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The emerging sector of offshore kelp aquaculture represents an opportunity to produce

biofuel feedstock to help meet growing energy demand. Giant kelp represents an

attractive aquaculture crop due to its rapid growth and production, however precision

farming over large scales is required to make this crop economically viable. These

demands necessitate high frequency monitoring to ensure outplant success, maximum

production, and optimum quality of harvested biomass, while the long distance from

shore and large necessary scales of production makes in person monitoring impractical.

Remote sensing offers a practical monitoring solution and nascent imaging technologies

could be leveraged to provide daily products of the kelp canopy and subsurface

structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote

sensing from satellites and aerial and underwater autonomous vehicles as potential

monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the

Southern California Bight showed that high offshore summertime cloud cover restricts

the ability of satellite sensors to provide high frequency direct monitoring of these

farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial

and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS)

carrying lightweight optical sensors can provide estimates of canopy area, density, and

tissue nitrogen content on the time and space scales necessary for observing changes

in this highly dynamic species. Underwater color imagery can be rapidly classified using

deep learning models to identify kelp outplants on a longline farm and high acoustic

returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor

the subsurface development of kelp fronds. Current sensing technologies can be used

to develop additional machine learning and spectral algorithms to monitor outplant

health and canopy macromolecular content, however future developments in vehicle

and infrastructure technologies are necessary to reduce costs and transcend operational

limitations for continuous deployment in an offshore setting.

Keywords: autonomous vehicles, remote sensing, sUAS, giant kelp, side scan sonar, deep learning (DL), drones

(unmanned aerial vehicles or UAVs), biofuel
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INTRODUCTION

As the global population grows, so do food and energy demands.
One possibility for meeting these demands is aquaculture in
offshore areas (Lovatelli et al., 2013; Gentry et al., 2017a). This
challenging marine environment has become a viable option due
to recent developments in engineering, while advancements in
offshore marine spatial planning can serve to reduce conflicts and
environmental impacts (Shainee et al., 2012; Gentry et al., 2017b;
Lester et al., 2018).

Giant kelp (Macrocystis pyrifera) is an ideal candidate for
offshore aquaculture because it is among the world’s fastest
growing autotrophs, with elongation rates in excess of 0.5m d−1

under ideal conditions, biomass turnover rates of ∼12 times per
year, and year-round production (Clendenning, 1971; Graham
et al., 2007; Reed et al., 2008; Correa et al., 2016; Rassweiler et al.,
2018). Biomass can be used as a biofuel feedstock, fertilizer, and
animal feed, which all require specific tissue nutrients and sugars
to be maximized (Neushul, 1987; Gutierrez et al., 2006; Wargacki
et al., 2012). However, the same high growth rate and versatility
that makes giant kelp an attractive aquaculture crop necessitates
high frequency monitoring to ensure outplant success, maximize
production, and optimize the nutritional content of harvested
biomass for its various uses.

Since distance from shore, labor costs, and the necessary
scale of production makes in person monitoring unrealistic,
remote sensing is a practical monitoring solution. Fortunately,
the use of remote sensing for the quantification of giant kelp
biomass dynamics and tissue composition has progressed in step
with advancements in sensor technology and data availability.
The advent of freely available, multispectral Landsat imagery in
2008 (Woodcock et al., 2008) enabled the monitoring of the
floating surface canopy of giant kelp over large space and time
scales. Cavanaugh et al. (2011) used linear unmixing methods
to produce a time series of kelp canopy biomass in the Santa
Barbara Channel, calibrated using a monthly time series of
diver-estimated canopy biomass. Airborne imaging spectroscopy
was used to estimate the physiological condition of the floating
canopy, which is related to tissue nitrogen content and frond
senescence and has implications for optimizing biomass quality
and timing of harvest (Card et al., 1988; Bell et al., 2015, 2018;
Rodriguez et al., 2016). Acoustic sensors have also been used
to successfully estimate the density of subsurface giant kelp
plants (Zabloudil et al., 1991; Parnell, 2015). While much of
this work has focused on natural populations of giant kelp,
these methods are readily adaptable to offshore kelp aquaculture
farms and provide an excellent foundation to innovate with
emerging technologies.

Leveraging existing and nascent technologies may allow for
the development of effective monitoring platforms for offshore
kelp aquaculture farms. Several new multispectral satellite
systems have started acquiring free, publicly available imagery
with increases in pixel resolution and sensor sensitivity (Drusch
et al., 2012; Markham et al., 2018). Additionally, a global, repeat
imaging spectrometer will likely start acquiring imagery in the
mid-2020’s (National Academies of Sciences, Engineering, and
Medicine, 2018). Furthermore, cloud-based archive and analysis

platforms, such as Google Earth Engine, have democratized
the processing of satellite imagery by removing the need for
expensive software and local computing resources (Gorelick
et al., 2017). Nascent autonomous vehicle technologies deploying
both optical and acoustic sensors have the potential to provide
rapid, repeat monitoring capabilities both above and below the
ocean surface (Ackleson et al., 2017; Hardin et al., 2019). Small
Unoccupied Aircraft Systems (sUAS; aerial drones) have been
rapidly adopted for high temporal and spatial scale monitoring
of agriculture and advances in sensor miniaturization have
allowed a suite of multispectral and hyperspectral sensors to
be carried by these lightweight vehicles (Zhang and Kovacs,
2012). The recent increase in availability of low-cost remotely
operated vehicles (ROVs) and autonomous underwater vehicles
(AUVs) along with machine learning-based image processing,
signal future innovations in subsurface monitoring capabilities
(Salman et al., 2016; Fedorov et al., 2017; Manley and Smith,
2017; Lund-Hansen et al., 2018). All of these technologies possess
unique advantages that could be leveraged to develop an offshore
aquaculture monitoring system.

To assess the ability of spaceborne, aerial, and subsurface
remote sensing technologies to provide products necessary for
the monitoring of offshore kelp aquaculture farms we ask the
following questions: (1) Does cloud cover limit the ability of
satellite sensors to monitor kelp farms in the offshore areas of the
Southern California Bight? (2) Can commercially available sUAS-
mounted optical sensors provide spatial estimates of kelp canopy
area, biomass, and tissue nitrogen content? (3) Are deep learning
classified underwater color imagery and side scan sonar able to
identify kelp outputs on a longline aquaculture farm? Based on
the monitoring capabilities of these remote sensing platforms
on natural kelp forest canopies and nearshore kelp farms we
determine the optimal use of each sensor platform and discuss
the operational risks and limitations of these platforms for use in
an offshore aquaculture setting.

