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Ecosystem models have been developed for detecting community responses to fishing

pressure and have been widely applied to predict the ecological effects of fisheries

management. Key challenges of ecosystem modeling lie in the insufficient quantity and

quality of data, which is unfortunately common in the marine ecosystems of many

developing countries. In this study, we aim to model the dynamics of multispecies

fisheries under data-limited circumstances, using a multispecies size-spectrum model

(MSSM) implemented in the coastal ecosystem of North Yellow Sea, China. To make

most of available data, we incorporated a range of data-limited methods for estimating

the life-history parameters and conducted model validation according to empirical

data. Additionally, sensitivity analyses were conducted to evaluate the impacts of input

parameters on model predictions regarding the uncertainty of data and estimating

methods. Our results showed that MSSM could provide reasonable predictions of

community size spectra and appropriately reflect the community composition in the

studied area, whereas the predictions of fisheries yields were biased for certain species.

Errors in recruitment parameters were most influential on the prediction of species

abundance, and errors in fishing efforts substantially affected community-level indicators.

This study built a framework to integrate parameter estimation, model validation,

and sensitivity analyses altogether, which could guide model development in similar

mixed and data-limited fisheries and promote the use of size-spectrum model for

ecosystem-based fisheries management.

Keywords: parameter uncertainty, sensitivity analysis, multispecies fisheries, model validation, data-limited

methods, Yellow Sea (YS), size-spectrum model

INTRODUCTION

The impacts of fisheries on marine ecosystems have attracted widespread concerns in
recent decades (Plank et al., 2017). The situation is more severe for mixed fisheries,
in which technical and trophic interactions have substantial impacts on dynamics of
ecosystems (Jennings and Rice, 2011). This fact leads to increasing recognition that fisheries
management should move toward comprehensive ecosystem considerations (Garcia, 2003;
Hollowed et al., 2011), calling a shift from species-specific stock management to more
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general “ecosystem-based fisheries management” (EBFM)
(Pitcher, 2008; Jennings and Rice, 2011). To make the idea of
EBFM operational, ecosystem models are necessary to predict
future changes in fisheries yields and ecosystem dynamics with
respect to different fishing patterns and management regimes.
Recent decades have witnessed growing interest and a bloom of
ecosystem models (Blanchard et al., 2012; Jacobsen et al., 2013,
2017). However, ecosystem models usually include a multitude
of parameters and require intense efforts in data collection and
model validation (Garcia, 2003). Therefore, the application of
ecosystem models is often restricted due to data limitation and
technical complexity. For most developing countries, data of
ecosystems are typically limited and poor in resolution due to
lacking long-term, consistent observation programs. Meanwhile,
it is in these regions that ecosystem models and EBFM are
urgently needed, as their fisheries are often mixed in species and
inadequate in management (Hollowed et al., 2011). Therefore,
we advocate that substantial research efforts are needed to clarify
the implementation of ecosystem models to deliver reliable
fishery projections under insufficient data conditions.

Among the variety of marine ecosystem models, multispecies
size-spectrum models (MSSMs) provide a feasible solution
to simulate ecosystems in data-limited situations (Andersen
and Beyer, 2006; Hartvig et al., 2011). Based on theoretical
foundation of the notable regularity of size spectra hidden
in the complexity of food webs, MSSM is characterized by a
small number of parameters, low computational requirements,
and solid mechanistic bases for simulating fisheries dynamics
(Sheldon et al., 1972; de Roos and Persson, 2001; Jennings and
Brander, 2010). The model relates the changes in size spectra
to vital processes at the individual level, such as food intake,
growth, and predation, which provides a conceptual foundation
for emerging community characteristics (Andersen and Beyer,
2006; Andersen and Pedersen, 2010). MSSMs incorporate several
critical ecological properties and provide a promising approach
to fisheries research (Andersen and Pedersen, 2010; Andersen
et al., 2016a). Many studies have used this model to investigate
the ecosystem consequences of fisheries (Travers et al., 2007;
Blanchard et al., 2017), for instance, to evaluate the responses of
population and community to various fishing strategies (Guiet
et al., 2016), the effects of fishing selectivity (Houle et al., 2012),
and the balance of multiple objectives for management decisions
(Blanchard et al., 2014).

