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Modeling the Distribution of
Habitat-Forming, Deep-Sea Sponges
in the Barents Sea: The Value of Data

Genoveva Gonzalez-Mirelis*, Rebecca E. Ross, Jon Albretsen and Pal Buhl-Mortensen

Institute of Marine Research, Bergen, Norway

The use of species occurrence as a proxy for habitat type is widespread, probably
because it allows the use of species distribution modeling (SDM) to cost-effectively map
the distribution of e.g., vulnerable marine ecosystems. We have modeled the distribution
of epibenthic megafaunal taxa typical of soft-bottom, Deep-Sea Sponge Aggregations
(DSSAs), i.e., “indicators,” to discover where in the Barents Sea region this habitat is
likely to occur. The following taxa were collectively modeled: Hexadella cf. dedritifera,
Geodia spp., Steletta sp., Stryphnus sp. The data were extracted from MarVid, the video
database for the Marine AREAI database for NOrwegian waters (MAREANO). We ask
whether modeling density data may be more beneficial than presence/absence data,
and whether using this list of indicator species is enough to locate the target habitat.
We use conditional inference forests to make predictions of probability of presence of
any of the target sponges, and total density of all target sponges, for an area covering
a large portion of the Norwegian Barents Sea and well beyond the data’s spatial range.
The density models explain <31% of the variance, and the probability models have high
classificatory power (AUC > 0.88), depending on the variables/samples used to train
the model. The predicted surfaces were then classified on the basis of a probability
threshold (0.75) and a density threshold (13 n/100 m?) to obtain polygons of “core area”
and “hotspots” respectively (zones). The DSSA core area comprises two main regions:
the Egga shelf break/Tromsoflaket area, and the shelf break southwest of Rast bank in
the Traena trench. Four hotspots are detected within this core area. Zones are evaluated
in the light of whole-community data which have been summarized as taxon richness
and density of all megafauna. Total megafaunal density was significantly higher inside
the hotspots relative to the background. Richness was not different between zones.
Hotspots appeared different to one another in their richness and species composition
although no tests were possible. We make the case that the effectiveness of the
indicator species approach for conservation planning rests on the availability of density
data on the target species, and data on co-occurring species.

Keywords: species distribution modeling, vulnerable marine ecosystems, deep sea sponge aggregations, soft
bottom sponges, ostur, VME indicators, marine management, marine conservation
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INTRODUCTION

Classifying the variability of nature into habitat types and
furthermore, projecting those habitats onto geographic space,
represents a leap toward ecosystem-based management, which
is now widely recognized as the best way to manage natural
resources and ensure economic prosperity (Murawski, 2007).
Habitat mapping has thus become a pillar of nature conservation
(Hooftman and Bullock, 2012).

In the marine, benthic realm, one approach toward habitat
mapping is to use species occurrence as a proxy for the realization
of a habitat type (Howell et al., 2016; Buhl-Mortensen et al.,
2019). Under this approach, a central requirement is a checklist
of one or more (typically species-level) taxa. These are often
referred to as “indicators,” albeit not in the sense of ecological
indicators but rather, defined as the species/taxa of epibenthic
megafauna which are typical for an ecosystem or habitat.
This checklist can comprise structure-forming (i.e., habitat-
forming) species, associated fauna, or simply, easy-to-identify
species which are constituents of the assemblage. Given the
appropriate environmental data, these benthic taxa can become
the object of Species Distribution Modeling (SDM, sensu Elith
and Leathwick, 2009; Franklin, 2010). The (spatial) predictions
from such models are used to discern the distribution of the
marine ecosystem or habitat in question. Distribution maps of
vulnerable marine ecosystems (VMEs), red-listed habitats etc.,
are thus cost-effectively produced, even for areas that have never
been sampled or observed.

Deep-sea sponge aggregations (DSSAs) are one such
conservation-relevant habitat (OSPAR, 2008). Deep-sea sponges
are known to be ecosystem engineers. Some DSSAs can alter the
characteristics of the surrounding muddy sediment by creating
dense mats of spicules. Spicule mats have been found to increase
biodiversity and abundance of fauna, whether of epibenthic
megafauna (Beazley et al., 2013) or macrofauna (Bett and Rice,
1992) depending on the species composition of the sponge
community. DSSAs filter large quantities of water and may
play a key role in nutrient recycling, benthopelagic coupling
and the silicon cycle (Maldonado et al, 2005) among other
ecosystem functions.

DSSAs first became a habitat of concern for marine
conservation policy when they were included by the Oslo-
Paris (OSPAR) Convention for the Protection of the Marine
Environment of the North East Atlantic in their List of
Threatened and/or Declining Species and Habitats (OSPAR,
2008). Later, OSPAR published a separate document with a
more detailed definition, as well as assessment of the habitat
to better support mapping efforts throughout the OSPAR
region (OSPAR, 2010).

Recently, Buhl-Mortensen et al. (2020) analyzed extensive
occurrence data from Arctic and subarctic waters and proposed
a classification of DSSAs (among other marine ecosystems) with
specific lists of indicators. One of the classes they proposed
was named “soft bottom sponge aggregations” which, besides
being characterized by the dominance of mud in the sediment,
is further defined by the following indicators: Geodia spp.,
Stryphnus sp., and Steletta spp., all of which are tetractinellid

sponges. These sponges are large, can be found in high densities,
and modify their environment by creating mats of spicules
(Maldonado et al,, 2016), and they are considered habitat-
forming species; they provide habitat to mobile filter-feeders and
smaller mega- and macro-fauna. This habitat also corresponds
with the habitat sometimes referred to as “boreal ostur” (e.g.,
Howell et al., 2016).

