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Reversing the decline of coastal marine ecosystems will rely extensively on ecological
restoration. This will in turn rely on ensuring adequate supply and survival of
propagules — for the main habitat-forming taxa of coastal marine ecosystems these
are mainly fruits, seeds, viviparous seedlings, zoospores or larvae. The likelihood
of propagule survival — and so restoration success — depends on species- and
context-specific knowledge to guide choices about appropriate methods to use. Here,
we briefly review life-histories of the main habitat-forming taxa of six coastal marine
ecosystems: mangrove forests, tidal marshes, seagrass meadows, kelp forests, coral
reefs and bivalve reefs. Restoration of several of these ecosystems has long harnessed
the unique properties of propagules, sometimes because they are simple to use (for
example, planting propagules of some mangroves), and sometimes because we can
draw on knowledge gained from other applications (for example using knowledge of
oyster culture to restore bivalve reefs). For other ecosystems, like seagrass meadows,
kelp forests and coral reefs, propagules have not yet been widely used, but there is
compelling evidence that they can be. Most restoration efforts have used relatively
simple techniques, such as manual collection and direct planting or seeding. Some
approaches use more complex techniques which include a stage in which propagules
are reared in nurseries or aquaria to a size or age at which they are viable, when they
are then planted or released at the site to be restored. Other approaches use minimal
intervention, and focus instead on providing the conditions that will promote growth from
naturally dispersed propagules (such as restoring hydrological conditions to facilitate
mangrove recruitment). Future approaches could incorporate knowledge applied from
other fields, such as genetics and agriculture, and harness the possibilities provided
by technology. Understanding the importance of propagule quality will likely also yield
insights, as will effective use of models to help refine restoration methods for testing.
Deeper partnerships between practitioners and researchers will help test and develop
better methods so that we can learn from each other and strive to improve. Propagules
offer multiple promising avenues to expand coastal marine restoration efforts and help
achieve global ambitions.
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BACKGROUND

The health and extent of coastal marine ecosystems dominated
by habitat-forming primary producers (mangroves, tidal marsh
plants, seagrasses, kelps) and sessile benthic invertebrates (corals,
bivalves) has declined substantially on almost all coastlines of the
world (Waycott et al., 2009; Ermgassen et al., 2012; Friess et al.,
2019; Sully et al., 2019; Wernberg et al., 2019). Although actions
to remove or ameliorate causes can arrest this decline, reversing it
will rely extensively on ecological restoration. Doing so will also
help resolve some of the most intransigent problems that humans
face, such as food security, climate change, and susceptibility to
natural disasters (Mcleod et al., 2011; Ermgassen et al., 2012;
Spalding et al., 2014).

Ecological restoration is needed because individuals of
the habitat-forming species often do not manage to arrive
or grow in degraded ecosystems, even after the causes of
degradation are removed. Such restoration therefore relies on
overcoming recruitment limitation — that is, when insufficient
new individuals are added to the population through natural
processes, either because of low supply or high mortality
immediately after settlement (Caley et al., 1996). This in turn
relies on ensuring adequate supply and survival of propagules.
In some situations, propagule supply might be adequate but
recruitment fails because the ecosystem is hostile to settlement,
or immediately following settlement. For example, colonization
of hard surfaces by algae can prevent successful recruitment of
kelps and corals, making recovery difficult after the ecosystem
is degradaded (hysteresis: Mumby et al., 2007; Filbee-Dexter and
Wernberg, 2018).

The term propagule refers to structures that act to propagate
an organism to the next stage in its life-cycle, and can be either
sexually produced structures (viviparous or oviparous) such as
fruits, seeds and larvae, or clonally produced structures (Table 1
and Figure 1). We consider the dispersal phase as a propagule,
regardless of the structure. In some taxa, such as seagrasses, kelps
and corals, adult plants or fragments can also be dispersed and we
also briefly cover these. Propagules are morphologically distinct
from their parents, and in marine organisms they typically have
a water-borne dispersal phase; marsh plants also rely on wind-
borne dispersal. Propagules can be viable for a limited period after
release, from days to months (e.g., larvae of invertebrates, fruits
and seeds of plants), or can be dormant until the right conditions
are present (e.g., seeds of some seagrasses and mangroves).

Once settled, survival of individuals to a stage when they
in turn can reproduce depends on the presence of conditions
necessary for growth, such as food or light, and the absence
of negative influences that cause mortality, such as predators,
competitors, or physiological stressors (e.g., Doropoulos et al.,
2016). Survival and growth can also sometimes be enhanced
by the presence of conspecifics, or by symbiotic or mutualistic
interactions (Valdez et al., 2020).

Influences on propagule supply and survival usually
vary through space and time, which has implications
for when, where and how propagules can be used in
restoration. The likelihood of propagule survival — and
subsequent restoration success — depends on species- and TA
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FIGURE 1 | Life history of the main habitat-forming taxa for each of six coastal ecosystem types: (A) mangrove, (B) tidal marsh, (C) seagrass, (D) kelp, (E) coral reef,
(F) bivalve reef. Text highlighted in yellow indicates life stages considered as propagules in this review.

context-specific knowledge to guide choices about appropriate
methods to use. Understanding whether original causes
of decline have been, or can be, sufficiently mitigated
is a critical starting point (McDonald et al., 2016).
Knowledge about how different types of propagules respond
to stressors can help inform this understanding (e.g.,
Campbell, 2016).