In this study, we attempt to build the MSSM in a coastal
ecosystem of the North Yellow Sea (NYS), China. The studied
area represents a traditional fishing ground of multispecies
fisheries with a long history of overexploitation (Wang et al.,
1993). The intense fishing pressures have led to substantial
change in species composition and decrease in fisheries yields
(Tang et al., 2009). Multiple sources of evidence pointed to the
degradation of the ecosystem, including the decline in average
trophic levels of marine catches (Ye et al., 2014), diminishing
fish sizes at maturity and at capture (Lin et al., 2007), declining
marine biodiversity (Fu et al., 2018), and a shift toward forage
species (Zhang et al., 2018). However, there are no formal
management plans to restore the fishery populations in this area,
while one notable challenge to such a conservation plan is the lack

of understanding and evaluation of ecosystem dynamics. The
mixed fisheries in the NYS have been rarely assessed except for
occasional reports on biological traits of economically important
species (Jin, 2004; Xue, 2005; Zhao et al., 2018). Without
effective fisheries management, the future of the multiple stocks
is vulnerable to further decline.

In order to implement the MSSMs to inform ecosystem-based
fisheries management, this study considered multiple sources
of data for the procedure of model parameterization. Although
many parameters of MSSM can be derived from the metabolic
theory and relevant biological studies, some parameters must
be calibrated to the target ecosystem (Datta et al., 2016;
Blanchard et al., 2017; Plank et al., 2017), e.g., recruitment
dynamics and primary productivity. Model parameterization
could raise substantial risk in management decisions if the data
are biased or themethods of parameter estimation are inadequate
(Pelletier and Gros, 1991; Guénette et al., 1998; Drouineau
et al., 2008). The uncertainties associated with the large number
parameters imposed a substantial burden in model applications
and further restricted ecosystem-basedmanagement. In addition,
different parameters are not equal in their influences on model
predictions, i.e., a model may be sensitive to the changes of
one parameter but less so to others, depending on its structural
characteristics (Saltelli and Scott, 1997; Zhang C. et al., 2015). In
this sense, parameter uncertainties associated with data quality
need to be carefully examined (Dickey-Collas, 2014; Collie
et al., 2016). For correct interpretation, sensitivity analyses on
parameters are necessary to build trust within model users and
stakeholders (Thorpe et al., 2015; Spence et al., 2016).

As we move toward EBFM, it is critical to understand
fishing impacts in the ecosystem context. To this end, this
study parameterized the MSSM based on marine surveys and
simulated the ecological dynamics of fish community in the
coastal ecosystem (Lehuta et al., 2010; Blanchard et al., 2014).
Additionally, we conducted model validation by examining
whether the model could reflect the composition and production
of the community. In addition, sensitivity analyses were
conducted to assess the influences of parameters on model
predictions at the species and ecosystem level. We summarized
the accuracy, variability, and accessibility of the parameter
estimating approaches available in the data-limited circumstance.
This study aims to develop a framework to build and interpret
MSSMs in data-limited situations and promote the application of
ecosystem models in the mixed fisheries of developing countries.

MATERIALS AND METHODS

Size-Spectrum Model
TheMSSMused in this study is developed byAndersen and Beyer
(2006) and implemented by Hartvig et al. (2011). The model is
rooted in the metabolic theory, which links species vital rates
to individual bodyweight and connects energy balance at the
individual level with population dynamics at community levels.
The model reflects trophic interactions in the fish community
based on three main assumptions: (1) Predatory preference is
determined by a predator–prey mass ratio (PPMR); (2) energy
obtained from background resources and other species are used
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TABLE 1 | Multispecies size spectrum model (SSM) equations, modified from Blanchard et al. (2014) and Zhang et al. (2016).
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to motivate metabolism, growth, and reproduction; (3) biological
processes are determined by individual body weight following the
allometric scaling law (Blanchard et al., 2014; Zhang C. et al.,
2015).

The biological processes of the fish community are formulated
by submodels, including (1) background resource models, which
represent the dynamics of organisms that provide food items
for the smallest individuals; (2) feeding models, which represent
the relationships between predators and preys according to
food preference, maximum intake, encounter, and consumption;
(3) energy budget models, which describe the process that
the energy obtained from assimilation is allocated to activity,
growth, and production; (4) growth models, which characterize
the species-specific changes in body shape and weight; (5)
reproduction models, which describe the stock–recruitment
relationship, according to the efficiency of reproduction (ε) and
the maximum recruitment (rmax); and (6) mortality models,
which cover three types of fish mortality, predation, fishing, and
background mortality. Equations of the above submodels are
shown in the Supplementary Materials (Table 1).