In Norway, soft-bottom sponge aggregations are known
to occur in large patches across some areas of the northern
Norwegian shelf from fishing by-catch observations (Klitgaard
and Tendal, 2004; Mortensen, 2005). Howell et al. (2016) predict
that the core distribution area of soft-bottom DSSAs at the
continental scale is located largely in Norwegian waters. Fisheries
and management authorities alike are therefore interested in
knowing the exact locations and boundaries of these patches
so that they can be sustainably managed and have requested
distribution maps to support, among other things, the recent
revision of the Barents Sea Management Plan. Distribution
modeling of soft-bottom DSSA indicator species was quickly
chosen as a basis to provide such maps. This choice of approach
was also driven by the fact that Norway has an extensive
database of epibenthic megafauna georeferenced records, which
are collected and curated by the Marine AREAI database for
NOrwegian waters (MAREANO) Programme.

The majority of benthic SDMs are built using presence-
only or presence/absence data due to the cost associated
with the collection of geospatial, quantitative data on benthic
communities, or the issues with combining datasets from
different time periods and sampling equipment (e.g., Pearce and
Boyce, 2006; Howard et al., 2014; Hao et al., 2019). One of the
major benefits of the MAREANO video database (MarVid) is that
all records have been collected using a standardized method since
2006. Consequently, reliable abundance data (here translated into
densities) are available over a large area, allowing us to make a
comparison between models built using density data and those
built using presence/absence data.

Also, we are interested to explore whether the presence of
pre-selected species (as per a list of indicators, e.g., Burgos
et al., 2020) is enough to isolate the target habitat, and we use
the greater MarVid data to assess this question. Just what are
these indicators indicative of, in terms of ecosystem structure
and function? We start to investigate patterns of epibenthic
megafaunal taxon richness (as a proxy for biodiversity), and total
abundance of epibenthic megafauna (as a proxy for productivity)
in relation to the predicted distribution of soft-bottom, deep-
sea sponges. As, arguably, the most valuable locations would
have high biodiversity and productivity, these data can act
as a proxy for assessing the conservation value of model
predicted hotspots.

We model the distribution of soft-bottom, deep-sea, habitat-
forming species of sponges using environmental variables
ranging in resolution from 800 m to 4 km. The modeling
area covers a large portion of the Norwegian Barents Sea so
that the results can be used to inform the revision process
of the Barents Sea management plan. We compare the use of
presence/absence data with abundance data to assess the benefits
and weaknesses of both types of data for the purpose of informing
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marine management. We then provide additional context using
the greater MarVid dataset to differentiate between predicted
DSSA hotspots and their relative conservation value. With a view
to improving the way we define and map marine ecosystems,
going beyond presence of indicators, this paper addresses the
two following questions: (1) Does density data (rather than
presence/absence data) provide an advantage when predicting
DSSA hotspots? (2) Are predictive maps which are based on lists
of indicator species enough to find places of conservation interest,
or are there benefits of using data from other members of the
epibenthic community?

DESCRIPTION OF DATA, AND DATA
PROCESSING

Faunal Data

Data describing the composition of epibenthic megafauna were
derived from video footage, which was in turn captured with an
underwater camera under the MAREANO Programme. At each
station, an underwater camera platform (Campod or Chimera) is
towed along a 700 m, to 1,000 m-long, straight survey path at
an approximate altitude of 1.5 m off the seabed. The platform
is equipped with two video cameras, one for navigation, and
a high-definition, forward-looking, color video camera (Sony
HDC-X300) for visual data collection. Underwater positioning is
provided by a hydroacoustic USBL (Ultra-short baseline) system
(Simrad HIPAP and Eiva Navipac software) with a transponder
mounted on the camera platform. This system provides positions
accurate to about 2% of the water depth. A pair of laser pointers
is used to estimate the width of the field of view.

Routinely, post-cruise video analysis is carried out on all
video footage captured with the high-definition camera. During
playback, all organisms are named (using standard taxonomic
nomenclature whenever possible), counted, timestamped,
and later, with the aid of cleaned navigation data, linearly
georeferenced. When it is not feasible to count all individuals
of a given, identifiable taxon, their abundance is estimated by
percent cover. Values in percent cover units are subsequently
converted to pseudo-counts by using the approximate (or
average) surface area of one single individual or typical colony,
derived from expert knowledge, and the area of the field of view.
Species indicative of vulnerable habitats and other taxa of special
interest are typically identified by their scientific name, and at
a taxonomical level no higher than Family (e.g., “Paragorgia
arborea,” “Axinellidae”). Most organisms are, however, identified
as morphospecies (e.g., “Porifera egg-shaped”), or custom-made,
morpho-taxonomical units (e.g., “Actiniaria, buried”). All of
these data are collated and stored within the MarVid database.
For this study, the dataset was restricted to all organisms in view
which are larger than 5 cm in their longest dimension. This size
filter was applied in advance of all data extractions. Henceforth,
every time we use terminology like “whole-community” or “all
records,” etc., we refer to this section of the community, i.e., the
epibenthic megafaunal community.