Here, we briefly review life-histories of the main habitat-
forming taxa underpinning six coastal marine ecosystems:
mangrove forests, tidal marshes, seagrass meadows, kelp forests,
coral reefs and bivalve reefs. Other coastal ecosystems are also
generated by habitat-forming organisms, such as polychaetes,

sponges, bryozoans and calcifying algae, and the extent and
condition of these are also declining (e.g., Nelson, 2009; Wood
et al., 2012; Wulff, 2012; Bruschetti, 2019); we do not review
them here, but some of the insights from the six ecosystem
we review might also be applicable to those ecosystems. For
each ecosystem, we assess the approaches typically used and
the significance of propagules for restoration. We also assess
some of the major challenges and key science questions, as
well as highlight some opportunities and innovations that
might help practitioners restore coastal marine ecosystems at
rates and extents necessary to achieve a substantial reversal of
what we have lost.
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CURRENT STATUS

Mangrove Forests
Mangroves are a phylogenetically diverse group of species
comprising mostly woody trees and shrubs, but also including
some palms and ferns (Duke, 1992). They exhibit a variety
of reproductive strategies, although one characteristic that all
mangroves share is that their propagules float (at least for a day
or two), and so can be dispersed by currents. Some taxa exhibit
viviparity, in which an embryo emerges directly from the fruit
and develops into a seedling while it is still attached to the parent
plant, but many taxa reproduce via fruits with one or more seeds
(Table 1 and Figure 1A; Tomlinson, 2016). Mangroves typically
rely on propagules for new growth (Kathiresan and Bingham,
2001), a characteristic which indicates that the use of propagules
in restoration should yield good results. However, mortality rates
of propagules can be high, especially for species with small
propagules which are susceptible to predators (Rabinowitz, 1978;
Clarke and Kerrigan, 2002).

Mangrove restoration (and afforestation) efforts have long
harnessed the potential of propagules, through methods ranging
from manual collection and cultivation in nurseries to restoring
hydrological regimes and then simply relying on natural
dispersal. Indeed, most restoration efforts use propagules, not
established plants (such as saplings). Many species have been used
in mangrove restoration, but the ease of collecting and planting
certain species (such as the viviparous seedlings of Rhizophora)
has meant that these have been used more frequently, so the
composition of restored mangrove forests is often different to
those of undisturbed forests (e.g., Hai et al., 2020). The species
chosen often depend on the goals of mangrove restoration efforts;
efforts directed at afforestation of newly accreted mudflats, and at
planting mangroves as part of silviculture – neither of which are
typically considered as restoration – are often dominated by one
or just a few species.

Methods of collecting and preparing propagules vary from
simple and direct, to more complex and time-consuming. In
perhaps the simplest application, seedlings of viviparous species,
especially Rhizophora, are collected from the forest floor or water
surface, or harvested from adult plants (Chowdhury et al., 2019),
and simply inserted directly into the sediment (e.g., Chan et al.,
1988). Fruits are often collected in a similar way, the seeds
extracted, and sown onto the area to be rehabilitated or planted
in nurseries (e.g., Saenger and Siddiqi, 1993). Nursery techniques
range from raising propagules in designated nursery beds to
growing them with more intensive care in individual units,
such as pots or bags (Figure 2a). In each of these approaches
propagules are typically raised for months or longer, until they
are saplings a meter or more tall (Chowdhury et al., 2019), and
they are then transplanted (if grown in a nursery bed), or planted
(if grown in pots or bags).

Other approaches do not employ planting, but instead
focus on restoring the environmental conditions — especially
hydrology— that allow mangroves to recruit naturally. Such
methods rely on recruitment from propagules transported by
currents, and so harness the dispersal characteristics of mangrove

propagules. However, mangrove propagules do not appear to
be dispersed passively, but are able to adjust both buoyancy
and root initiation (Wang et al., 2019), traits which probably
influence how they colonize restored areas. Methods restoring
hydrological conditions have yielded good results in some places,
with species composition of mangroves approaching that of
undisturbed mangrove forests (e.g., Cameron et al., 2018).

Rates of survival of mangrove propagules during restoration
is highly variable. Robust experimental tests of methods are
still few, and although there are multiple guides for mangrove
restoration (e.g., Primavera et al., 2012; Lewis and Brown, 2014),
there is still much room for researchers and practitioners to work
together to develop reliable methods. Given rates of restoration
still do not keep pace with the rates of habitat degradation and
loss, restoration may need to harness innovations such as tissue
culture and propagation of rare or recalcitrant species (Eganathan
et al., 2000), or use of remotely operated vehicles to disperse (or
even plant) propagules.

Sea level rise will also pose a challenge to mangrove restoration
in some places, as some mangroves become inundated more
frequently, and for longer (Lovelock et al., 2015) or temperature
thresholds at equatorward range limits are exceeded. More
proactive efforts to establish mangroves in places where they
do not currently exist, such as the landward edge of forests,
might also be needed. Use of propagules will likely be central
to these efforts.