Model Parameterization
Data Sources
The size-spectrum model was parameterized according to the
fish community in coastal NYS, a temperate ecosystem with
heavy fishing pressure. The study area was located on the

continental shelf adjacent to the Shandong Peninsula, China
(Supplementary Figure 1), with water depth ranging from 5 to
40m. As a traditional fishing ground of mixed fisheries, fishing
production has been considerably high to maintain fishermen’s
livelihood and social welfare (Wang et al., 1993). The marine
ecosystem has shown a decline in fisheries yields in recent years
(Tang et al., 2011). Changes in species composition have been
reported in the adjacent sea area, showing that low-valued, small-
sized, and short-lived species have replaced the dominance of
economically important species in the community (Jin, 2004;
Zhao et al., 2018). Due to limited data and studies, stock
status and many crucial biological and physiological parameters
remain unknown, which created substantial challenges in fishery
management. To stop resource degradation, intensive studies are
urgently needed to clarify the ecosystem dynamics and the effects
of fishing activities to guide effective management.

The data used for model building were obtained from
several sources, including FishBase (Froese and Daniel, 2018),
previous studies, reports (MARA, 1957–2018), and survey data,
regarding their availability. Primarily, scientific surveys were
conducted in four seasons during 2016–2017 to collect data
of fish community composition and biology information. The
survey adopted bottom trawling and investigated 118 sampling
sites in each season, including 55 coastal sites and 63 offshore
sites, respectively (Supplementary Figure 1). The trawl had a
net width of 15m and cod-end mesh of 20mm, hauling for
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1 h at a speed of 3 knots in each sampling station. The
catch of each haul was sorted and weighted by species. A
total of 278 species were identified in the scientific survey,
including 124 fishes, 29 shrimps, and 32 crabs. The major
species were measured by length and weight. Stomach content
analysis and age identification were preformed when the samples
were sufficient. For species in which samples were insufficient
to estimate feeding preference, we obtained their predation
relationships from relevant literature (Deng et al., 1986; Yang,
2001; Xue, 2005). In addition, FishBase provided references of
biological parameters for the rare species (Froese and Daniel,
2018). Total yield and fishing effort were obtained from the
China Fishery Statistical Yearbook, and a selection of fisheries
statistics in Shandong Province was used in the analyses (MARA,
1957–2018). In the calibration procedure, biomass of each species
was calibrated to the species-specific total biomass, which was
estimated with corrected catch data following the swept area
method (Fraser et al., 2009).

Estimation Methods
Our MSSM included 21 common and commercially important
species, which accounted for over 90% of total fish biomass.
A range of biological parameters, including growth, feeding,
reproduction, and mortality, were estimated from various
sources of data. Themethods of parameter estimation used in this
study were briefly introduced below, accorded and supplemented
to Blanchard et al. (2014).

Growth Parameters
The infinite weight (winf /g) and growth rate (Kvb) in the von-
Bertalanffy growth equation (VBGE) can be estimated from age
and length data. When age data are not available (which is
common in multispecies fisheries), length–frequency data with
sufficient seasonal observations can be used to fit the growth
equation (Thorson et al., 2016). In this study, most growth
parameters were calculated from length–frequency data using
the “ELEFAN” method in R package “TropfishR” (Mildenberger
et al., 2017; Taylor and Mildenberger, 2017). The weight–length
relationship parameters (a/cm and b/g) were estimated directly
from regression analysis, using the biological measurement data
of the NYS survey (sample size of each species was shown
in Supplementary Table 4). For the species lacking sufficient
samples, the information was obtained from FishBase (Froese
and Daniel, 2018) and literatures in similar areas.