The spatial domain of the dataset is the southwestern
part of the Barents Sea, on Norway’s continental shelf

and slope (Figure 1 and Supplementary Figure S1). The
boundaries of the areas surveyed under the MAREANO
Programme respond to natural features, management areas
for the oil and gas industry, and other factors, not least
geopolitical (e.g., the Norwegian-Russian border). Along the large
transects between continental Norway and Svalbard, designed
to cross the Polar Front, stations are laid out within square
boxes rather than along long lines (e.g., data from 2010,
Figure 1). This design responds to the ultimate purpose of
the data collection, which is to make biotope maps (Buhl-
Mortensen et al., 2014). Within these boundaries (henceforth,
the MAREANO area) video stations are relatively evenly
spaced, with a target sampling density depending on the
topographic and environmental heterogeneity of each survey
area. Depth spans from 40 to 2,500 m, with most stations
within the 100-600 m range. The field surveys were carried
out during years 2006-2017, with 61% of stations taken in the
months of August, September and October but none taken in
January or February.

In line with Burgos et al. (2020) the following species were
used as indicators of soft-bottom DSSAs in the study area:
Hexadella cf. dedritifera, Geodia atlantica, Geodia barretti, Geodia
macandrewii, Geodia sp., Steletta sp., and Stryphnus sp. This
community of sponges has also been recognized in other North
Atlantic regions (Klitgaard and Tendal, 2004; Murillo et al., 2011;
Beazley et al., 2013; Céardenas et al., 2013; Maldonado et al., 2016)
providing additional support to the ecological coherence of the
chosen taxa. We will refer to this set of soft-bottom, deep-sea
sponges as the target taxa.

From the MarVid database, we first pulled all records on any
of the target taxa. Then, total abundance was pooled for the whole
survey line. Total density was calculated using the average width
of the field of view to calculate the total area of the surveyed strip
and given in number of individuals or colonies per 100 m?. Total
density as well as presence/absence (derived from density) were
then used as response variables.

We do not use year, or month of survey in our analyses. As
far as the former is concerned, we assume we can safely ignore
this information because all the target taxa are long-lived. No
data points come from the winter months, where the Barents
Sea may present more severe stratification. This is not necessarily
a problem because neither of these organisms shows seasonal
fluctuations in its distribution. Nevertheless, it is worth noting
that our response data represents the mild season better than
the winter season.

Subsequently, taxon richness and total abundance of all taxa
were also calculated for each survey line, providing proxies for
diversity and productivity to cross reference with predictions.

Environmental Data

Environmental data can be divided into four main groups:
(1) bathymetric/terrain variables, (2) geological variables, (3)
oceanographic variables, and (4) ocean surface (satellite-derived)
variables, all of which have been found to be drivers of benthic
biological composition to varying degrees (Levin et al., 2001;
McArthur et al., 20105 Selkoe et al., 2010; Harris and Baker, 2019),
although not necessarily of sponge distribution.

Frontiers in Marine Science | www.frontiersin.org

January 2021 | Volume 7 | Article 496688


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Gonzalez-Mirelis et al.

Distribution of Norwegian Deep-Sea Sponges

15°E

%"‘L‘ég valbarg
.
& :

N

[ 2010

[ 2011
B 2013
2014
Il 2015
[ 2016
N 2017

Russia

Finland

100 0
|

[] Modelled area

Year of MAREANO survey
[ 2006-2007
[ 2007-2009

[ 2010-2011

100 200 km

FIGURE 1 | The faunal data used in this study were collected under the Marine AREAI database for NOrwegian waters (MAREANO) Programme. Under this
government-funded, data collection programme, benthic sampling is conducted according to predefined survey areas. In this figure, we illustrate the number of
video stations per survey area (labels on the map), as well as the year when the sampling was carried out (see legend for details), for the surveys that were used in
this study in the Barents Sea. Also shown are bathymetric contour lines (dark blue) and land masses with political boundaries (gray). The scale on this map (scale

bar) is 1:5,745,500.

Bathymetry and Terrain Analyses

Bathymetry data for the southwest Barents Sea was downloaded
from the EMODnet bathymetry portal' on October 2018 (i.e.,
after the 2018 data became available). The resolution of the
Digital Terrain Model hosted by EMODnet was 1/16 x 1/16
arc minutes (circa 500 x 500 m at this latitude) (EMODnet
Bathymetry Consortium, 2018). All downloaded tiles were
mosaicked into one single raster layer and gridded at 800 m on
a UTM projected grid (zone 33N).

We calculated: slope, terrain ruggedness index (TRI),
roughness, and vector ruggedness measure (VRM, Sappington
etal,, 2007) in R using the raster (Hijmans, 2020), and spatialEco
(for VRM, Evans, 2020) packages using default neighborhoods.

We also derived: topographic position index (TPI) using two
neighborhood sizes, aspect using three analysis window sizes, and
type of geomorphological feature using three analysis window
sizes. TPI was also calculated in R using the raster package.
Aspect and feature were calculated using GRASS 7.8 (rgrass7,
Bivand, 2019) in R. See Table 1 for a summary and additional
details of this part of the data processing.

The latter six layers, namely the three for aspect and three
for geomorphology, as well as current direction (see below)

Uhttps://portal.emodnet-bathymetry.eu/

were further processed before entering the model. They were
put through a classification procedure and were converted to
a single categorical variable, henceforth named terrain class.
This classification was achieved by applying Random Forests

TABLE 1 | Summary of multiscale analyses performed on bathymetric data.