MATERIALS AND METHODS

Overview
Here, we use three approaches to examine the capabilities
of various remote sensing platforms to monitor offshore kelp
aquaculture farms. First, we examine the feasibility of spaceborne
monitoring by analyzing several decades of Landsat imagery
to produce maps of the mean seasonal cloud cover over
the United States portion of the Southern California Bight
(SCB). Second, we deploy multiple sUAS-mounted sensors (color
camera, multispectral, hyperspectral) to image a natural kelp
forest canopy located in the western Santa Barbara Channel
(Arroyo Quemado; 34.467◦N 120.118◦W) and show monitoring
products developed using the different types of imagery. All
sUAS imagery was acquired on June 30, 2019 between 9 a.m.
and 12 p.m. local time with clear skies and light wind at an
altitude of 120m above ground level, and concurrent with a
Landsat satellite overpass. Tidal height fell from 1.05 to 0.67m
over the 3-h period as recorded from the Santa Barbara, CA
tide station. Third, we image juvenile giant kelp outplants with
underwater color imagery and side scan sonar on a longline
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aquaculture farm located approximately 1.2 km off the coast of
Santa Barbara, California (Santa Barbara Mariculture; 34.392◦N
119.759◦W). We develop deep learning models to classify kelp
from the color imagery and assess the acoustic returns before
and after the formation of pneumatocysts (gas bladders). Juvenile
giant kelp sporophytes (outplanted between microscopic and
∼2 cm in length; n = 2,500) were outplanted along long lines
over 5 days fromMay 5 throughMay 9, 2019 to assess the growth
and production of different giant kelp genotypes under farmed
conditions. All underwater imagery and diver measurements
were collected along a subset of the farm lines between July 11
and August 1, 2019.

Cloud Cover Analysis to Examine Satellite
Monitoring Potential
Mean seasonal cloud cover over the SCB was determined using
Landsat satellite imagery from 1984 to 2019. The Landsat satellite
sensors provide multispectral imagery at a 30m pixel resolution
with a repeat frequency of 16 days during periods with one
satellite sensor and 8 days when two sensors are in orbit.
Three Landsat sensors were used: Landsat 5 Thematic Mapper
(TM; 1984–2011), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+; 1999 – present), and Landsat 8 Operational Land Imager
(OLI; 2013 – present). Due to the scan line corrector error on
the Landsat 7 ETM+ instrument, only data from 1999–May
2003 were used in the cloud cover analysis. All Landsat images
were acquired as atmospherically corrected surface reflectance
images and the pixel quality assessment band associated with
each image was used to determine cloud containing pixels. The
analysis was completed for the four Landsat tiles which cover the
SCB (path/row: 042/036, 041/036, 041/037, 040/037).Mean cloud
cover was then determined for each offshore pixel (USA federal
waters; >3 nautical miles from the coast) for each season across
all years. All cloud cover analysis was completed in Google Earth
Engine (Gorelick et al., 2017).

In order to estimate the number of seasonal cloud-free views
of each remote sensing pixel in the offshore region we used:

S = (1− x) × (L/r) (1)

where S is the mean number of usable satellite views per season,
x is the mean cloud covered fraction of all offshore pixels, L is the
length of the season in days, and r is each satellite sensor’s repeat
period in days. Repeat periods for several medium resolution
(10–30m pixel resolution) satellite sensors were used, including
the multispectral Landsat sensors (16 days) and Sentinel-2
sensors (twin satellites; 5 days), and the hyperspectral sensor
on the planned Surface Biology and Geology (SBG) designated
observable (proposed 16 days; Table 1).

Canopy Analysis Using Landsat Imagery
Landsat 7 ETM+ imagery from June 30, 2019 was
downloaded from the USGS Earth Explorer website (Table 2;
earthexplorer.usgs.gov) as atmospherically corrected surface
reflectance imagery. Kelp canopy fraction was determined
following methods described in Cavanaugh et al. (2011) and
Bell et al. (2020). Briefly, Landsat pixels were classified as

containing kelp canopy using a binary decision tree using
spectral bands 1–5, and 7. The fractional cover of kelp canopy
inside each pixel was determined using Multiple Endmember
Spectral Mixture Analysis (MESMA; Roberts et al., 1998), where
the reflectance spectrum (spectral bands 1–4) of each pixel is
iteratively modeled as a linear combination of one kelp canopy
spectral endmember and one of 30 seawater endmembers.
The 30 seawater endmembers were taken from Landsat pixels
classified as seawater to account for varying spectral qualities due
to sun glint, phytoplankton blooms, and suspended sediment.
The optimal model, and resulting kelp canopy fraction estimate,
minimizes the root mean squared error between the modeled
and observed pixel reflectance spectrum. Kelp canopy fraction
has been found to be linearly correlated with canopy biomass
density using the empirical relationship between a time series
of Landsat kelp canopy fraction estimates and monthly diver
estimated canopy biomass at two permanent transects in the
Santa Barbara Channel from 2003 to 2017 (Cavanaugh et al.,
2011; Bell et al., 2020).

Canopy Analysis Using sUAS Color
Imagery
Aerial color digital imagery was obtained for the Arroyo
Quemado kelp forest using a DJI Phantom 4 Pro sUAS, which is
equipped with a 20MP (1′′ CMOS sensor, 84◦ FOV) color camera
and can image areas of ∼40 hectares in one flight (Table 2).
All camera settings were set to automatic and there was no
spectral calibration using calibration targets. Photogrammetric
software (Agisoft Metashape Pro Version 1.5.0) was used to
produce a georeferenced orthomosaic from the color imagery.
Georeferencing was validated using known ground control
points on land, approximately 200m from the inshore edge of the
kelp canopy. After land and breaking waves were removed from
the color orthomosaic, floating kelp canopy was classified using a
simple band ratio where Red is the red band and Blue is the blue
band of the color image:

Kelp Canopy,
Red

Blue
≥ 1 (2)

Seawater,
Red

Blue
< 1 (3)

Canopy Analysis Using sUAS Multispectral
Imagery
Multispectral aerial imagery was collected for the Arroyo
Quemado kelp forest using theMicaSense Altum sensormounted
on a DJI Matrice 200 sUAS, which can also image areas
of ∼40 hectares in one flight (Table 2). The Altum sensor
has five individual 3.2 MP cameras which simultaneously
capture images across five spectral bands: blue (475 nm center,
32 nm bandwidth), green (560 nm center, 27 nm bandwidth),
red (668 nm center, 14 nm bandwidth), red edge (717 nm
center, 12 nm bandwidth), near infrared (840 nm center, 57 nm
bandwidth). A 50% gray panel with a known reflectance
across each of the five spectral bands was captured before and
after the flight to convert each image to reflectance. Agisoft
Metashape Pro software was used to produce a georeferenced
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TABLE 1 | Various current and planned satellites systems which are potentially useful for kelp aquaculture.