Feeding Parameters
The PPMRs were estimated from trophic analyses, using
weighted average of relative prey proportion represented in
a log-normal distribution. The relative proportion and mean
size of prey species were derived from stomach content
analyses, derived from the NYS survey and previous researches
(Xue, 2005; Pinnegar and Platts, 2014). The PPMRs were
adjusted by available size and abundance of prey, to reflect
their “average” preferred mass ratio (beta, β). The width of
selection (sigma, σ) was set to 1.3 for all species due to lack
of data for estimation (Andersen and Pedersen, 2010). The
interaction matrix (Supplementary Table 2) was estimated with

the “Schooner’s overlap index” (1970), which described the co-
occurrences of species pairs with the proportion of overlapped
biomass in each survey site (Schoener, 1970; Blanchard et al.,
2014). The diagonal values were set to 0.1 to represent the
spatial co-occurrence and cannibalism across different size
stages of same species. The maximum consumption rate (M4)
was calculated with the default average feeding level (f0) and
the exponent of maximum consumption (n). The cutoff size
of the resource spectrum (wcut) was set to 7.5 g, and the
exponent for volumetric search rate (q) was set to 0.8 based on
empirical knowledge.

Reproduction Parameters
Size at maturity (wmat) could be estimated directly frommaturity
observations or from published literature. For species lacking
maturity information, a rule-of-thumb was used, i.e., wmat

estimated as 0.25 times of winf (Beverton, 1992; Andersen
and Pedersen, 2010; Houle et al., 2012). Energy allocated to
reproduction was gained from food consumption, following the
efficiency of reproduction (ε). The egg size (w0) was set to 0.5,
and the proportion of spawning stocks was assumed to be 1/2
accounting that only females reproduced (Scott et al., 2014).
The maximum recruitment for each species (rmax) was obtained
from model calibration according to the observed biomass. An
optimization algorithm, the LimitedMemory Broyden–Fletcher–
Goldfarb–Shanno with Boundaries (L-BFGS-B) in R package
“optimParallel” (Gerber and Furrer, 2018), was used to minimize
the sum of squared errors between the predicted and observed
biomass in a log scale (Byrd et al., 1995). After calibration, a
stochastic term was added to the recruitment model to mimic the
variation of recruitment among years.

Mortality Parameters
Three types of mortality were included: predation, background
mortality, and fishing mortality. Predation mortality was
calculated as the food consumption by each species. Background
mortality was assumed to exist throughout each species’ lifespan,
dependent on prefactor for background mortality (Z0) and
exponent of background mortality (z) (Hartvig and Andersen,
2013). Fishing mortality could be estimated with different
methods regarding available data. When length data of a single
year and essential biological information were available, a length-
based integratedmixed effects “LIME” (Rudd and Thorson, 2018)
was used to estimate fishingmortality.When only size–frequency
data were available within one survey, the “S6model” method
(Kokkalis et al., 2015) was used with seasonal abundance at
weight. When no size data were available, a stochastic Surplus
production model in Continuous Time (“SpiCT”) method
(Pedersen and Berg, 2017) was used with landings from fisheries
statistical data. We averaged fishing mortality when multiple
estimates were available after excluding abnormal values. The
estimated fishing mortality was further used to specify selectivity
(S), fishing effort (E), and catchability (Q) in the MSSM. The
species-specific selection function was assumed to follow the
knife-edge curve (Scott et al., 2014), in which knife-edge size was
estimated from “LIME” and “S6model,” respectively.We assumed
the same fishing effort (E) on multispecies fishery following
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TABLE 2 | Assessment of parameters uncertainty with different data quality.

Type Parameters Accuracy Variability Accessibility

Resource spectrum Medium High Low

R0 Low High Low

wcut Medium Low Medium

Feeding f0 Medium Low Low

n Medium Low Low

Beta (β) High High High

Sigma (σ) High Medium Medium

q Medium Low Low

Intermatrix High High High

Energy budget α Medium Low Low

p Medium Low Low

h Medium Low Low

Growth a, b High Low High

Kvb High Low High

winf High Low High

wmat Medium Low Medium

Reproduction w0 Medium Low High

ε Low High Low

r_max (rmax ) Low High Low

Mortality Medium Low Medium

Gear selected size High Low High

Q Medium Medium High

E High High High

The data sources used for parameters estimation are derived from published literature. A

low level of accessibility of parameters indicated the data were unable to get from various

sources. The parameter low in accuracy and variability but high in accessibility indicated

good cost performance of parameter optimization.

the relative total power of fishing vessels in Shandong province
reported by statistical data, and catchability (Q) was determined
accordingly to achieve the estimated fishing mortality.