Tidal Marshes
Tidal marshes (sometimes also known as saltmarshes) occupy the
upper intertidal zone of many tropical, temperate and even polar
coasts (Allen and Pye, 1992). These ecosystems comprise stands
of salt-tolerant plants (halophytes) with a wide phylogenetic
diversity that includes herbs, grasses, sedges and rushes, and small
shrubs (Table 1). A key characteristic is that they are regularly
flooded by tides (Adam, 1990).

Tidal marsh plants have a range of different life histories and
dispersal mechanisms (Table 1 and Figure 1B). Some species,
such as those from the genus Spartina, can survive and expand
through rhizome elongation (Pennings and Callaway, 2000), but
most species rely on sexual reproduction and recruitment from
seeds (Richards et al., 2004). Succulent taxa produce flowers
that are pollinated by insects to produce seed-bearing fruit
throughout the year. Once released, these fruits float on the
water, and can be dispersed over distances of up to thousands
of kilometers (Huiskes et al., 1995). Grasses, rushes and sedges
tend to have hollow stems, sheath-forming leaves and wind-
pollinated flowers arranged in spikelets. Their seeds are also
widely dispersed by tidal currents, as well as by wind (Soons,
2006), small herbivores (Chang et al., 2005) or on the feet and
feathers of waterfowl (Viviansmith and Stiles, 1994).

Restoration of tidal marshes tends to involve reintroducing
tidal flow, transplanting large tussocks (or “sods”) cut from
adjacent saltmarsh and the direct planting of nursery-reared
seedlings (germinated from collected seeds). The earliest
large-scale restoration efforts relied on a combination of planting
and/or transplantation of seedlings or tussocks (Spurgeon, 1998;
Milano, 1999). Subsequent large-scale (>2,000 ha) restoration
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FIGURE 2 | Examples of how propagules are prepared for restoration: (a) Viviparous seedlings of Rhizophora grown in plastic pots prior to planting; (b) collection
and (c) preparation in tanks of Posidonia australis fruit; (d) flat oyster (Ostrea angasi) spat attached to an empty shell for deployment; (e,f) collection of coral spawn
using an oil boom; (g) young sporophytes of kelp (Saccharina latissima) seeded onto small rocks (“green gravel”) in the laboratory and (h) sporophytes outplanted to
a rocky reef. Photo credits: (a) M. Vanderklift, (b) J. Statton, (c) K. Dawson, (d) Victorian Shellfish Hatchery, (e,f) Christopher Doropoulos, (g) S. Fredriksen/K.
Filbee-Dexter, (h) S. Fredriksen. Images d and e reused under a Creative Commons CC-BY license from Doropoulos et al. (2019b).

of marshes by planting seedlings propagated from seeds has
subsequently been achieved (Adams and Benosky, 1998). In
contrast, few restoration efforts have involved direct seeding,
with the best examples having been achieved for Spartina

alterniflora with seeds being distributed by boats and even aircraft
(Broome et al., 1988; Benedict et al., 2012). These studies found
that seed should be harvested as near as possible to maturity,
or just prior to splitting, with harvesting done by hand or using
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machinery (Broome et al., 1974). Harvested seed can be stored
for months and concentrated using a thresher designed for small
grain (Broome et al., 1988). More recently, direct seeding has
been used in conjunction with other planting methods for several
projects in Australia (Department of Environment and Climate
Change, 2008). Direct seeding in this way allows a larger area to
be restored (Knutson, 1977).

Few quantitative studies have contrasted the outcomes
of direct seeding with other approaches (planting and
transplanting). Broome et al. (1988) reported similar above-
ground biomass accumulation after two years between a location
that was seeded by hand and a location that was planted with
sprigs at a similar density at the same time. Germination success
was improved by preparing the substrate through weed removal
(Broome et al., 1988), burning and mechanical tillage (US
Environmental Protection Agency, 1979) and by investing in
activities such as fencing to exclude animals. Although there
have been several recent studies comparing the survival rates of
corm shoots and rhizomes with larger transplantation units such
as tussocks (Ge et al., 2019; Zhang et al., 2020), these do not fit
our definition of propagule. Seed dispersal distances for some
tidal marsh species can be limited (e.g., only a few meters for
Spartina), and lateral expansion of clonal fragments is restricted
to existing marsh, so manual seeding might help to restore
isolated areas where naturally dispersed seeds and clonal growth
would not otherwise reach.

While seeding is yet to be widely adopted in tidal marsh
restoration projects, the ability to restore large areas (tens of
hectares) has been demonstrated. Agricultural equipment can be
used to rapidly and efficiently gather seed. Industrial threshers
can concentrate seed, making the process of storage, transport
and seeding more efficient. Collected seed can be dried, fed
through an agricultural combine to remove large stems and
leaves, and stored at an appropriate temperature (typically below
4◦C). Another promising option is the direct application of seed
using machinery. Possible future solutions to restoring large areas
of tidal marsh could involve aerial methods being developed for
terrestrial systems that employ drones, automation and digital
intelligence (Sturmer, 2017).