Satellite system Sensor type Spatial resolution (m) Repeat period (days) Winter Spring Summer Fall

Landsat

(1 satellite)

Multispectral 30 16 4.1 (0.37) 3.0 (0.6) 1.9 (1.1) 3.7 (0.5)

Landsat

(2 satellites)*

Multispectral 30 8 8.1 (0.74) 6.0 (1.1) 3.7 (2.3) 7.4 (1.0)

Sentinel-2 Multispectral 10 5 13.0 (1.2) 9.6 (1.8) 5.9 (3.7) 11.8 (1.6)

SBG† Hyperspectral† 30† 16† 4.1 (0.37) 3.0 (0.6) 1.9 (1.1) 3.7 (0.5)

“Sensor Type” and “Spatial Resolution” refer to the sensors’ visible and near infrared bands. Seasonal values show the estimated mean number of usable views per season (standard

deviation) of the offshore region of the Southern California Bight (USA federal waters; >3 nautical miles from the coast). SBG is the initialization for the Surface Biology and Geology

designated observable, whose targeted observation capabilities include a global, repeat imaging spectrometer.

*Landsat 7 ETM+ & Landsat 8 OLI (2013 – present), Landsat 8 OLI & Landsat 9 OLI-2 (starting 2021).
†
Planned (mid-2020’s).

TABLE 2 | Remote sensing technologies that can be used to monitor giant kelp aquaculture farms and the products which can be derived from the imagery.

Application Vehicle Sensor type Sensor Spatial scale Products

Canopy Satellite Multispectral Sentinel-2/Landsat 10m /30m Areaa, Biomassb

Hyperspectral† SBG† 30 m† Pigmentc/Nitrogen§/

Sugar‡ Content, Age‡

sUAS Color Camera 1′′ sensor, 84◦ FOV, 20 MP 3.2 cm* Area§

Multispectral Micasense Altum 6.5 cm* Areaa, Biomassb

Hyperspectral Headwall

Nano-Spec

7.5 cm* Pigmentc/

Nitrogen§/Sugar‡

Content, Age‡

Subsurface ROV/AUV/

surface craft

Color Camera 1/2.9′′ sensor, 80◦ FOV,

1,080 p

2.6mm at

3m distance

Identification§, Size‡,

Disease‡, Herbivory‡

Sidescan Sonar Edgetech 4215/Marine

Sonic MKII (900 kHz)

1 cm across track Identification§, Size‡,

Biomass‡

†
Planned, ‡ in principle, §this study, *120m above ground level altitude.

aHamilton et al. (2020).
bCavanaugh et al. (2011).
cBell et al. (2015).

orthomosaic for each spectral band (version 1.5.0). Kelp canopy
density was determined using MESMA across all five spectral
bands using one kelp spectral endmember and 10 seawater
spectral endmembers (similar to the methods used with Landsat
imagery in section Canopy Analysis Using Landsat Imagery).
The kelp spectral endmember was determined using the mean
spectrum of the 100 kelp canopy pixels with the highest near
infrared reflectance (Supplementary Figure 1). Kelp canopy,
like all photosynthetic material, displays a high reflectance
in the near infrared, while seawater rapidly attenuates near
infrared radiation (Cavanaugh et al., 2011; Bell et al., 2015).
The 10 seawater endmembers were randomly chosen from
seawater areas at least 50m from the nearest kelp canopy
(Supplementary Figure 1).

Canopy Analysis Using sUAS
Hyperspectral Imagery
Hyperspectral aerial imagery was collected over the Arroyo
Quemado kelp forest using a Headwall Nano-Hyperspec VNIR
sensor mounted on a DJI Matrice 600 Pro sUAS, which can

image areas of ∼20 hectares in one flight (Table 2). The Nano-
Hyperspec VNIR sensor measures a continuous reflectance
spectrum from 400 to 1,000 nm across 270 contiguous 2.2 nm
spectral bands. The sensor is a push broom scanner with
640 spatial bands and a 12mm focal length lens, delivering
a 7.2 cm pixel resolution at an altitude of 120m. The sensor
was calibrated before each flight by capturing a dark reference
and a white reference using a 50% gray panel with a known
spectral reflectance from 400 to 1,000 nm. A 3 × 3m spectral
reflectance calibration tarp comprised of three 3 × 1m gray
sections (11, 32, and 56% reflectance) was placed on the
beach approximately 175m inshore of the kelp canopy and
was captured in the hyperspectral imagery. Image swaths
were processed to surface reflectance data by first converting
the recorded digital numbers to radiance using the dark
reference and a sensor specific radiometric calibration file.
Second, radiance was converted to surface reflectance using
the three panels of the spectral reflectance calibration tarp
captured in the imagery. The processed surface reflectance
image swaths were individually orthorectified and georeferenced,
and the positioning of each swath was then adjusted to
match overlapping pixels between neighboring image swaths.
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All image processing was completed using the Headwall
SpectralView software.

Each georeferenced image swath was then processed further
using Matlab (version 2018b) first by smoothing all reflectance
spectra using a Savitzky-Golay filter with a three-band window
(Savitsky andGolay, 1964). Pixels containing glint were identified
as all pixels where reflectance was >30% at the band centered at
731 nm and removed. Pixels were classified as kelp canopy where
the ratio of reflectance at the band centered at 731 nm to the band
centered at 509 nm was >3. Kelp canopy density was determined
using MESMA across the entire reflectance spectrum using one
kelp spectral endmember and 10 seawater spectral endmembers.
The kelp spectral endmember was determined as the mean
of the 100 kelp canopy pixels with the highest near infrared
reflectance across all image swaths. The 10 seawater endmembers
were randomly chosen from seawater areas at least 50m from
the nearest kelp canopy. After these additional processing steps,
the resulting hyperspectral image was then georeferenced for a
second time using the orthomosaic captured by the color camera
sUAS to correct any spatial discrepancies.