Resources and Physiological Parameters
The background resource included regeneration rate parameters
(i.e., R0) and the carrying capacity (Savage et al., 2004). The
first type parameters were set to default, and the constant
resource carrying capacity (κr) was estimated following the same
calibration procedure using L-BFGS-B.

The exponent of standard metabolism (p) and assimilation
efficiency (α) could not be appropriately estimated with available
cross-species data and was set as default in our model. The
maximum consumption (hi) was calculated based on Kvb, f0, and
winf (Blanchard et al., 2014).

We summarized the species-specific parameters
in Supplementary Table 1 and ecosystem-specific parameters,
including resources parameters and physiological parameters, in
Supplementary Table 3. Some parameters such as sigma are easy
to improve by extra investigation efforts (Mangin et al., 2018),
whereas some parameters such as r_max are hard to improve,
which present high uncertainty and poor understanding due to
the knowledge gap (Datta et al., 2016; Blanchard et al., 2017;
Plank et al., 2017). According to the data quality of major

sources, we reviewed the parameter uncertainty, including
accuracy, variability, and accessibility in Table 2 (Ckleijnen et al.,
1986; Spence and Turtle, 2017).

Model Evaluation
Validation
To examine whether the MSSM could reflect the structure and
dynamics of real fish community, both species- and community-
level predictions were investigated for model validation. First, we
compared the species-specific size spectra between predictions
and observations. It should be noted that size spectra information
was not used in the calibration procedure, thus could be
considered as independent test data in model validation. Second,
we predicted the fisheries yields of each species according to the
total fishing efforts reported in fisheries statistics of Shandong
providence and compared the predicted yields with observed
landings from fisheries statistics. An explicit assumption of the
evaluation was that the studied area matched with the fishery
regions of the fleet managed by Shandong province. To ensure
comparability, both predicted and observed yields were expressed
relative to the average yield for a stable period, from 2010 to 2017
(MARA, 1957–2018).

Sensitivity Analysis
Sensitivity analyses were used to evaluate parameter uncertainty
within the data-limited situations. As examples, we tested the
influences of three parameters on model predictions considering
their variability and accessibility in this study (Table 2). The
first was maximum recruitment (rmax), which was highly
uncertain and poorly understood. The second was the width
of prey selection (sigma), which could be improved in future
investigations (Mangin et al., 2018). The third was fishing
efforts (E) because fishing impacts were primarily concerned in
alternative management actions (Lane and Stephenson, 1999;
Butterworth, 2007). To simulate the parameters’ bias, an error
term was randomly drawn from a normal distribution and
multiplied to the original values (Andersen et al., 2016b;
Blanchard et al., 2017). The different levels of uncertainty ranged
from 0 to 30%, with an interval of 5%, which were commonly
used to simulate parametric uncertainty (Houle et al., 2012;
Zhang C. et al., 2015). Themodel was run 1,000 times for 40 years
with each stochastic error items, respectively.

We used both species level and community level metrics to
indicate the influence of parameter uncertainties. At the species
level, multidimensional scaling (MDS) was adopted to investigate
similarity in species composition (Clarke, 2010; Zhang C. et al.,
2015), and the results were visualized in biplots, in which
the distance among the dots reflected the relative similarity in
composition (Clarke, 2010). Two dimensions could adequately
represent the similarity as the stress level was <0.2. At the
community level, a set of ecological indicators were used to
monitor the state of the community (Shin et al., 2010; Houle
et al., 2012), including total biomass and yield, large fish index
(Shin et al., 2010), mean weight (Rochet and Rice, 2005), mean
maximum weight (Link, 2005), and size-spectrum slope of
community(Shin et al., 2005).
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RESULTS

Model Validation
The multispecies size-spectrum model was simulated to an
equilibrium state in 200 years with a constant fishing effort.
All species showed similar feeding levels in small body sizes
and varied substantially in large body sizes (Figure 1A). Except
for Eutaeniichthys gilli and Cleisthenes herzensteini, most species
achieved equilibrium biomass in 50 years (Figure 1B). Predation
mortality ranged from 0.1 to 2 year−1 for different species of
small body size (0.001–1 g) and decreased toward zero when
body weight was larger than 100 g (Figure 1C). Fishing mortality
was shaped by the knife-edge selectivity, ranging from 0.5 to 1.5
year−1 (Figure 1D). The biomass spectra exhibited reasonable
size composition of fish population and background resources
(Figure 1E), and each species showed a sharp decrease around
species-specificmaturity sizes. In general, themodel outputs were
in line with typical patterns of the size spectrum theory.