Seagrass Meadows
There are four lineages of seagrasses (Les et al., 1997) containing
relatively few species (all in a single order of monocotyledon).
They occupy shallow environments on all continents except
Antarctica (Short et al., 2007): their distribution also extends
to the High Seas, such as on the Mascarene Plateau. Sexually
and asexually produced propagules are important for dispersal
(Table 1 and Figure 1C). Species from the genera Amphibolis
and Thalassodendron produce viviparous seedlings (Kuo and
den Hartog, 2006). Most others produce seeds, although their
characteristics vary widely (Kendrick et al., 2012); some species
produce seeds or fruit that are positively buoyant and have
potential for long-distance dispersal (e.g., Enhalus, Posidonia,
and Thalassia). Others produce seeds that are negatively buoyant
with limited dispersal potential (e.g., Zostera and Halophila)
(Lacap et al., 2002; Kendrick et al., 2012), although long-distance
dispersal can still occur via transport of detached fragments

carrying spathes (modified leaves which enclose the flower
cluster; e.g., Zostera spp., Harwell and Orth, 2002). Nearly all
species are also capable of asexual reproduction through rhizome
elongation (Kendrick et al., 2017) or the production of asexual
fragments (e.g., rhizome fragments, pseudoviviparous plantlets)
(Ballesteros et al., 2005; Sinclair et al., 2016). Sexually derived
propagules of some species lack the ability to be dormant (e.g.,
Amphibolis and Posidonia), while others can remain dormant for
long periods (Inglis, 2000; Orth et al., 2000). These differences
in biology and ecology of propagules strongly influence patterns
of recruitment and dispersal, and the way we can use them
effectively in restoration.

Seagrass restoration has primarily involved using asexual
material (e.g., cuttings, rhizome fragments or cores) collected
from donor meadows. Relatively few seagrass restoration efforts
have used sexually derived propagules (Statton et al., 2012;
van Katwijk et al., 2016). The infrequent use of sexually
derived propagules is probably in part due to the temporal
and spatial variability of seed availability (Orth et al., 2006),
as well as the perception that survival rates of seeds and
seedlings are poor (Fonseca, 1998; Kirkman, 1999). Although
survival rates are often low, recent reviews of seed-based research
highlight that this is probably because of limited knowledge
about availability and collection of quality seed, skills in seed
handling and delivery, and suitability of restoration sites (Orth
et al., 2000; Statton et al., 2012; van Katwijk et al., 2016;
Kendrick et al., 2017).

Methods for collecting and preparing propagules vary
according to their characteristics and typically harness their
natural dispersal mechanisms. For example, for viviparous taxa
such as Amphibolis, recently detached seedlings can be collected
by placing fibrous and weighted material, such as sand-filled
hessian bags, which the seedlings’ grappling structures attach to as
they drift past. In this way thousands of seedlings can be captured
in less than a square meter (Tanner, 2015). Typically, sandbags are
deployed in locations where restoration is required, and are not
collected and re-deployed elsewhere.

For species which have seeds contained within spathes (e.g.,
Zostera spp.), these can be harvested using divers or mechanical
harvesters (Orth et al., 2012). In Chesapeake Bay (United States)
several million Zostera marina seeds have been collected each
year during the peak reproductive season (May–June) since the
early 2000’s using a mechanical harvester (Orth et al., 2012). Seeds
are extracted from spathes after harvesting, but the methods
of extraction and delivery vary. For example, some methods
involve keeping the spathes within large holding tanks where
they eventually split open and release the (negatively buoyant)
seeds, which are then collected from the tank bottom (Orth et al.,
2012). The seeds are then placed in a flume to determine seed
quality based on settling velocity, after which they are scattered
by hand from boats over recipient habitats (Orth et al., 2012).
Alternatively, using buoys anchored in place, Z. marina spathes
can be suspended over restoration sites in mesh bags; the spathes
release and deliver the seeds to the seafloor (Pickerell et al., 2005).

For species that release seeds from fruits that float (Posidonia
spp., Halophila spp.), fruits can be detached from the parent
plant by shaking; they then float to the surface where they are
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collected in nets (Statton et al., 2013, 2017; Figure 2b). Seeds
are then extracted from the fruit via vigorous aeration and water
movement from pumps at stable temperatures (25◦C) within
tanks (Figure 2c). The negatively buoyant seeds are then collected
from the tank bottom and scattered by-hand over recipient
habitats. Other methods have been trialed with limited success,
including direct planting of seeds by hand, injecting seeds using
machinery, or planting and deploying within hessian sandbags.

Restoration using seagrass propagules has so far demonstrated
low and variable outcomes, with more than 90% of propagules
failing to survive (Orth et al., 2003, 2007; Tanner, 2015).
For propagules to be successfully incorporated within seagrass
restoration programs, there will need to be a reduction in
propagule wastage (which includes mortality, but also failure
to germinate or dispersal away from the restoration site), to
facilitate higher rates of germination and survival. A major
barrier to effective use of seeds in seagrass restoration is
our knowledge about seed quality. Seed quality encompasses
aspects such as viability, size (which can confer energy reserves
available for initial growth and establishment), damage to the
seed coat or seedling, bacterial infection, genetic diversity and
ecotype (which may influence a seeds ability to respond to the
restoration environment).

Nevertheless, the diversity of propagules and species used
in restoration is increasing and our understanding of seagrass
seed biology and ecology is advancing (Moore et al., 1993; Orth
et al., 2000; Tanner, 2015; Statton et al., 2017; Strydom et al.,
2017). The practical use of this knowledge to enhance restoration
success is also improving, albeit slowly. To increase the chances of
propagule establishment, we need better understanding about the
steps that precede seed delivery to restoration sites, including seed
quality (e.g., see Orth et al., 2000), as well as the environmental
and social barriers that influence survival and growth.