Nitrogen Content Spectral Algorithm
Development
In order to use spectral imagery to assess the condition of the kelp
canopy using metrics such as tissue nitrogen content, empirical
relationships must be developed between the spectra and the
condition metric of interest. We used data of giant kelp blade
reflectance with corresponding data of blade tissue nitrogen
content collected monthly from 2012 to 2015 at three kelp forests
in the Santa Barbara Channel to develop these relationships (see
Bell et al., 2018 for detailed methods). Briefly, every month 15
mature canopy blades were collected at each of the three sites
and their reflectance between 350 and 800 nm (1 nm intervals)
was measured in the laboratory using a Shimadzu UV 2401PC
spectrometer with an integrating sphere attachment. A 5 cm2 disc
was excised from the central portion of each blade and placed
in a drying oven at 60◦C for several days until completely dry.
The dried discs were then combined, weighed, ground to a fine
powder, and analyzed for nitrogen content using an elemental
analyzer (Carlo-Erba Flash EA 1112 series, Thermo-Finnigan
Italia, Milano, Italy). The mean reflectance spectra averaged
over the 15 blades collected monthly for each site was paired
with the pooled tissue nitrogen content of the 15 blades for the
purpose of assessing the relationship between blade reflectance
spectra and nitrogen content (n = 101 paired reflectance &
nitrogen samples).

We focused on changes in the shape of the reflectance
spectrum rather than the magnitude since sun glint or the
proportion of kelp canopy inside an imaged pixel can have a large
effect on reflectance magnitude (Cavanaugh et al., 2011). We
first interpolated the 1 nm laboratory reflectance onto the 2.2 nm
spectral bands associated with the Nano-Hyperspec sensor (full
width at half maximum = 6.6 nm). Normalized reflectance
(Nr) was determined by scaling reflectance (between 0 and 1)
based on the maximum and minimum reflectance values of the
spectral bands between 596 and 670 nm, an area of the spectrum

important for diagnosing kelp physiological condition (Bell et al.,
2015), and then adding a value of 1 to all spectral bands so
that all values were positive. The bands in the range used for
normalization represent wavelengths with low and relatively flat
seawater reflectance and avoid the rapid increase in reflectance
associated with the red edge of kelp canopy reflectance.

The ratio of Nr for all band pairs between 596 and 670 nm
were iteratively compared to tissue nitrogen content across
all 101 samples using linear and generalized additive models
(GAMs; R package mgcv; Wood, 2017). Each GAM was fit
between tissue nitrogen content and the predictor variable(s)
with a Tweedie error structure (power function = 1.01; k = 5).
In the visible light bands, differences in the spectral shape of
reflectance are not a direct function of the tissue nitrogen content
itself but are due to the additive absorption and fluorescence
properties of various pigments (Gates et al., 1965; Woolley,
1971; Gausman, 1983; Hochberg et al., 2004). Photosynthetic
pigment concentrations are modulated by both the ambient
seawater nitrate concentration and available light, and different
relationships may exist between pigment concentration and
nitrogen content under nutrient vs. light limited conditions
(Laws and Bannister, 1980). Due to these potential differences,
photosynthetically active radiation (PAR) during the 30 days
prior to sample collection was included as a predictor in the
models. We compared model parsimony using the Akaike
information criterion (AIC). Photosynthetically active radiation
was determined using the closest 4 km daily MODIS Aqua
product to each site (oceandata.sci.gsfc.nasa.gov; Bell et al., 2018).

Application of Nitrogen Algorithm to sUAS
Hyperspectral Imagery
In order to create maps of kelp canopy nitrogen content,
the tissue nitrogen content algorithm must be applied to the
reflectance spectra measured by the Nano-Hyperspec VNIR.
The hyperspectral image spectra were first normalized in the
same manner as the laboratory reflectance spectra. Since each
7.2 cm pixel is a combination of kelp canopy and seawater, we
used MESMA to estimate the fractional cover of kelp canopy
and removed all pixels with a relative canopy fraction of <0.1
to minimize the effect of seawater on the reflectance spectra.
Pixels with excessive noise were removed if the mean coefficient
of variation of Nr between 565 and 610 nm (an area of the
spectrum with low absorption by chlorophyll a) exceeded 10%.
The nitrogen content spectral algorithm determined from the
laboratory spectra was then applied to the hyperspectral imagery.

Subsurface Analysis Using Side Scan
Sonar Imagery
Acoustic imagery of the aquaculture farm was captured using an
Edgetech 4125 400/900 kHz side scan sonar system mounted 1m
below the water surface along the side of a 22-foot vessel moving
at 3 km h−1 (Table 2). The system’s 900 kHz Compressed High-
Intensity Radiated Pulse (CHIRP) pulse delivers an across track
resolution of 1 cm and an onboard inertial measurement unit
allows for correction of the imagery due to surface motion side
scan imagery was collected on July 12 and July 30, 2019 along the
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length of one of the longlines of the Santa Barbara Mariculture
giant kelp facility.

Subsurface Analysis Using Color Imagery
Underwater color imagery and video was captured by a high
definition 1,080 p (1/2.9′′ sensor, 80◦ FOV) color camera
mounted on a Blue Robotics Remotely Operated Vehicle (ROV)
on July 11 and July 29, 2019 along a portion of the same longline
surveyed using side-scan sonar (Table 2). Visual analysis of the
juvenile kelp growing on the longlines (number of pneumatocysts
individual−1) were performed for the portion of the longline
surveyed on both dates using video collected by the ROV. The
length of each kelp individual growing on the longline was
measured by divers on July 12 and August 1, 2019. Elongation
rate was determined for each individual kelp outplant that was
measured on both dates by dividing the difference in maximum
length by the number of days between surveys.

The images collected by the ROV were automatically analyzed
for subsurface kelp outplant distribution using deep learning
models trained from a set of human annotated imagery (ViQi,
Inc.). The models used a Convolutional Neural Network (CNN;
CaffeNet), which was pre-trained on the ImageNet dataset and
used transfer learning techniques to train the models. Transfer
learning was optimized to retrain the neural network while
only fine-tuning the convolutional, feature retrieval, layers. This
approach is especially useful when training with a small number
of samples and when visual features created for natural image
recognition are descriptive for the task in hand. Our training
dataset consisted of five classes including ocean, kelp, longline,
tag, and wire tie (plants were individually marked with tags
affixed to the line with wire ties). Each class was manually
annotated using polygonal outlines (405 ocean, 370 kelp, 316 long
line, 338 tag, and 230 wire tie polygons). Since small numbers
of training samples require additional methods to render good
models, we exacted multiple samples from polygons using
uniform gridding. The final training set consisted of >125,000
samples of ocean,>11,000 of kelp,>12,000 longline,>4,000 tags
and >2,000 wire ties. The augmented dataset was then randomly
partitioned into a training subset using 60% of the samples,
withholding 20% for testing, and the final 20% for validation.