Procedure (function and/or Output How used in the

parameters) model

Neighborhood = 5 pixels, i.e., Fine TPI* Asis

1,000 m (function terrain, option

tpi)

Neighborhood = 15 pixels, i.e., Broad TPI* Asis

3,000 m (custom-made function)

Analysis window = 3 pixels, i.e., Fine Aspect, and Used in a

600 m (function r.param.scale) geomorphological supervised
feature classification

Analysis window = 19 pixels, i.e., Intermediate-scale together with

3,800 m (function r.param.scale) Aspect, and uandv
geomorphological components of
feature current direction

Analysis window = 33 pixels, i.e.,
6,600 m
(function r.param.scale)

Broad Aspect, and
geomorphological
feature

(categorical layer
with 8 classes)

*“TPI, Topographic Position Index.
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in a supervised framework. First, 10,000 points were sampled
at random. Then we used the CLARA (Clustering Large
Applications) algorithm in R (available through the cluster
package, Maechler et al., 2019) to classify cells into eight classes,
followed by the randomForest function (and package, Liaw and
Wiener, 2002) to predict class for all unsampled cells and thus
generate a full coverage, categorical layer. This way we generated
a new predictor variable which summarizes current direction,
aspect, and feature type information. The goal was to reduce
the number of (potentially correlated) predictors without losing
predictive power.

Geological Data

Landscape type was also used as predictor in our SDM exercise.
This spatial dataset shows a division of all Norwegian waters
into different marine landscapes, defined as major features of
the seabed topography (Norges geologiske undersokelse, 2014).
Examples of marine landscape types in Norwegian marine areas
are fjords, marine valleys, continental slopes and deep-sea plains.
The data was downloaded on 2019/08/28 as a categorical map
from the Norwegian Geological Survey portal’. The maximum
scale of the downloaded map was 1:100,000 and it was
subsequently rasterized to the appropriate resolution (800 m).

Oceanographic Data

Ocean model outputs describing the physical properties of
the near-seabed environment were also included as predictors
(Pearman et al.,, 2020). The data were derived from two separate
oceanographic models known as the NorKyst-800 m (NK800)
model and Barents Sea-800 m (B800) model, each covering
a different part of our SDM model area (see Supplementary
Figure S2). Both 800 x 800 m ocean models are based on
the Regional Ocean Modeling System (ROMS, e.g., Shchepetkin
and McWilliams, 2005; Haidvogel et al., 2008°, but had different
external forces, and simulated different periods. The NK800
model is explained in detail in Asplin et al. (2020). The
B800 model is not yet documented, but the configuration is
comparable to the NK800 model and it is the best resolved
regional oceanographic model available in the area. It is run and
disseminated by the Institute of Marine Research, Norway but is
not yet publicly available. Meanwhile, the NK800 model is well
established and daily forecasts are produced by the Norwegian
Meteorological Institute*.

From the NK800 model we were able to obtain data derived
from a simulation based on years 2013-2015, and for an area
which encompassed approximately the Exclusive Economic Zone
around continental Norway. From the B800 model instead, the
data we obtained was from a 1l-year simulation (year 2010),
while the area covered was more centered around the Norwegian
Barents Sea. Both these simulations, although financed by
MAREANO, had been ordered for purposes going beyond the
objectives of this study, hence the discrepancy between the time
and space coverage in relation to the video data.

Zhttp://geo.ngu.no/download/
3http://myroms.org
“https://thredds.met.no

Maximum, minimum, mean, and standard deviation of
salinity, temperature, and current speed were obtained from
each model, as well as the mean u and v component of current
direction, giving a sum of fourteen fields. These fields were
extracted from the bottom layer of either model, although
neither model was bottom-optimized. For NK800, salinity and
temperature statistics are based on daily values, while current
speed and direction are based on hourly values. For B800, hourly
fields of temperature, salinity and current speed and direction
were used. The resulting fields were then interpolated to an 800 x
800 m regular grid defined in UTM33 coordinates using a nearest
grid point-interpolation.

Fourteen pairs of raster layers were then blended with each
other to yield a total of fourteen complete predictor layers
covering our entire model area (Supplementary Figure S2).
Blending for each combination of variable and summary
statistic was generally carried out through the following steps:
create intersection rasters, create points around overlapping
area, calculate distances to points in overlapping area, sum
distance rasters, create distance weighted rasters, and merge
rasters (Wueest et al.,, 2012). While the seam between the two
models did not fully disappear, artifacts were absent from the
SDM predictions.

Sea Surface Data

The NASA Goddard Space Flight Center, Ocean Ecology
Laboratory, Ocean Biology Processing Group provides ocean
color data with worldwide coverage. We downloaded data on
chlorophyll a, particulate organic carbon and maximum euphotic
depth for use within this study from https://oceancolor.gsfc.
nasa.gov/cgi/13. They are 4 km data, resampled to 800 m. The
downloaded data were pooled to a 10 years average from 2006 to
2017, in alignment with the period of MAREANO observations.
All predictor layers were aligned to the bathymetry layer in terms
of extent, origin, and resolution.

MODELING AND ADDITIONAL
ANALYSES

Modeling Method

We used a Conditional Inference Forest (CIE, Hothorn et al,,
2006b) as the modeling framework. CIF is a recursive partitioning
and ensemble method for discovering patterns in multiple-
predictor, complex datasets that has been found not to be biased
toward variables with many values (Strobl et al., 2007). Their
application in ecology remains low relative to other fields (e.g.,
psychology, Martin, 2015; safety, Das et al., 2009; engineering
Sardd-Espinosa et al, 2017). Ecological applications include
(Miiller et al., 2009; Hothorn and Miiller, 2010) and only a
handful concern SDM (Pottier et al., 2014; Gonzalez-Mirelis and
Buhl-Mortensen, 2015) despite the suitability of the method to
the SDM problem, and the typically noisy ecological data.