Kelp Forests
Kelp forests are dominated by large habitat-forming seaweeds
(“kelp”) from the orders Laminariales and Fucales (Wernberg
and Filbee-Dexter, 2019). Laminarian and fucalean kelp have
distinct life histories (Table 1 and Figure 1D). Fucalean kelp
have direct development, in which eggs are fertilized on the
parent plant, which subsequently releases a relatively large
(∼0.1 mm) zygote; this generally disperses a short distance from
the parent before settling (centimeters to meters; Kendrick and
Walker, 1991; Gaylord et al., 2002). In contrast, laminarian
kelp have a more complex life cycle which alternates between
a microscopic gametophyte and a macroscopic sporophyte. The
macroscopic sporophyte releases zoospores which can disperse
across distances that range from a few meters to kilometers from
the parent (Reed et al., 1992; Gaylord et al., 2002). Once settled,
the zoospores grow into male and female gametophytes, which
must settle within a millimeter from one another for successful
fertilization (Reed, 1990). Many species of kelp have vesicles,
allowing them to float on the surface; floating fertile adults can
increase dispersal distances by several orders of magnitude (e.g.,
Hernández-Carmona et al., 2006). Both laminarian and fucalean
kelps are hyper fecund. For example, a single Ecklonia maxima
kelp sporophyte can release more than 30 billion zoospores per

year (Joska and Bolton, 1987) and even a small individual of
Sargassum muticum can release around half a million zygotes
(Norton and Deysher, 1989).

High fecundity, efficient dispersal and fast growth are all traits
that should enable kelps to recolonize extensive areas from a
few reproducing parents if suitable conditions exist for survival
and growth. There have been multiple efforts to regrow lost or
declining kelp forests (reviewed in Layton et al., 2018; Bekkby
et al., 2020; Fredriksen et al., 2020), typically through either
assisted recovery, in which the focus is on restoring conditions
favorable for survival and growth, or active restoration in which
kelps are reintroduced to target areas.

Protection from urchin predators (through restrictions on
fishing or hunting), direct removal of kelp predators (such
as sea urchins) and sewage and catchment management
have allowed kelp forests to regrow in some places after
subsequent improvements in water quality (Foster and
Schiel, 2010). However, hysteresis associated with transition
of kelp forests to turf seascapes during eutrophication
means that this is not always possible (reviewed in Filbee-
Dexter and Wernberg, 2018), and so assisted recovery
is often needed. Assisted recovery can also include
afforestation by introducing kelps to places they did not
grow previously, including artificial reefs, to replace kelp forest
substrate lost to urban development (Terawaki et al., 2001;
Deysher et al., 2002).

Kelp restoration typically involves transplanting adult or sub-
adult kelp from donor wild or cultured populations, attaching
them either directly to the reef or to artificial structures
(e.g., Wilson and North, 1983; Hernández-Carmona et al.,
2000; Falace et al., 2006; Haraguchi et al., 2009; Campbell
et al., 2014). Kelp grow on hard surfaces and are not easily
attached, so sometimes this requires labor-intensive drilling or
installation of attachment surfaces (reviewed in Fredriksen et al.,
2020; Layton et al., 2020). Propagules (spores, gametophytes,
zygotes or germlings) have not been widely used. While it
is relatively easy to extract kelp zoospores and zygotes in
the laboratory (e.g., Alsuwaiyan et al., 2019), they are very
small (Table 1), highly sensitive to environmental conditions
(including desiccation) and cannot easily be planted or scattered.
These traits make it difficult to collect, transport, store and grow
kelp propagules.

Indirect introduction of propagules to surmount the problem
of recruitment limitation has been done by translocating fertile
reproductive tissues (sporangia and receptacles: Hernández-
Carmona et al., 2000; Falace et al., 2006; Gorman and
Connell, 2009; Haraguchi et al., 2009; Verdura et al., 2018).
This approach fails where established algae such as turfs
prevent the settlement of propagules (e.g., Filbee-Dexter and
Wernberg, 2018). Consequently, several studies have explored
seeding of propagules onto natural or artificial substrates
in tanks, which were subsequently out-planted with some
success (Falace et al., 2018; Fredriksen et al., 2020; Figures 2g,h).
Other studies have planted cultured or wild-collected small
juveniles, but they tend to succumb to high mortality or yield
limited long-term success (Hernández-Carmona et al., 2000;
Carney et al., 2005).
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Coral Reefs
Scleractinian corals comprise approximately 2,400 extant
species, all in a single order (Scleractinia: Veron, 2013). They
encompass a wide variety of morphologies (Madin et al., 2016),
which can vary in response to the surrounding environment,
such as the physical forces exerted by waves (Todd, 2008).
Corals can fragment, and some of those fragments are able
to attach and develop into new colonies through clonal
growth; this is a common strategy for short-distance asexual
dispersal and colonization, especially by branching corals
(Highsmith, 1982).