The model prediction was first examined by comparing the
species-specific size spectra to the observed pattern in survey data
(Supplementary Figure 2). The predicted size spectra generally
matched well with the observation of most species, especially
Argyrosomus argentatus, Loliolus beka, Chaeturichthys stigmatias,
Pholis fangi, and Pampus punctatissimus. Meanwhile, some
species showed less consistency, such as Engraulis japonicus,
Lophius litulon, Oratosquilla oratoria, and Saurida elongata. It
should be noted that the poorly predicted species were generally
pelagic, probably because the pelagic species were not well-
sampled in the trawl survey. Despite this, the calibrated model
was able to capture the size spectra of the real ecosystem.

We compared the predicted yields with that of landings
reported in the statistics during the period 1970–2017 (Figure 2)
(MARA, 1957–2018). Due to the lack of statistics and large
change in the ecosystem, the model failed to reflect the
historical trend pre-1999. The predicted yields in 1999–2017
were more congruous with records, after fishery activities was
under management since 1999 (Zhao et al., 2018). We noted
that the MSSM was limited in projecting the dynamics of
single stock yields but more useful for total yield (Figure 2).
Regarding single species, the results generally reflected the
landing tendency of E. japonicus but largely overestimated the
magnitude. Both observations and predictions of Paretroplus
polyactis and Scomber japonicus showed fast increases in landing
in the 1980–1990 and gradually became stable in the latter
half of 2000s. On the contrary, the model failed to capture the
drop of O. oratoria. Additionally, an unusual fluctuation was
predicted in the yield of Scomberomorus niphonius, which was
opposite to records. Nevertheless, compared with dynamics of
single stock yields, the predicted total yield was more consistent
with observed catch in statistics.

Sensitivity Analysis
The results showed that sensitivity with different parameters
(fishing efforts, E; feeding selection width, sigma; and
recruitment potential, r_max) were not equal in their influences
on model predictions. At the species level, non-metric MDS
displayed the similarity of species composition. With increasing

levels of parameter errors (from 0.05 to 0.3), the variation in
predictions tended to increase but to substantially different
degrees. Compared to fishing efforts, the influence of sigma was
minor at the same level of uncertainty. Meanwhile, recruitment
uncertainty showed much larger impacts than the two above,
dispersing the dots in the MDS plots. The results suggested
that if the modeling objective was to evaluate fishing effects on
community structure, the uncertainty of recruitment should be
effectively controlled, whereas the concern on feeding parameters
might be relieved.

At the community level, most ecological indicators (EIs) were
more responsive to fishing effort than to others, denoted by
the substantial increase in coefficient of variation (CV) of most
indicators. An exception was the mean maximum weight, for
which the results of the three parameters overlapped. Compared
to the results of MDS, changes in EIs were mainly shaped
by fishing efforts, and the effects of diet selection width was
trivial. It should be noted that when the errors of parameters
were zero, the variation in model prediction was small due to
the annual recruitment variability in simulation. The results
suggested that certain parameters might be more influential to
specific community characteristics over species-level abundance.

DISCUSSION

Given the urgent needs for fishery conservation plans, it is
necessary to examine the effects of alternative management
actions through predicting the dynamics of mixed fisheries, for
which ecosystem models are desired because of the ability to
handle complex species interactions. However, developing an
ecosystem model is a data-intensive task, and cautions should be
taken in model parameterization and validation. Regarding the
requirement of model development in data-limited situations, we
presented a framework for model parameterization, validation,
and sensitivity analyses. Our case study found that the MSSM
could capture the population demographics of most species and
total fisheries productions in the local community. Additionally,
we illustrated that different parameters were not equal in the
influence on ecosystem characteristics. For example, fishing
efforts had the largest impacts on community-level indicators,
while the recruitment parameter had the greatest impacts
on species-level composition and mean maximum weight.
These results highlight the importance of correctly interpreting
model outputs given unneglectable parameter uncertainties.
Furthermore, the sensitivity analysis could guide the priority
in data collection and model improvement, which is crucial
for support community sustainability, fishery production, and
fishermen’s livelihoods (Shaeffer, 1980; Lehuta et al., 2013).