CIFs belong to the family of Machine Learning Algorithms.
The base learner of a CIF is a Conditional Inference Tree. The
method for building trees is based on a well-defined theory
of permutation tests, whereby splitting (i.e., partitioning) is
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performed based on measured correlations between predictor
variables and the response. First, a global null hypothesis
of independence between the response and all predictors
is tested. A correlation coefficient (e.g., Pearson’s or other
depending on the data), with a corresponding p-value is
calculated for each variable’s association with the response. If
no p-value is below the pre-selected alpha level after accounting
for multiple significance tests, the global null hypothesis is
not rejected, and the algorithm terminates. Otherwise, the
predictor with the strongest association with the response is
selected for splitting. The best split within this predictor is
selected, and the training set is partitioned on this value.
Finally, these steps are iteratively repeated until the global
null hypothesis can no longer be rejected in all subsections
(Martin, 2015).

Machine Learning algorithms have been designed to be robust
in the face of correlated predictors (e.g., Nicodemus and Malley,
2009): if two of the variables provide the same child node purity
the model simply selects one. This effect is controlled by the mtry
parameter, which determines the number of variables tried at
each split. This is one of the features that help machine learning
applications excel at predicting (Shmueli, 2010).

Multicollinearity does become an issue when the goal
is to interpret the patterns learned by the model. While
ecological inference is not the focus of this paper, our
study provides an opportunity to describe and/or validate
species-habitat relationships. We therefore trained another set
of models where colinear predictors (as measured by their
variance inflation factors) had been eliminated so as to gain
an opportunity to illustrate variable importance. Variance
Inflation Factors were calculated using the usdm R library
(Naimi et al., 2014).

Eight models were built in total, for all the three-
way combinations of the following parameters: response
variable (density, or probability of presence), number of
predictors (all available, or a selected subset of non-correlated
variables), and finally, number of observations (all available,
or just 70% of them, reserving a set of 30% for validation
purposes, see below). We conducted model training in R
by means of the party package (Hothorn et al, 2006a).
Additional arguments used include number of trees in the CIF
(ntree = 1,000), and the number of variables tried at each split
(mtry = 3).

The four density models were tested by means of the statistic
developed in Li (2017): Variance Explained by Cross-Validation
(VEcv). VEcv is a measure of model accuracy for continuous data
that is independent of unit or scale, data mean, and data variance,
and it unifies other measures of error, including the commonly
used mean absolute error and root mean square error. It was
calculated using the spm R package (Li, 2019).

The four probability models (effectively, binary classifiers)
were assessed by means of the Area Under the Curve (AUC)
statistic, which measures the area under the so-called Receiver
Operating Characteristic (ROC) curve. The ROC curve is a plot of
the true positive rate against the false positive rate over all possible
threshold values of an automatic classifier and is commonly
used in SDM applications using presence/absence data. AUC
ranges from 0.5, when the model does no better than a random

guess, and 1 when the model can discriminate perfectly between
presence and absence. We further tested the significance of this
value through the DeLong’s test for two ROC curves, where the
null curve used for comparison was that obtained by randomly
shuftling the response variable. For these tests we used the pROC
R package (Robin et al., 2011).

Data Model

The total number of samples was n = 1,142. This set included
survey lines of varying length. The mean line length was 738.16
m, with standard deviation 174.22 m. The average nearest
neighbor distance was 6764.85 m. We used a prediction grid of
800 x 800 m covering an area of 614,376 km?. We ignored the
position of the survey lines relative to grid cells and assumed the
data observed along each line to be representative of the entire
cell containing the centroid of the line.

The two models used for spatial prediction were those
where all variables and all observations were used for training.
Henceforth these will be referred to as “the density model” and
“the probability model.”

Additional Analyses

To compare the predictions between the density model and the
probability model we first calculated the Pearson correlation
coeflicient (r) between each pair of predictions, pixel-wise, for
the whole study area. We then calculated Pearson correlation
between predicted density values and predicted probability values
within a running window of size approximately 41 by 41 km
(more precisely 51 by 51 grid cells) using the SpatialEco package
(Evans, 2020). This window size captured areas big enough to
display variation in the predictions within, while still showing
local patterns of correlation.

Hotspots (high-density areas) and core area (high-probability
areas) were defined by applying a threshold to the density and the
probability predictions, respectively. Areas below the thresholds
are hence forth referred to as background. The threshold for
density was determined visually. The threshold for probability
was conservatively derived from the True Skill Statistic (TSS),
also called Youden’s ], defined as the average of the net prediction
success rate for present sites and that for absent sites (Liu
et al., 2009). The three obtained zones thus represent a gradient
of likelihood of presence of a soft-bottom, deep-sea sponge
(vulnerable) marine ecosystem.

We compared mean total taxon richness and mean total
abundance of megafauna between all zones (i.e., along the
gradient). There was a total of 13 observations within the
hotspots, 174 observations within the core area, and 955
observations in the background zone. To achieve a balanced
design, we sampled 13 observations from the core area and the
background zone and used only those in the test. Furthermore,
these 13 observations were stratified by the range of the variable
being tested (richness, or abundance). The strata were created in
each case by discretizing the variable into three classes using Jenks
breaks as cut points.

We also looked at patterns of richness and abundance
within the high-density zone (i.e., between hotspots). For this
comparison we had very few samples available and no statistical
tests were performed.

Frontiers in Marine Science | www.frontiersin.org

January 2021 | Volume 7 | Article 496688


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Gonzalez-Mirelis et al.