Corals’ ability to regrow from fragments has been harnessed
for restoration. Transplanting colonies and fragments was tested
as early as 1971 in Hawaii (Maragos, 1974) and has been
used in more than 80% of coral restoration projects (Boström-
Einarsson et al., 2020). The approach is simple and fragments
often have high survival rates, yielding rapid increases in
the percentage cover of living coral (e.g., Ladd et al., 2019;
Williams et al., 2019). It does, however, have limitations: it
is labor intensive, relies on access to sufficiently abundant
donor colonies or fragments, and is generally limited to
branching corals (Edwards and Clark, 1999; Edwards, 2010;
Ladd et al., 2019). Some studies have therefore focused on
generating more rapid attachment methods (e.g., Suggett et al.,
2020) or on growing corals in nurseries to minimize reliance
on wild colonies (e.g., Shafir et al., 2006). Recent “micro-
fragmenting” techniques, in which small fragments (<1 cm2)
of the same species and genotype are placed close together
to more rapidly reach larger sizes by fusing with neighboring
fragments have also been developed for slow-growing, massive
corals (Page and Vaughan, 2014).

All coral taxa use sexual reproduction to produce larvae
(Table 1). Corals are broadly categorized according to two
modes of sexual reproduction – brooders and spawners – each
with particular life-history strategies (Table 1 and Figure 1e).
Brooding corals reach maturity at small colony sizes (∼2 cm2),
develop their larvae within the parent colony, and release
large, competent (i.e., able to undergo metamorphosis) larvae
throughout the year. Released larvae are able to attach and
metamorphose immediately, so dispersal distances from the
parent colony can be short (<1 m). In contrast, spawning
corals release orders of magnitude more eggs and sperm into
the water column, but only in one or two synchronous mass
spawning events each year; the eggs are then fertilized and
develop into larvae over days to weeks, during which time they
can disperse up to hundreds of kilometers. Thus, spawning corals
offer opportunities for mass production of larvae for restoration,
while brooding corals offer opportunities for transplanting
reproductive colonies.

Despite the potential to transplant brooding corals to enhance
local propagule supply, this approach has received little attention,
and where it has been conducted subsequent increases in coral
abundance have been small or absent (Maida et al., 1995; Ferse
et al., 2013; Montoya-Maya et al., 2016). Although the evidence
remains equivocal, there is potential to transplant colonies of
brooding corals to act as a local source of propagules. However,
the ability to use this method to restore large areas is likely to be

limited for similar reasons as transplanting coral fragments — it
is labor intensive and applicable to few taxa.

Most coral taxa (63%) are hermaphroditic spawners (Baird
et al., 2009). Restoration methods that harness their immense
supply of propagules has been conceptualized for decades
(Rinkevich, 1995; Figures 2e,f) but is challenging in practice
because they release gametes only once or twice a year (Babcock
et al., 1986), the formation of aggregations of spawn depends
on local weather and currents (Oliver and Willis, 1987), and
mortality of coral spawn is high (Pollock et al., 2017; Doropoulos
et al., 2019b). In some experiments that have sought to overcome
these constraints, spawn were collected and reared to larvae
in situ in floating ponds; larvae were then pumped directly
from these ponds into enclosures attached to the reef or settled
onto biologically conditioned artificial substrata such as tiles
or aragonite plugs, which are placed onto reefs or back into
nurseries for continual production (Heyward et al., 2002; Omori
and Iwao, 2014; Omori, 2019). Other experiments have variously
involved bringing reproductive colonies to a land-based facilities
for gamete collection and fertilization, and either settling larvae
onto artificial substrates that are then placed onto reefs (Guest
et al., 2014; Edwards et al., 2015; Baria-Rodriguez et al., 2019),
or directly releasing larvae into mesh enclosures placed on the
reefs (de la Cruz and Harrison, 2017). In one experiment, larvae
released directly into mesh enclosures grew into reproductive
adult colonies (de la Cruz and Harrison, 2017). In others,
increased rates of larval settlement were recorded on settlement
tiles in places where reared larvae were released, but there were
no subsequent differences in juvenile coral abundance compared
to control areas (Edwards et al., 2015).

Some restoration efforts have focused on providing the
substrate that coral larvae settle on. In one type of application,
low voltage electrical currents are used to encourage precipitation
of minerals (aragonite, brucite), which are then colonized by
encrusting coralline algae (e.g., Goreau and Prong, 2017). These
algae in turn exude chemical compounds that are used by larvae
as settlement cues: however, not all coralline algae exude these
chemicals, which might explain why this approach can yield
either positive or negative effects on the settlement, growth
and survival of coral propagules (e.g., Chavanich et al., 2014;
Goreau, 2014).

Demographic modeling suggests that restoration of up to 105

adult colonies is feasible by harvesting wild coral-spawn slicks
and developing these in large vessels, with minimal impact to wild
populations (Doropoulos et al., 2019a). An initial pilot study on
the Great Barrier Reef (Australia) yielded 400 times more larvae
than predicted by a model (Doropoulos et al., 2019b), due to
much greater densities of gametes found in coral spawn-slicks
than previously recorded in the literature, and higher survival
rates of gametes than anticipated.

