log_{10}(SL) - 1.797)*0.092$
sh	Nemichthyidae ⁷	$CW = 10(1.857 \log_{10}(SL) - 1.877) \times 0.0847$
sh	Nomeidae ^{7,9}	$CW = 84.7^{*}(0.0122^{*}(1.186^{*}\frac{SL}{10})^{2.949})$
sh	Notosudidae ⁷	$CW = 0.2^{*}(0.00295^{*}(\frac{T_{1}}{10})^{3.18})^{10}$
sh	Opisthoproctidae ^{8,9}	$CW = 10(2.16*\log_{10}(SL) - 0.025)*0.0525$
sh	Photostylus argenteus ¹³	$CW = (0.0009^{\circ}SL^{3.2857})^{\circ}0.0847$
sh	Paralepididae ^{7,9,10}	$CW = \hat{e}(ln (0.000002) + 2.824*ln(SL*1.0482))*84.7$
sh	Phosichthyidae ^{9,11}	$CW = 10(4.036*\log_{10}(SL) - 3.418)*0.0847$
sh	Pleuronectiformes ⁷	$CW = 0.2^* (0.01047^* (\frac{1}{10})^3)$
sh	Regalecidae ⁷	$CW = 0.2^{*}(0.0104^{\circ}(\frac{T}{10})^{3.06})$ $CW = 0.2^{*}(0.00102^{\circ}(\frac{T}{10})^{3.06})$
sh	Serrivomeridae ^{13,14,15}	$CW = 450.9^{\circ}(0.000001^{\circ}(\frac{51}{10})^{-4.45})$
sh	Setarchidae ⁷	$CW = 430.9 (0.00000 (\frac{1}{10})^{3.04})$ $CW = 0.2^* (0.01^* (\frac{1}{10})^{3.04})$

(Continued)

TABLE S-3 | Continued

Group	Species	Regression
Fish	Sternoptychidae ^{9,11}	$CW = 10(2.95^* \log_{10}(SL) - 1.52)^* 0.06$
Fish	Sternoptyx spp. 9,11	$CW = 10(2.877*\log_{10}(SL) - 1.08)*0.056$
Fish	Stomiidae ^{9,11}	$CW = 10(2.52*\log_{10}(SL) - 1.593)*0.046$
Fish	Tetraodontidae ⁷	$CW = 0.2^{*}(0.01^{*}(\frac{TL}{10})^{3.04})$
Fish	Trachipteridae ⁷	$CW = 0.2^{*}(0.00112^{*}(\frac{TL}{10})^{3.06})$
Fish	Trichiuridae ^{8,9}	$CW = 10(3.23^* \log_{10}(\frac{SL}{10}) - 2.189)^*84.7$
Fish	Unidentified Fish ⁷	$CW = 10(2.8047*\log_{10}(TL) - 4.6581)*0.2$
Fish	Zeniontidae ⁷	$CW = 0.2^{*}(0.0396^{*}(\frac{7L}{10})^{2.609})$
Jellyfish	Jellyfish ^{3,16,17}	$CW = 10(2.767 \log_{10}(TL) - 3.643)$
Mollusk	Cephalopod ^{12,14}	$CW = 10(2.611*\log_{10}(TL) - 3.5)*55.44$
Mollusk	Heterpod ¹⁸	$CW = (0.0888^* T L^{2.161})^* 0.028$
Mollusk	Mollusk ^{1,3}	$CW = 10(1.646*\log_{10}(TL) - 0.915)*0.289$
Tunicate	Pyrosome ¹⁹	$CW = (0.0013^*TL^2 + 0.0151^*TL)^*39.2$
Polychaete	Polychaete ^{1,3,20}	$CW = 10(1.798 \log_{10}(TL) - 2.17) 0.37$
References		
¹ Kiørboe (2013)		¹¹ Davison (2011)
² Feigenbaum (1979)		¹² Lindsay (2003)
³ Mizdalski (1988)		¹³ Pakhomov (Unpublished data)
⁴ Podeswa (2012)		¹⁴ Villanueva and Guerra, (1991)
⁵ Strong and Dabron (1979)		¹⁵ Alpoim et al., (2002)
⁶ Defeo and Martinez (2003)		¹⁶ Haddad and Nogueira (2006)
⁷ Froese et al., (2014)		¹⁷ Uye and Shimauchi (2005)
⁸ Individual measurements in lab		¹⁸ Davis and Wiebe (1985)
⁹ Childress et al., (1990)		¹⁹ Henschke et al. (2019)
¹⁰ Bernardes and Rossi-Wongtschowski (2000)		²⁰ Uye (1982)

Lengths are reported as either total length (TL) or standard length (SL) in millimeters.