Distribution of Norwegian Deep-Sea Sponges

RESULTS

Model Predictions

With this data set, spanning a vast area and collected over
many years, and this set of environmental layers, most of which
are themselves the outcome of other models, we were able to
account for between 15 and 31% of the spatial variation in density
of soft-bottom, deep-sea sponges, depending on the training
data. The classificatory power of all four probability models was
consistently high (Table 2). Model predictions are displayed as
continuous rasters in Figure 2.

The following variables were eliminated from the twenty-
four initial ones: slope, roughness, maximum temperature,
standard deviation of current speed, standard deviation of
salinity, and mean temperature. Supplementary Figure S3
ranks the remaining variables by their importance and shows
that temperature (minimum), salinity (mean, minimum and
maximum), and depth are the most important predictors for
the target set of species. Variance Importance is reported from
the density model because this is the model that had access to
the most information. A look at variance importance from the
probability model revealed that minimum temperature dropped
by one position, ranking third instead of second; additionally,
Chlorophyll a raised to position number five. The remaining top
predictors were consistent. This plot can be easily generated if
needed with the R Notebook provided with this paper.

The relationship between the responses and the top two
predictors (namely mean salinity, and minimum temperature)
can be visualized by means of partial dependence plots, in
Supplementary Figure S4. When predicting abundance, the
models indicate a preference of the target sponges for a mean
salinity above 34.9 ppt and a temperature which does not drop
below —0.5°C at any time of year. The curve for probability of
presence is slightly different in the case of minimum temperature,
where the probability remains low (but not zero) beyond —0.5°C
and it becomes 0 at —2.0°C. The combinations of salinities and
temperatures indicate that the maximum response is observed
within Atlantic water.

The overall Pearson’s r between predicted densities and
predicted probabilities was 0.79. Locally (at scales 10-100 km)
the two models largely agreed with each other (82% of model
domain with > 0.2, blue in Figure 3), while lack of correlation,
or discrepancy (16% r between —0.2 and 0.2) and disagreement
(0.01% r < —0.2) between the two models also occurred. This
correlation is illustrated in Figure 3 in relation to the data
range, where we show the areas of disagreement in more detail
than those were agreement occurred, as they provide a more
useful backdrop to interpret model results. It is, however, worth

mentioning that twenty-four percent of the model domain had
very high (>0.7) correlation values; for a look at where those
areas are located you may use the R Notebooks provided.

To decide on a threshold for the probability model we looked
first at the TSS, which was 0.41. This threshold would classify as
soft-bottom DSSA core area a very large region (notice the area
depicted in dark green and dark blue in Figure 2A) which we
deemed unpractical from the management point of view; it would
also be difficult to defend a probability threshold that is below
50%, no matter the management application intended. Therefore,
we raised the threshold from 0.41 to 0.75. At this level, two main
regions remain: the Egga shelf break and Tromseflaket area, as
well as the area around the Rest bank and Trana Trench (see
Figure 4 for reference). At 0.85 the area at Egga/Troms is reduced
to a few small kernels while the size of the Treena trench area is
hardly affected. Ultimately, we decided to use 0.75 as a threshold
value for probability. For density, we used 13 n /100 m?, which
was chosen visually to mimic the main patterns in Figure 2B. We
subsequently digitized the boundaries around all pixels with value
above the threshold, on each layer.

Four hotspots can be identified if we ignore the small gaps
between nearby features: one elongated patch at Tromseflaket,
two minor ones along the Egga shelf break, and a fourth one
along the shelf margin west and south of Rest bank, in the
Treena trench. These hotspots are all wholly contained within the
identified core area (Figure 4).

Tromsoeflaket had the highest observed (210 n/100 m?)
and predicted densities of the whole study area. The overall
(observed) mean density was 2 n/100 m?.

Patterns of Richness and Abundance of
All Megafauna

Figure 5 illustrates the differences in total taxon richness and
total abundance of epibenthic megafauna between zones, namely,
the background, the core area, and the hotspots. There was no
conclusive evidence for a difference in taxon richness between
zones (p = 0.08). In contrast, we found a difference in the mean
total abundance of epibenthic megafauna (p = 0.008). A post hoc
Tukey’s test revealed that only one two-way comparison was
significant, and it was between the background and the high-
density zone (extremes in the gradient).

The comparison between hotspots (bottom plots in Figure 5)
gave us further insight into the ecosystem structure and function
of these areas in relation to each other. The hotspot at Treena
had much higher taxon richness than Tromseflaket. It is less
clear whether there are real differences in total abundance
between hotspots because of the large variation between samples,

TABLE 2 | Model evaluation statistics.

Observations All (n =1,142) All (n=1,142)
Variables All (24 vars) Selected (18 vars)
Response Probability 0.95 (p-value~0) 0.95 (p-value~0)
Density 31.28% 30.58%

70% (n = 800) 70% (n = 800)
All (24 vars) Selected (18 vars)
0.88 (p-value~0) 0.88 (p-value~0) AUC Statistic
28.51% 15.38% VEcv

AUC, Area Under the Curve; VEcv, Variance Explained by Cross-Validation.
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FIGURE 2 | Model predictions of probability of presence (A) and density (B) of soft-bottom, deep-sea sponges across the Norwegian Barents Sea as modeled using
conditional inference forests and multiple environmental predictors. Also shown are selected bathymetric contour lines (dark blue) and land masses with political
boundaries (gray), about which more details can be found in Figure 1. For scale, refer also to Figure 1.
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FIGURE 3 | Pearson correlation between predicted density and predicted probability of presence of soft-bottom, deep-sea sponges for each pixel was calculated
within a running window of size 41 km by 41 km. In this figure we illustrate the areas where the correlation coefficient was most negative (red, see legend for
coefficient values). In yellow are shown all areas where the correlation between the two models was around zero, meaning there was no correlation between the two
models. Areas of model agreement are shown in blue. The black outline overlaid is the extent of the training data coverage. Also shown are selected bathymetric
contour lines (dark blue) and land masses with political boundaries (gray), about which more details can be found in Figure 1.
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particularly at Treena and Tromsoeflaket. There are nevertheless
very few samples to draw conclusions.