RESULTS

Effect of Cloud Cover on the Usefulness of
Satellite Observations
Cloud cover, which limits the ability of satellites to observe the
ocean surface, displayed seasonal variability in the SCB over
decadal time scales. Cloud cover over offshore areas was generally
lowest in the winter (x = 29.0%), increased in spring (x = 47.2%)
to a maximum in summer (x = 67.5%) and declined in fall
(x = 35.4%). The seasonal pattern of cloud cover varied spatially
(Figure 1), as cloud cover was fairly consistent in winter, spring,
and fall (σ = 3.3, 5.0, and 4.3%, respectively), while offshore
areas and windward coasts were generally cloudier than the
leeward coasts of the mainland and islands during the summer
(σ = 10.0%). The various satellite systems produced different
numbers of usable images ranging from ∼2 to 13 per season

depending on their repeat time, number of satellites in a system,
and seasonal cloud cover (Table 1).

Kelp Canopy Nitrogen Content Spectral
Algorithm
Several spectral band ratios displayed strong linear and non-
linear relationships with tissue nitrogen content. The ratio of Nr
for any band located between 603 and 644 nm, and any band
located between 665 and 680 nm was significantly and strongly
linearly correlated with tissue nitrogen content. The changes in
spectral shape in this region of the spectrum were superior for
the estimation of tissue nitrogen content compared to spectral
features in the blue, green, and near infrared wavelengths
(Figure 2). The use of GAMs to incorporate the non-linearity
of the relationship between the spectral band ratios and tissue
nitrogen content led to the selection of the bands centered at 640
and 670 nm as the optimized wavelengths for the model:

Nr670nm / Nr640nm (4)

where Nr670nm and Nr640nm are the normalized reflectance at
the bands centered at 670 and 640 nm, respectively (r2 =

0.57; p < 0.0001; Figure 3A). Using both Nr670nm / Nr640nm
and PAR as predictor variables (R2 = 0.60; p < 0.0001, p =

0.015, respectively) decreased the AIC from 142.9 to 130.9,
indicating a more parsimonious model. The effect of PAR on
tissue nitrogen is demonstrated by the different relationships
between Nr670nm / Nr640nm and tissue nitrogen content during
high light (April–September) and low light (October–March)
periods of the year (Figure 3A). The non-linear relationship
betweenNr670nm /Nr640nm and tissue nitrogen content displayed
an effect size range of−0.48 to 0.68, and the relationship became
positive at values >0.62 (Figure 3B). Photosynthetically active
radiation displayed a linear relationship with tissue nitrogen
content where the effect size of the relationship became positive
at values >41 E m−2 d−1, with an effect size range of −0.11 to
0.09 (Figure 3C).

Assessment of Kelp Canopy
Characteristics From Satellite and Aerial
Imagery
In order to compare the various types of imagery and derived
products, we surveyed a 10-hectare area containing kelp forest
canopy with four different sensors over the course of a 3-h period.
We first imaged the kelp canopy using the color camera on
the Phantom 4 Pro sUAS, which produced a color orthomosaic
with a final pixel resolution of 3.2 cm (Figure 4A). Kelp canopy
and seawater were then classified from the color orthomosaic
using (Equations 2 and 3) for a total estimated canopy area of
1.39 hectares (Figure 4B). The multispectral sensor onboard the
Matrice 200 sUAS then imaged the study area, which produced an
orthomosaic with a final pixel resolution of 6.5 cm. Kelp canopy
fraction was then estimated using MESMA for the entire survey
area (x = 0.059; σ = 0.174) and from all pixels containing kelp
canopy (kelp canopy fraction >0; x = 0.424; σ = 0.250) for
a total estimated canopy area of 1.41 hectares (Figure 4C). The
hyperspectral sensor on the Matrice 600 Pro sUAS then imaged
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FIGURE 1 | Mean seasonal cloud cover for areas offshore of Southern California at a 30 × 30m pixel resolution, determined from 35 years of Landsat imagery

(1984–2019). Red dot shows the location of the kelp forest in Figure 4.

the study area to produce amap of canopy tissue nitrogen content
(x = 2.32%; σ = 0.465%). The native 7.2 cm pixels were then
interpolated onto a 25 cm grid, and all grid cells with less than
three tissue nitrogen estimates were discarded (Figure 4D).

The Landsat 7 ETM+ satellite sensor imaged the survey
area simultaneous to the sUAS flights and kelp canopy fraction
was estimated from the entire survey area (Figure 4F; x =

0.037; σ = 0.088) and for all pixels classified as containing
kelp canopy (x = 0.196; σ = 0.099). Kelp canopy fraction
ranged from 0.074 to 0.523, corresponding to a 0.78–3.71 kg m−2

range of canopy biomass density. Kelp canopy fractions from
the multispectral sUAS imagery (6.5 cm) were interpolated to the
30m Landsat grid and were compared using a linear regression
(Figures 4E–G; r2 = 0.853, p < 0.0001; y = 1.087 + 0.015).
Overall, Landsat underestimated kelp canopy fractional cover by
33% when fractions were summed (6.71 vs. 4.50 summed kelp
canopy fraction, respectively).

Acoustic Analysis of Juvenile Kelp
Outplants on Farm Longlines
Kelp outplants increased in size between the two acoustic survey
dates and diver measurements of the kelp outplants displayed an
average elongation rate of 0.55 cm d−1 (σ = 0.38; n = 50). Video
analysis showed an increase in the number of pneumatocysts per

outplant from 1.15 (σ = 1.87; n = 108) on July 11 to 6.18 (σ
= 6.12; n = 97) on July 29, 2019 (Figure 5A). Side scan sonar
imagery showed high acoustic returns for the longline and its
structural buoys and weights during the survey on July 12, 2019.
The subsequent side scan sonar survey on Jul 30, 2019 showed
high acoustic returns for the same farm structures, as well as
many objects attached to the top of the farm line (Figure 5B).
These high acoustic returns were regularly spaced along the farm
line and correspond to the general distance between the kelp
outplants (∼0.5 m).

Kelp Outplant Visualization Using Deep
Learning Models
The resulting deep learning classification model, which included
all five object classes, detected kelp with 72% accuracy (percent of
kelp class polygons correctly identified) and 32% error (percent
of non-kelp class polygons incorrectly identified as kelp). After
initial validation, we refined the model by disabling poorly
performing classes (accuracy<25%). Since our primary objective
was to detect kelp outplants, we also disabled classes deemed
unnecessary (background ocean and wire tie). Disabling the
ocean and wire tie classes reduced errors introduced to other
classes and positively affected model performance, with the final
model detecting kelp with 91% accuracy and 7% error, while
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FIGURE 2 | (A) Smoothed normalized reflectance spectra of giant kelp canopy blades with different tissue nitrogen contents measured in the laboratory. (B)

Smoothed normalized reflectance spectra of the giant kelp canopy using the sUAS hyperspectral sensor. Tissue nitrogen content estimated using the ratio of the

spectral bands centered at 670 and 640 nm (dashed black lines). The bottom panels show enlargements of the areas inside the black boxes in the top panels.

longline detection demonstrated 68% accuracy and 2% error.
The model produced polygonal annotations of kelp and longline
classes that visually resembled human annotations (Figure 6).