Our validation illustrated that the MSSM could reflect the size
structures of population and fishery production of community
in a data-limited situation. In terms of the population size
spectra, the close results between prediction and observation
built confidence in the parameterization of species-specific life-
history traits. Meanwhile, some species were poorly predicted,
such as E. japonicus, L. litulon, O. oratoria, and S. elongata
(Supplementary Figure 2). The divergence might be attributed
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FIGURE 1 | A summary of the size-spectrum model outputs, including (A) feeding level, (B) species biomass through time, (C) predation mortality, (D) fishing

mortality, and (E) community size spectra. The results were derived from the calibrated model in the coastal water of Shandong, projected for 200 years with constant

fishing efforts. Each line denotes 1 of the 21 species included in the model.
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FIGURE 2 | Change in yields relative to the calibrated value driven by the fishing efforts in fisheries statistics from 1970 to 2017 (MARA, 1957–2018). Red lines show

the annual tendency of reported catch, and blue lines equal to the median; blue areas shows the predictions contained within 95% intervals. Stochastic simulations

were run 1,000 times.

to the changing life-history parameters in recent decades. These
knowledge gaps remain challenging for ecosystem models, e.g.,
juveniles taking less time to reach maturity due to species
adaptions to the changing ecosystem (Houde, 2008; Le Pape
and Bonhommeau, 2015). When these changes are considered,
additional complex structures would introduce extra parameters
and increase the level of uncertainty (Zaehle et al., 2005; Piou and
Prévost, 2012; Spence and Turtle, 2017). In addition, for some
species, the predicted yields are quite different from the reported
catches (Figure 2). A possible reason is that we calibrated the
model to the current status and ignored long-term changes in
community composition, which might undermine the model
retrospective ability. Therefore, a caveat at the species level
should be highlighted when using the model in further studies.

We analyzed the sensitivities of key parameters to avoid
misinterpretation of the multispecies model. It is widely accepted
that the recruitment parameters are commonly imprecise,
even for well-studied stocks (Shaeffer, 1980; Dowling et al.,
2016). In our results, community structure is more sensitive
to recruitment parameters (r_max) than to fishing efforts (E)
(Figure 3), indicating that the effects of fishing may be concealed

with considerable recruitment variability. Meanwhile, the fishing
effects are more remarkable for ecological indicators, implying
their potential use as ecosystem-level reference points. The
impacts of recruitment parameters (r_max) on species and
ecosystem levels are different due to the stochastic recruitment
taking effect on species-specific biomass, whereas they are
eliminated on the community level. Most metrics are less
sensitive to the width of prey size preference (sigma), indicating
that the model output is reliable, even with a bit of uncertainty
in sigma. In general, if sufficient information is unavailable,
modelers should explicitly acknowledge the potential risks with
sensitivity analysis and interpret with caution (Lassalle et al.,
2014; Pethybridge et al., 2019).

Model validation serves as a benchmark to permit model
application, allowing informative prediction to support fisheries
management (Fulton, 2010; Stock et al., 2011; Hoshino et al.,
2018). As the less reliable predictions to individual species
(Kempf et al., 2016; Corrales et al., 2018), the purpose of this
multispecies model is to trace the community dynamics and
promote single-species management strategies with ecosystem
knowledge (Blanchard et al., 2017). For instance, the ecosystem
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FIGURE 3 | Multidimensional scaling (MDS) analysis of community structure predicted by multispecies size-spectrum model (MSSM). The errors in parameters of

concern (fishing effort, E in red; the maximum recruitment, r_max in blue and; the diet selection width, sigma in green) are specified with a range of standard deviations

(from 0.05 to 0.3).