The high abundance at Tromseflaket was accounted for by the
presence of brachiopods, which are in the limit of what can be
considered “mega” fauna.

DISCUSSION

This study aimed to discover the distribution of soft-bottom
DSSAs in the Barents Sea region, identify the benefits of using
density data over presence/absence data for this community, and
explore whether the “indicator-species list” collective modeling
approach is adequate to highlight conservation-relevant hotspots
for this community.

In agreement with other authors (e.g., Howard et al., 2014;
Dallas and Hastings, 2018) we find that predicted probability
maps based on presence/absence data may be adequate to
highlight regions of interest, but are insufficient to determine
particular areas that may require management attention, for
example because they harbor high densities of megafauna. We
shall be more specific: it would be virtually impossible (for,
let's say, a fisheries manager) to delineate the boundaries of

what we have termed the Tromseflaket patch (whose existence
is known from by-catch data, see Mortensen, 2005, and whose
conservation value is undisputed) using the probability map
alone as a supporting tool. Depending on the threshold they used,
they would come up with either a huge, unmanageable area, or
with a tiny, irrelevant one; no single probability threshold even
approximates the boundaries the Tromseflaket patch.

Predictive modeling of density has enabled us, in contrast,
to detect specific locations of conservation interest and
more importantly, of reasonable size, even if delineating
their boundaries required some “visual” calibration and is
admittedly, hardly reproducible. Should there be any dispute,
though (let’s say between fisheries managers and conservation
practitioners), this can easily be settled by looking at the
stability of the boundaries in relation to thresholds. Indeed,
the boundary around Tromseflaket was very stable, while the
Treena patch completely disappears raising the threshold by 1
unit! Therefore, the evidence suggests that Tromseflaket patch
should be put forward as an area where management action can
help protect DSSAs.

Very few studies have looked at biological differences within
the predicted range of a species or habitat of interest, although
some (e.g., Hui and McGeoch, 2008; Boulangeat et al., 2012)
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patches, or hotspots (labels).

Tromsgflaket

FIGURE 4 | The areas referred to as “predicted high probability” are those where the model predicted a probability of presence of soft-bottom, deep-sea sponges
larger than 0.75 (green), whereas the areas referred to as “predicted high density” enclose the pixels where the model predicted a density of the target species above
13 colonies/100 m? (outlined in black). For reference we have also plotted the extent of the model area (light gray). Also shown are selected bathymetric contour
lines (dark blue) and land masses with political boundaries (gray), about which more details can be found in Figure 1. Here, we can identify four main high-density
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have suggested that looking at species co-occurrence and/or
biotic interactions is beneficial to model species distributions.
The use of whole, epibenthic community data has enabled
us to validate the indicator species approach from the point
of view of total abundance of epibenthic megafauna and
we provide evidence that areas of increased biomass can be
detected by modeling the density of these species of soft-
bottom, deep-sea sponges. But it has also called into question
whether the locations detected are equivalent to one another
as far as their species assemblage. We have found that there
can be substantial variation between locations (keep in mind
the bottom plots of Figure 5), even when they have been
modeled using the same dataset and the same model. While
this result is intriguing and raises interesting ecological and
management-related questions (some of which will be discussed
in the paragraphs that follow), it is not yet clear how
dependent it is on the chosen thresholds. Further work is
planned to analyze the data in a framework that is free from
binning the predictions into zones but rather, are used as a
continuous variable.

Modeling a collective of species rather than a single one
is a good strategy from the point of view of the model
because one quickly increases the number of presences in the
data. But even with a list of co-occurring species, it may
be that other species are in fact dominant in the result, or
that mosaics are present. Indeed, the community observed at

Treena consisted of many types of sponges, not only those
modeled here but also taxa such as Axinellidae (including species
of Phakellia and Axinella), and Antho dichotoma. It follows
from our results that our knowledge on the structure and
function of this marine ecosystem is still poor, and equally,
that work must continue to develop indicators that point
to some homogenous entity (one may even add, worthy of
the name “indicator”) to ensure that detected locations are
representative of each other.

On the other hand, it may be that DSSAs and probably
other marine ecosystems as well, are a case of a fuzzy
category, meaning that there is no list of attributes (species)
that can unambiguously define the category (Levitin, 2014).
From this point of view, one could only say that something
is a DSSA when it looks similar to a declared DSSA, thereby
doing away with the whole approach where species are used
as a proxy for the presence of the habitat (the indicator
species approach).