DISCUSSION

Remote Monitoring of the Kelp Canopy
Aerial and spaceborne imaging of the floating kelp canopy
have the potential to deliver several actionable products to
offshore aquaculture managers (Table 2 and Figure 4). Satellite
observations of the kelp canopy represent the most mature sector
of the aquaculture monitoring platforms examined in this study
as these sensors have been used to assess natural kelp forest
dynamics over 100’s of km (Cavanaugh et al., 2019). The spectral
and spatial resolution (30m) of the Landsat satellite sensors
can provide estimates of canopy biomass that compare well
to over a decade of in situ diver estimates (Bell et al., 2020).

However, because existing operational multispectral satellites
were primarily designed for terrestrial targets (Table 1), only
the area or biomass of canopy forming kelp species can be
determined. The mixture of kelp canopy and seawater in each
10–30m pixel limits their ability to use common multispectral
band ratios to estimate plant physiological condition or the
elemental content of the tissue (Table 2; Cavanaugh et al.,
2010, Cavanaugh et al., 2011; Bell et al., 2015). In the near
future, opportunities exist for more comprehensive spaceborne
monitoring of kelp aquaculture farms using global, repeat
hyperspectral imaging. The Surface Biology and Geology (SBG)
designated observable (a set of targeted observation capabilities
from a future spaceborne mission) will provide the spectral
coverage and resolution necessary to estimate the physiology and
macromolecular content of the kelp canopy in the presence of
seawater (Bell et al., 2015; Lee et al., 2015). For example, the
spectral bands centered at 640 and 670 nm will be measured by
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FIGURE 3 | (A) Scatterplot of the spectral band ratio of normalized reflectance for bands centered at 670 and 640 nm (Nr670nm/Nr640nm) and tissue nitrogen content.

Colored lines represent best fit lines between Nr670nm/Nr640nm and tissue nitrogen content in the high light season (yellow; April–September) and low light season

(blue; October–March). Mean photosynthetically active radiation (PAR) for 30 days prior to the sampling date. (B) The additive effect of Nr670nm/Nr640nm on tissue

nitrogen content and (C) the additive effect of PAR on tissue nitrogen content produced using a generalized additive model estimating tissue nitrogen content from

both Nr670nm/Nr640nm and PAR. Black lines show the mean relationship and shaded gray areas show the standard error.

the proposed satellite sensor and can assess the physiological
condition and nitrogen content of the kelp canopy without
relying on bands in the red edge (680–750 nm) and near infrared
(>750 nm) regions, which are rapidly attenuated by seawater
(Mobley, 1994).

The temporal resolution of satellite imagery and the lack of
flexibility in image acquisition timing restrict the monitoring
capabilities of satellite imagery for offshore aquaculture. Publicly
available imagery (Table 1) are acquired on a 5 to 16 day repeat
cycle regardless of cloud cover. Cloud cover in offshore areas of
the Southern California Bight is considerably higher than coastal
areas especially in the summer (Figure 1), a period when frequent
monitoring may be vital to optimize production and harvest
timing. However, by combining the imagery of multiple satellite
systems there is an enhanced opportunity of a cloud-free view in
any season (Li and Roy, 2017). Additionally, spatial resolution
may also be problematic since pixel resolution is typically
between 10 and 30m (Table 2). Fine scale canopy features will
likely be lost as the reflectance signal is averaged over larger
areas, whichmay include floating farm structures (Figures 4E–G;
Cui et al., 2019). Higher resolution satellite imagery (0.5–3m)
can be expensive to acquire, not publicly available, and/or not
feasible for repeat imaging on the time scales necessary to deliver
actionable information (Fan et al., 2018; Fu et al., 2019; Zhu
et al., 2019). Despite the increased cloud cover in the offshore
zone, moderate spatial resolution satellite sensors (daily repeat
interval, more consistent coverage) could be used to monitor the
farm environment (e.g., sea surface temperature). While these
sensors cannot provide direct observations of the kelp canopy,
valuable products such as seawater nitrate concentration can be
empirically derived from satellite determinations of sea surface
temperature (Kamykowski and Zentara, 1986; Snyder et al.,
2020).

While there has been an increased use of sUAS for agricultural
crop monitoring over the past decade (reviewed in Puri et al.,
2017), their use in aquaculture has been rare (Reshma and

Kumar, 2016). Despite their paucity of use, quality imagery
of the kelp canopy can be acquired with a variety of sUAS
mounted sensors, delivering maps of canopy area, canopy
biomass, and physiological metrics such as tissue nitrogen
content (Figures 4A–D). Commercially available color and
multispectral sensors can rapidly capture imagery over ∼40
hectares in a single flight, and canopy area can be classified
without the need for sophisticated analysis or expensive sensors
(Figure 4B). The considerable differences in reflectance between
seawater and the floating kelp canopy allows for a simple
band ratio of the red and blue spectral bands to differentiate
the classes. Furthermore, the high spatial resolution (∼5 cm)
of this imagery can quantify sparse canopy which may be
missed by the lower resolution imagery acquired by satellite
sensors (Figures 4E–G). Hyperspectral sensors can provide the
spectral data necessary to estimate the physiological and tissue
content metrics of the kelp canopy through the quantification
of photosynthetic pigment concentrations (Figure 4D; Bell et al.,
2015; Adão et al., 2017). The chlorophyll a pigment absorbs
blue and red wavelengths to drive the photosynthetic process,
with absorption peaks at 430 nm and 662 nm. Giant kelp
lacks the chlorophyll b pigment (absorption peaks at 453 and
642 nm) but possesses the chlorophyll c pigment (absorption
peaks at 444 and 626 nm; Wheeler, 1980). The absence of the
chlorophyll b pigment produces a peak in the kelp reflectance
spectrum at ∼640 nm and provides a reference point to assess
the relative spectral absorption associated with the chlorophyll a
pigment at ∼670 nm (Figure 2). While the spectral information
at 640 and 670 nm can be used to assess the concentration of
the chlorophyll a pigment (Bell et al., 2015), the relationship
between pigment concentration and tissue nitrogen content
is also a function of the amount of sunlight reaching the
surface canopy (Figure 4). Marine photosynthetic organisms
optimize pigment concentrations in response to available light
through photoacclimation, where increased solar irradiance
lessens the need for high pigment concentrations to maximize
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FIGURE 4 | (A) Color orthomosaic of the Arroyo Quemado kelp forest canopy using the color camera on the Phantom 4 Pro sUAS (pixel resolution of 3.2 cm). (B)