Bivalve Reefs
Reefs built by and from bivalves such as oysters and mussels
(commonly referred to as “shellfish reefs”) were once common
along sheltered coasts around the world (Harding and Mann,
2001), but they now occupy only a small proportion of their
historical distribution (Beck et al., 2011). These reefs can
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occur in subtidal and intertidal habitats, and can comprise
one or multiple species (for instance Ostrea angasi often co-
occurs with Mytilus galloprovincialis or Pinna bicolor, forming
“Angasi reefs” in southern Australia). There are more than
9,000 extant species of bivalves, but most reefs are formed by
species from two families, Mytilidae (mussels) and Ostreidae
(oysters). Most species of bivalves have separate sexes (i.e., they
are dioecious) and many change sex during their lifetime (i.e.,
they are sequential hermaphrodites). Gametes (eggs and sperm)
are released into the surrounding water where fertilization
occurs, and planktonic veliger larvae are formed (Table 1 and
Figure 1F). These larvae remain planktonic for a period that
ranges from days to weeks, until they perceive an external cue
(such as chemicals exuded by biofilm, Toupoint et al., 2012;
or nutrient availability, Toupoint et al., 2012; Leal et al., 2018),
upon which they settle onto the bottom and metamorphose.
This bottom-dwelling early stage is known as “spat.” Oyster spat
(<25 mm shell height; Powers et al., 2009) grow attached to
one another, forming complex reefs after multiple generations
(Hargis and Haven, 1999). Mussel spat can change position
by manipulating the byssal threads they use to attach and by
secreting mucus threads (“byssus-drifting;” Sigurdsson et al.,
1976). Such migrations after settlement can move them away
from the places they originally settled.

Restoration of bivalve reefs has harnessed the long history
of bivalve aquaculture. Two broad strategies are typically
employed: adding adults (“broodstock”), and adding wild-
harvested or hatchery-reared spat. A combination of both
strategies is often used, often following addition of stones
and shells (known as “cultch”) as an initial substrate (Coen
and Luckenbach, 2000). Densities of juvenile spat used in
restoration projects range from 350,000 per hectare (e.g.,
Windara Reef, South Australia; Robertshaw et al., 2019) to
5 million per hectare (e.g., Chesapeake Bay, United States;
Allen et al., 2013). Hatcheries usually produce larvae from
adults in tanks, and keep them in large tanks with water
and cultch to allow the larvae to attach (“spat-on-shell;”
Figure 2d). Some hatcheries may produce unattached larvae,
which are easier to transport than spat-on-shell because
larvae occupy a smaller volume (Westby et al., 2019), and
larvae are “seeded” into suitable habitats (Gillies et al.,
2017). Transporting unset larvae can yield high mortality
rates (Westby et al., 2019). Restoration of bivalve reefs can
also take advantage of other innovations developed through
bivalve aquaculture, potentially including selective breeding
(de Melo et al., 2016).

Encouraging recruitment of natural spat by placing cultch in
a place with a high abundance of larvae can be an alternative:
especially because mortality of hatchery-produced spat can be
high (30–50% over 6 months post-deployment, and up to 85%
during the first year: Gillies et al., 2017; Westby et al., 2019). In
one study, 7 out of 11 (64%) bivalve reefs restored with cultch,
relying only on natural recruitment, were successful (Powers
et al., 2009); recruitment in the first year reached 30–40 spat
m−2, particularly in restored reefs located nearby tidal marshes.
Facilitation of Ostrea angasi recruitment by canopy-forming
kelp Ecklonia radiata in southern Australia also suggests that

harnessing knowledge about linkages between habitats in design
of shellfish restoration projects might also improve outcomes
(Shelamoff et al., 2019).

Bivalve larvae can disperse up to hundreds of kilometers
(Petuha et al., 2006; Table 1). Water currents and substrate
(such as whether the seafloor is sediment or rock) can strongly
influence larval retention and recruitment (Breitburg et al., 2000;
Mann, 2000; Brumbaugh et al., 2006). Restoration using cultch
aims to harness this by providing substrate to encourage larvae
to settle. Knowledge of currents and larval dispersal will likely
facilitate selection of sites where larvae are likely to be present
in sufficient abundance.

FUTURE OPTIONS

Ecological restoration is attracting considerable interest as
part of a portfolio of nature-based solutions to some of our
most intractable and global problems, like food security and
climate change (Cohen-Shacham et al., 2016). This ambition
is sometimes expressed as targets which set a particular areal
extent of an ecosystem to restore, although this can incentivize
practices that are contrary to the underlying motivation (Seddon
et al., 2020). So, when considering how we might use propagules
to assist in ecological restoration, we should bear in mind
the underlying ambition, and expressly frame goals that are
congruent with this.

Restoration practitioners working in some ecosystems have
long used propagules, sometimes because they are the simplest
and easiest approach (for example harvesting and planting
viviparous seedlings of mangroves from the genus Rhizophora),
and sometimes because we can draw on knowledge gained
from other applications (for example from oyster aquaculture).
These efforts have at times allowed restoration of large areas
(e.g., Hai et al., 2020). For other ecosystems, like seagrass
meadows, kelp forests and coral reefs, propagules have not
yet been widely used, but there is compelling evidence
that they can be. Transferring the lessons learnt among
ecosystems will likely help practitioners restore larger areas more
effectively.