FIGURE 4 | Coefficient of variations (CVs) of ecological indicators driven by the errors of three model parameters (fishing effort, E in red; the maximum recruitment,

r_max in blue; and the diet selection width, sigma in green). Ecological indicators included the mean weight, mW; the mean maximum weight, mMW; the slope of size

spectrum, slope; the large fish index, LFI; the total biomass, B; the total yield, Y. X-axis denoted the level of parameter uncertainty.
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responses to climate variability and anthropogenic drivers
have been examined in Object-Oriented Simulator of Marine
Ecosystems Exploitation (“OSMOSE”) (Fu et al., 2013, 2015).
These ecosystem models provide a theoretical framework for
testing the ecosystem effects of fishing (Andersen et al., 2016b),
e.g., simulation scenarios could be designed to explore the
influences of implementing conventional assessment and harvest
strategies in mixed fisheries. Such applications are crucial
in the NYS ecosystems, which have limited scientific studies
across entire ecological communities (Ye et al., 2011). Toward
sustainable fishery and health ecosystem, it is important to
avoid unintended community consequences, including habitat
destruction, decline in non-target species, and changes in the
function and structure of ecosystems (Pikitch et al., 2004).
Ecosystem models could be used to address the knowledge gaps,
e.g., assessing the current state and changes of the ecosystem,
examining the effects of human-induced and environmental
changes (Blanchard et al., 2012; Jacobsen et al., 2013, 2017),
clarifying species interactions (Blanchard et al., 2014), diversity-
stability links (Zhang et al., 2013), and eco-evolutionary processes
(Zhang, L. et al., 2015). Therefore, we highlight that the
MSSM can contribute to the management of mixed fisheries
because it could account for the species interactions and
external disturbances and capture temporal changes across
the community.

The predictions of MSSM should be deemed as qualitative
rather than quantitative results, such as the case of setting
catch quota. Our model was unable to reflect the historical
catch accurately, particularly due to the weak representation of
reported data in fisheries statistics. The China Fishery Statistical
Yearbook reported the total catch and number of fleets of each
province, and we assumed that the vessels managed by Shandong
province fished in the province governed water. However, some
vessels might fish outside this region, which caused additional
fishing mortality and catches (Carr and Heyman, 2014; Johnson
et al., 2018). Additionally, the MSSM implicitly assumed a
closed ecosystem, and the assumptions of closed system, in
addition to stochastic recruitment, might impede the model’s
ability to reflect the dynamics of biomass at the species level.
Nevertheless, how ecosystems may react to the changes in
fishing pressure would not be influenced by these assumptions,
according to our evaluation with ecological indicators. With
further improvements in data quality, the model can be updated
over time to improve model performance.

This study could contribute to the management of
mixed fisheries, given the urgent need to design appropriate
management strategies in East and Southeast Asian fisheries.
We highlight that, in the modeling process, the uncertainties of
parameters should be clearly identified, and particular attentions
are needed to clarify whether the data are accurate and accessible
and whether certain parameters are variable or consistent
across ecosystems. For data-limited fisheries, a certain level of
compromise is inevitable, and starting with the data currently
available is the most pragmatic approach (Ye et al., 2011). The

data-limited methods we adopted here, such as the “ELEFAN”
(Mildenberger et al., 2017; Taylor and Mildenberger, 2017),
“LIME” (Rudd and Thorson, 2018), “S6model” (Kokkalis et al.,
2015), and “SpiCT” (Pedersen and Berg, 2017) R packages,
provide promising solutions for parameter estimation. By
incorporating the data-limited methods, crucial parameters
such as growth rates and fishery selectivity could be properly
estimated, even without long time-series data, which promotes
the efficient use of available data. The modeling experience of
this study, particularly the parameterization approach, should be
informative to studies of data-limited marine ecosystems.

The implementation of ecosystem models is crucial for
multispecies fisheries management. Meanwhile, for fisheries
without reliable statistics database, such as small-scale and
recreational fisheries, particular cautions are required in the
interpretation of modeling results, as uncertainty and variability
are inherent within ecosystem models (Pethybridge et al., 2019).
Although sensitivity analyses are helpful to understand model
uncertainty, the real variability of ecosystems can be hardly
quantified, especially when external pressures are involved.
We highlight the challenges to develop MSSM in data-poor
ecosystems (Wu et al., 2014; Thorpe et al., 2015) and the
need to carefully interpret MSSM outcome with respect to
parameter uncertainty. Nevertheless, our study illustrates the
fishing consequences at the ecosystem level, which offers a chance
to manage mixed fisheries with a multispecies approach.
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