Kelp canopy classified from the color orthomosaic. (C) Fraction of each pixel covered by kelp canopy determined using Multiple Endmember Spectral Mixture Analysis

(MESMA) with imagery from the sUAS multispectral sensor (pixel resolution of 6.5 cm). (D) Kelp canopy nitrogen content determined using the nitrogen content

spectral algorithm with imagery from the sUAS hyperspectral sensor (pixel resolution 25 cm). (E) The mean kelp canopy fraction from the multispectral sensor binned

into 30m pixels to compare with (F). Kelp canopy fraction determined from the Landsat 7 ETM+ multispectral satellite sensor. (G) Comparison of the kelp canopy

fraction from the multispectral sUAS sensor binned into 30m pixels and the Landsat 7 ETM+ sensor. Pale yellow color shows areas not imaged by the sensor. All

imagery acquired between 9:30 a.m. and 12 p.m. local time on June 30, 2019.

photosynthesis (Laws and Bannister, 1980). While an increase
in photosynthetic pigment is positively associated with a higher
tissue nitrogen content, this relationship is modulated by light
(Figure 3), and these functions can be applied to spectral imagery
to generate maps of tissue nitrogen content across large areas of
kelp canopy (Figure 4D). Knowledge of the spatial patterns of
physiological condition and tissue content metrics of the kelp
canopy can be used to map farm production and time harvest
to maximize desired biomass quality (i.e., nitrogen content).
However, the sheer volume of data collected by hyperspectral
sensors is immense, spectra are difficult to process, and pre-
flight calibration procedures make these sensors challenging to
use in an operational capacity. Research using hyperspectral

imaging to identify the specific spectral bands necessary for
the simultaneous estimation of valuable canopy traits (e.g.,
biomass, nitrogen/sugar content, age) could lead to user-friendly
multispectral sensors with specific bands tailored for kelp canopy
monitoring (Figure 2).

Remote Quantification of Subsurface Kelp
Outplants
Since juvenile kelp stages are especially sensitive to changing
environmental conditions, competition, and herbivory, it may
be important to assess the state of kelp outplants prior to
canopy development using subsurface sensors (Dean et al., 1984;
Hernández-Carmona et al., 2001; Gorman and Connell, 2009).
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FIGURE 5 | (A) Histogram showing the number of pneumatocysts per individual determined from video captured by a remotely operated vehicle (ROV) on a section of

each line at each date. (B) Side scan sonar imagery of the line on July 12 and July 30, 2019 showing farm structures and a drifting kelp frond caught on the farm

buoy. Insets inside the orange boxes show enlarged areas of sonar returns along the farm lines between the two dates. Orange arrows show high acoustics returns at

the locations of probable kelp outplants. Color images captured by the ROV showing typical size of individual kelp outplants for each date.

FIGURE 6 | Schematic showing the steps to develop and validate the deep learning model used to automatically classify giant kelp juveniles on an aquaculture farm.

(1) Collect imagery of the farm lines using a color camera mounted on an underwater vehicle. (2) The images (n = 137) were classified by hand into five classes: Kelp,

Line, Tag, Ocean, and Wire Tie. Light blue areas show sections of the background ocean which were not classified by hand. (3) The number of samples for model

training was augmented by extracting multiple samples from inside the polygons of each class. The model was then trained using 60% of the images with a

convolutional neural network and refined using 20% of the images. Model refinement involves identifying and removing poorly performing classes. (4) The final model

was validated using the final 20% of the imagery by comparing hand classifications to the deep learning classifications.

The automated analysis of underwater color imagery using deep
learning models could enable repeat monitoring of kelp juveniles
on offshore farms. Machine learning based methods have already
been successfully applied to underwater color imagery to classify
fish species and quantify the biodiversity of marine sessile
communities (Rahimi et al., 2014; Salman et al., 2016). In
this study, a small set of underwater imagery collected by an

inexpensive color camera mounted on an ROV was used to train
a deep learning model and successfully classify kelp, tags, and
longlines despite changes in kelp orientation due to water motion
(Figure 6). Thesemethods have advantages over spectral analyses
as depth, bottom reflectance, and standoff distance of the sensor
can significantly change the measured reflectance spectrum
(Mobley, 1994). These tools should also be adaptable to other
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kelp aquaculture monitoring tasks such as quantifying epibiont
load or identifying the presence of herbivores. Capturing usable
underwater color imagery requires clear water and sufficient
solar illumination to produce satisfactory results. Fortunately,
suspended particle concentrations are reduced in the offshore
environments off the Southern California coast which should
lead to greater opportunities for underwater image collection
(Henderikx Freitas et al., 2017). Additionally, offshore farm
structures can be equipped with inexpensive turbidity or light
sensors in order to optimize the timing of image acquisition.

Acoustic measurements do not require light and are also less
sensitive to water clarity than optical imaging and high-quality
measurements can be acquired at any time of day and across a
range of seawater conditions (Gonzalez-Socoloske et al., 2009).
Side scan sonar is particularly useful to identify kelp outplants
once the juveniles produce gas filled pneumatocysts, which lead
to enhanced acoustic returns (Figure 5; Wilson, 2011). Since a
pneumatocyst exists at the base of each giant kelp blade, there
is a strong linear relationship between total gas volume and kelp
biomass, such that acoustic imagery is ideal for monitoring the
spatial arrangement and growth of subsurface stages of giant
kelp on aquaculture farms (Wilson, 2011). Future development
of these technologies also brings new opportunities, as many
farmed kelp species never produce a floating canopy and require
subsurface monitoring using acoustic sensors or color imaging
(Fischell et al., 2019). These techniques could be deployed to
survey numerous species and have potential for monitoring
across aquaculture industries.

Operational Risks and Limitations
While the use of remote sensing platforms for offshore
aquaculture monitoring reduces risks and costs related to in situ
monitoring there are several limitations to these platforms that
must be addressed before they are used in an operational context
(Table 3). At the present time,monitoring with satellite platforms
presents the fewest operational limitations. Sensor hardware
failures are rare, though they may occasionally lead to missing
data or failure of the sensor system (Markham et al., 2004; Chan
et al., 2018). While the advent of freely available imagery has led
to massive increases in both research and commercial remote
sensing applications, there is no guarantee that these policies will
exist in perpetuity (Zhu, 2019).