Most restoration efforts have used relatively simple
techniques, such as manual collection and direct planting
or seeding. Some approaches use more complex techniques
which include a stage in which propagules are reared in nurseries
or aquaria to a size or age at which they are viable, when
they are then planted or released at the site to be restored.
Other approaches use minimal intervention, and focus instead
on providing the conditions that will promote growth from
naturally dispersed propagules (such as restoring hydrological
conditions to facilitate mangrove recruitment, or deploying
substrate to facilitate settlement of bivalve or coral larvae). Using
propagules offers the possibility to expand the spatial extent of
restoration efforts; for the same amount of labor, a greater area
can be restored. They might also offer the possibility to improve
the quality of outcomes, for example by allowing more species to
be included. To design restoration actions that are most likely to
meet the goals, it will be important to understand how the choice
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of activity influences the trajectory of the restored ecosystem.
There are few comparisons for marine ecosystems that allow
such comparisons, but experimental tests in terrestrial forests
have demonstrated differences between naturally regenerating
and planted forests (Li et al., 2018; Caughlin et al., 2019;
Staples et al., 2020).

Incorporating technology – new and old – into development
of propagule-based restoration will also yield better outcomes.
Such technology could encompass multiple stages from collection
of propagules to rearing them in tanks or nurseries, and finally
dispersing them at the site to be restored. For example, large
vessels and booms have successfully been used to collect wild
coral-spawn slicks and culture them to viable larvae (Doropoulos
et al., 2019b), and tank-based techniques have been used to
induce settlement of kelp spores onto gravel which is then
scattered onto reefs (Fredriksen et al., 2020). Similarly, with
tidal marshes the application of mechanized approaches (for seed
collection as well as seeding) and processes that concentrate and
efficiently store seed can lead to greater efficiencies in the use
of propagules when compared to nursery rearing of seedlings
and direct planting. Autonomous air-, water- or land-based
vehicles can be developed to harvest or disperse propagules.
Innovative applications of chemistry and manufacturing, such
as development and production of substrates with chemical cues
that induce settlement could harness natural dispersal to enhance
restoration outcomes. Incorporating knowledge of microbiomes,
including by inoculating either propagules or substrates, could
enhance survival rates.

Modern genetics holds many opportunities to address the
challenge of environmental change and increase the success
of restoration efforts through a range of techniques from
selective breeding and assisted adaption to fully synthetic
biology (van Oppen et al., 2017; Coleman and Goold, 2019).
Selective breeding, and perhaps even genetic modification, can
help develop genotypes with a greater likelihood of survival
under novel contemporary conditions, or even likely future
conditions. Although these techniques have long been used
in agriculture and forestry, they have not yet been widely
adopted in marine restoration (but see Camara and Vadopalas,
2009). This approach has a set of attendant risks, such as
the possibility of inadvertently selecting for genotypes that
perform better in nurseries or hatcheries than they do in nature.
Nevertheless, it offers the possibility to develop restoration
methods that can more precisely achieve some goals, or that
are better able to survive in changing conditions (Coleman
et al., 2020). This endeavor should involve meaningful dialog
between researchers and practitioners, as well as ethicists
and others, to guide research that is ethical as well as
pragmatic. Key research questions center on the nexus between
restoration and adaptation, application of technology and
modern genomics, and the practicalities of restoring large
areas. Understanding will be advanced from traditional fields
of inquiry like ecology, but efforts should also draw on
insights from other fields, such as the long history of selective
breeding for agriculture, which has shown that selection for
specific traits can lead to a decrease in fitness of a population
(Goddard, 2009).

Many restoration efforts are conducted by researchers in an
explicit experimental framework; many others are essentially
uncontrolled experiments, in the sense that they implement
practices that are based on ideas generated from some knowledge
of biology and ecology. There is much we can learn from
the latter, and deeper partnerships between practitioners and
researchers will help harness this so that we can learn from
each other and strive to improve. These partnerships might take
different forms, and should be sensitive to the varying needs of
practitioners. In some situations, simple conversations might be
most appropriate, but in others integrating restoration efforts as
formalized tests of hypotheses about restoration methods, such
as contrasting results between places left to regenerate from
natural recruitment with places where accelerated recruitment is
achieved through deploying propagules, would be of substantial
value. Indeed, such efforts already occur.

This dialog can include the settings in which restoration
is typically effective, or not. High mortality is common in
restoration efforts, often from inappropriate site selection,
or failure to remove the underlying causes of degradation.
Understanding the importance of propagule quality will likely
also yield insights: quality can encompass traits such as viability,
size (which can reflect energy reserves available for initial growth
and establishment), damage, bacterial infection, genetic diversity
and provenance (reflecting origin and diversity: Coleman et al.,
2020). The traits may each influence a propagule’s ability to
survive and grow in the conditions it is subjected to. Continued
learning will be facilitated by understanding the situations in
which survival is high, from propagule trait to site condition.

Researchers can also use modeling tools to help refine
restoration methods for testing. Although this has been done
to some extent (Doropoulos and Babcock, 2018), there is much
scope to expand it. Combining various combinations of models
(such as hydrodynamic models with demographic, physiological
or ecological models) is likely to benefit restoration practice by
identifying some of the most promising methods to try.

In each of the ecosystems reviewed here, propagules have
the potential to yield successful restoration across spatial extents
larger than those possible by transplanting older life stages. For
some ecosystems their potential has long been harnessed. To
achieve global ambitions for restoration, and take advantage of
the possibilities it offers for nature-based solutions, innovations
and partnerships that help refine and expand efforts are needed.
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