Much more work is needed to make this approach operational.
For comparison, notice that an “ecological indicator” is a variable
that is measured in order to derive (i.e., directly and without
the need for additional data) the status of some other variable
which is really the variable of interest but which itself is unfeasible
to measure. Notoriously, the VME literature shows that the
presence of VME indicators (or even their known density)
cannot tell us whether the location should or should not be
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FIGURE 5 | Boxplots illustrating patterns in epibenthic megafaunal taxon richness, and total abundance of epibenthic megafauna (which was log-transformed) in
relation to the predicted distribution of soft-bottom, deep-sea sponges. On the top plots we compare these parameters (namely richness and abundance) in relation
to a “gradient” toward the areas of highest predicted sponge density. The three zones compared are “background” (low probability and low density), “high
probability” (probability above 0.75 and density below 13 n/100 m?) and “high density” (the four identified hotspots). On the bottom plots we compare richness and
abundance among three of the four hotspots (one of them did not have any sampling stations within). Also included are the number of stations in each group. Note
that the bottom plots represent the variation among the 13 samples in the high-density zone (see the plot above).

declared a VME. This is epitomized by an ongoing search for
universally applicable density thresholds for VME indicators,
threshold values which are proving more than a little elusive
(e.g., Baco-Taylor et al, 2020). The MarVid database offers a
rare opportunity to ascertain the assumptions that are implicit
in using SDMs as a basis for mapping VMEs and offering

conservation advice, as well as to develop new approaches more
aligned with the concept of fuzzy categories which may prove
easier to operationalize.

We must not forget that the (density) model accounted for
less than 31% of variation in the response data. Similarly, our
model may be incurring some degree of overfitting, particularly
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given (a) the existence of mass occurrences in the area and
(b) the extent to which we have extrapolated our predictions.
Therefore, model predictions should be assessed with a generous
dose of skepticism.

The partial dependence plots of the top two contributing
variables showed intuitive minimum values, encountered
within the study region, while a maximum value was not
encountered. This suggests that the model may be adequate
within the survey area but should be re-trained with
data from elsewhere in the Barents Sea, and particularly
from the areas of model disagreement (yellow and red,
in Figure 3) to increase confidence. Considering this,
we would not recommend making any policy decisions
based solely on the predictions that are completely
outside the data range.

While additional training data would certainly improve the
model, so would adjustments in the predictor variables. Let
us discuss first the aspects that worked, before we move onto
potential improvements.

The variables used as predictors within this study
highlighted temperature and salinity, together with depth
as being important for locating soft-bottom DSSAs in the
Barents Sea region. All terrain and geological variables were
less important. This aligns well with the findings of other
studies (e.g., Beazley et al, 2015; Pearman et al, 2020) that
oceanographic variables are more important than terrain
variables for defining benthic species distributions. This
points to a more mechanistic relationship existing between
oceanographic conditions and benthic species composition
(described in Young et al, 1996 for the case of sponges),
which is emerging thanks to the fact that oceanographic
models are becoming more accessible to researchers engaged
in benthic SDM, while previous studies utilized only
topographic variables and were relying upon the terrain
characteristics as proxies for the oceanographic parameters
(Wilson et al., 2006).

Variable importance in our model(s) reflected this very
well, but not so the partial response curves, where a bell-
shaped curve would have been a better diagnostic than one
where a drop follows a peak. We have already discussed the
degree to which model overfitting may be responsible for this,
but equally, there could have been misrepresentations in the
oceanographic layers. Let’s not forget that the resolution of
the models is 800 m and may be missing spatial variation
of temperatures and salinities occurring over the varied
topography often associated with shelf break landscapes (e.g.,
canyons and throughs).

Similarly, our oceanographic models may not necessarily
be representative of the period when the data were collected,
particularly the B800 model which only ran for 1 year, and
furthermore, that the Barents Sea may be experiencing broad
scale climatic/oceanographic changes (Lind et al., 2018).

In addition to aligning the time period better, our ability to
quantify the relationship between soft-bottom, deep-sea sponges
and oceanographic descriptors may be much increased by letting
the ROMS models simulate the same months where our species
were observed, or in other words, exclude all the values from

January and February. These factors undoubtedly limit the degree
of trust we can place in the model predictions.

Among the clearly missing variables from our set of
potential predictors of soft-bottom DSSAs is sediment type.
The MAREANO project does routinely produce sediment maps
which have coverage across the MAREANO area (Norges
geologiske underspkelse/ MAREANO, 2015), but, as this study
predicts beyond the range of the MAREANO area, we have
strayed into areas with less reliable/non-existent sediment maps
as potential model inputs. It is therefore possible that a future
predictive model will be able to better refine were the soft-
bottom DSSA hotspots lie, filtering out areas with non-suitable
sediment types. It should be acknowledged that these soft-bottom
sponges often originally settle on a small piece of gravel or
stone that later becomes embedded in the adult colony’s base.
Calling these species a “soft-bottom” community is therefore a
slight misnomer, and indeed many of these species are found
on rocks in fjord areas. However, the soft-bottom DSSA does
tend to aggregate on a predominantly soft bottom, so models
including sediment type may be able to improve our predictions.
It is also possible that such a model may be able to identify
the mosaicked hard-bottom and soft-bottom sponge community
from the Treena area without a deeper examination of species
lists. However, in that event we would still suggest a deeper
exploration of the whole-community data to consider what other
differences may be being missed by the indicator-species-only
models being built.

In summary, we have produced new maps which may be useful
for the identification of potential conservation-relevant hotspots
for soft-bottom DSSAs in the Barents Sea. We would primarily
advocate the use of probability models for identifying areas to
study further. However, we would recommend using abundance
or density models to try and highlight the potential conservation-
relevant hotspots in a region. Lastly, we believe it is important
to undertake a deeper exploration of the associated fauna,
beyond only the indicator species used to build conservation-
relevant models. This data can provide marine managers with
more nuanced base from which to make conservation decisions,
especially if there is a need to choose between hotspots when
designing conservation efforts.
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