A major limiting factor for sUAS monitoring of offshore kelp
aquaculture farms is the lack of available docking, charging, and
data downlink infrastructure necessary for the autonomous and
repeat deployment of these systems. However, there are several
recent patents outlining the design of these systems, suggesting
that such capabilities may be available in the near future (Garrec
and Cornic, 2012; Yu et al., 2016; Gentry et al., 2018). While
consumer grade sUAS equipped with color cameras are relatively
inexpensive (<$1,500 USD), multispectral sensors can cost
several thousand dollars. Processing of the individual images
(e.g., orthorectification, mosaicking) is the responsibility of the
user and precise georeferencing and radiometric calibrationmust
be performed before mosaics and their derived products can
be compared (Cruzan et al., 2016; Doughty and Cavanaugh,
2019). These tasks have been greatly simplified for users
without image analysis training by several companies who offer

cloud-based image processing through subscription services.
Any autonomous vehicle carries a risk of loss associated with
mechanical failure, GPS signal interference, and an inability to
react to novel situations (Milanés et al., 2008). Additionally, while
the U.S. Federal Aviation Administration adopted regulations
allowing for extensive agricultural monitoring activities by sUAS
in 2016, current regulations only allow for ‘line of sight’ operation
where the pilot must maintain visual observation of the vehicle
(Patel, 2016). Such rules will need to be adjusted for the sUAS
monitoring of offshore aquaculture to become a reality.

While autonomous underwater vehicles are a promising
monitoring platform for both acoustic and color imaging, there
are both significant cost and operational risk barriers thatmust be
crossed before these systems become viable monitoring options.
Research-grade side scan sonar systems cost tens of thousands
of dollars, although there has been recent success in monitoring
submerged aquatic vegetation with less expensive consumer-
grade systems (Greene et al., 2018).While the cost of autonomous
underwater vehicles is currently prohibitive to most aquaculture
operations, several small and low-cost vehicles are entering the
market space andmay revolutionize the collection of acoustic and
color imagery in the coming years, and the development cost-
effective infrastructure for docking, charging, and data downlink
for these vehicles is an active area of research (Hobson et al., 2003;
Pyle et al., 2012; Manley and Smith, 2017). Due to these high
costs, the loss of underwater vehicles and their associated sensors
a paramount concern. New statistical approaches to inform the
probability of vehicle loss could be used to determine low risk
conditions and provide adaptive mission management for these
autonomous platforms (Brito and Griffiths, 2016).

Additionally, it is important to assess the risks these
monitoring platforms and large-scale offshore aquaculture farms
present to the environment. While sUAS carry limited risk
to the environment outside of vehicle loss, their potential
effects on the behavior of seabirds is an often-cited concern.
Studies have found minimal negative effects of sUAS while
censusing nesting colonies (Brisson-Curadeau et al., 2017)
however aquaculture operations should be situated away from
wildlife areas to avoid potential interactions. Below water, the
acoustic imaging systems examined in this study (side scan
sonar) generate high-frequency sound at the upper limit of
the audible spectrum and are unlikely to cause a behavioral
response from marine mammals (MacGillivray et al., 2013).
Potential negative impacts of large-scale offshore aquaculture
structures including wildlife interactions, shipping hazards, and
the generation of marine debris are valid concerns and robust
spatial planning should be prioritized to reduce conflicts and
avoid environmental impacts (Gentry et al., 2017b; Lester et al.,
2018).

CONCLUSIONS

This examination of remote sensing technologies guides the
best uses of these platforms to deliver actionable products
for offshore kelp aquaculture farms. Kelp outplant viability
and growth are most readily assessed using underwater color
imagery classified with deep learning models. This combination
of inexpensive cameras and machine learning leads to the rapid
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TABLE 3 | The advantages, disadvantages, risks, and future opportunities of various remote sensing technologies applicable to offshore kelp aquaculture farms.

Application Tool Advantages Disadvantages Risks Future opportunities

Canopy Satellite

Imagery

- Extensive prior work

- Free/publicly

available

- Cloud-based

processing

- Large areal coverage

- Spatial resolution

(10’s m)

- Cloud cover

- No flexibility in timing

- Only canopy species

- Funding dependent

- Sensor malfunction

- Higher spectral

resolution

- High spatial/temporal

resolution

constellations

sUAS

Imagery

- Flexibility on timing

- Spatial resolution

(cm’s)

- Farm scale (10’s

hectares)

- Multiple sensors

avail.

- Consumer-grade

inexpensive

- Depend on

infrastructure

- Only canopy species

- Expensive sensors

- Image processing

- Vehicle/sensor loss

- Government

regulation

- Vehicle improvements

- Specific kelp

aquaculture sensor

development

Subsurface Acoustic

Imagery

- Monitoring of juvenile

stages

- Water clarity less

important

- Expensive vehicles

- Expensive sensors

- Depend on

infrastructure

- Image processing

- Vehicle/sensor loss - Potential for lower

cost vehicles/sensors

- Applications for

multiple aquaculture

sectors

Deep Learning

Classifications of

Imagery

- Monitoring of juvenile

stages

- Tools are nascent

- Customizable/multiple

uses

- Inexpensive sensors

- Water clarity

important

- Development of

specific algorithm

- Vehicle/sensor loss - Potential for lower

cost vehicles

- Stereo cameras

- Applications for

multiple aquaculture

sectors

identification and sizing of small juvenile kelps, measuring
survivorship and growth much earlier than other subsurface
monitoring technologies. The use of deep learning models to
detect kelp in color imagery could be enhanced by future research
developing additional models that quantify the abundance of
kelp herbivores and epibionts. Acoustic imaging from side scan
sonar is most effective once pneumatocysts have developed and
used to track the growth of subsurface kelp fronds that are too
large to be imaged using color imagery (Wilson, 2011). While the
monitoring of kelp farms with underwater side scan sonar and
color imaging shows great promise, their implementation relies
on the development of low-cost AUVs and docking infrastructure
(Hobson et al., 2003; Pyle et al., 2012; Manley and Smith,
2017). Additional research using consumer-grade side scan sonar
sensors to quantify subsurface kelp will also reduce costs (Greene
et al., 2018). Due to high summertime cloud cover in offshore
areas, satellite imagery is most useful for large-scale monitoring
of the farm environment using daily, moderate spatial resolution
estimates of sea surface temperature and derived products such
as seawater nitrate concentration (Snyder et al., 2020). Due to
the rapid growth, turnover, and senescence rates of giant kelp,
observations of kelp canopy biomass quantity and condition,
such as tissue nitrogen content, are most readily achieved
using sUAS imagery (Clendenning, 1971; Rodriguez et al., 2013;
Rassweiler et al., 2018). Improvements in sUAS infrastructure,
multispectral sensors customized for estimating kelp canopy
traits, and a relaxation of the ‘line of sight’ regulation for
offshore areas will strengthen the role of kelp canopy monitoring
by sUAS.
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