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Developing a typology of heterogeneous fishing practices through the use of métier
analysis is a useful step in understanding the dynamics of fishing fleets and
enabling effective implementation of management outcomes. We develop a non-
hierarchical clustering framework to quantitatively categorize individual fishing events
to a particular métier based on corresponding catch composition, gear configuration,
and spatial and temporal references. Our clustering framework has several innovations
over predecessors including: (i) introducing alternative methods for encoding and
transforming fisheries data; (ii) variable (feature) selection methods; (iii) complementary
metrics and methods for internal métier validation; and (iv) use of a network science
method to model and analyze fishing practices. To demonstrate applicability, we apply
this framework to the Australian Eastern Tuna and Billfish Fishery (ETBF), a multispecies
pelagic longline fishery with a diversity of fishing practices. We identified a total of seven
stable métiers within the ETBF. While each métier was characterized by a predominant
target species, they were differentiated more by seasonal and temporal references
(e.g., time of set, month, latitude) than gear configuration (e.g., hooks per basket)
or target species. By collapsing a large amount of high-dimensional operational data
into a relatively uniform and limited number of components, decision-makers can more
easily evaluate the likely consequences of management and design policies that target
a particular métier.

Keywords: behavior, Eastern Tuna and Billfish Fishery, fishing styles, fishing fleets, fisheries management, fishing
tactics

INTRODUCTION

Effective fisheries management requires an understanding of human behavior (Hilborn, 2007;
Davie and Lordan, 2011; Fulton et al., 2011; O’Farrell et al., 2019). Evidence has shown that when
this is ignored it can lead to unexpected and undesirable outcomes from management decision-
making (Fulton et al., 2011). In recent years, there has been a greater focus on understanding
and classifying fisher behavior based on socio-demographic and psychological characteristics
(e.g., Nielsen and Christensen, 2006; Abernathy, 2010; Boonstra and Hentati-Sundberg, 2016).
Improved prediction of the behavioral response of fishers to management measures and policy
can be obtained through understanding both their short- and long-term drivers including:
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motivations (e.g., market price), moral and social norms,
values, perceptions, personal goals, and emotions (Boonstra
and Hentati-Sundberg, 2016; O’Farrell et al., 2019). These
drivers often manifest a diversity of individual fishing
practices and operations within a specific fleet or fishery
(Boonstra and Hentati-Sundberg, 2016).

Developing a typology of these individual fishing practices
and operations allows large amounts of high-dimensional data
from a fleet or fishery to be collapsed into a relatively uniform
and limited number of components for analysis (O’Farrell et al.,
2019). These components, clusters, or units have been termed
“métiers” (Marchal and Horwood, 1996; Moore et al., 2019),
“fishing strategies” (He et al., 1997; Holley and Marchal, 2004;
Nielsen and Christensen, 2006; Abernathy, 2010), “fishing tactics”
(Pelletier and Ferraris, 2000; Maynou et al., 2011), “fishing
modes” (Purcell et al., 2018), or “fishing styles” (Boonstra and
Hentati-Sundberg, 2016) and reflect similarities at the fishing
event (but also trip or vessel) level in inter alia, species targeted,
type of gear utilized, as well as the location and time of fishing
(Nielsen and Christensen, 2006; Ziegler, 2012). Hereafter, we
use the term “métiers” to reflect these units of fishing practices,
which have been defined by the European Commission (EC) Data
Collection Framework as “a group of fishing operations targeting
a similar (assemblage of) species, using similar gear, during the
same period of the year and/or within the same areas and which
are characterized by a similar exploitation pattern” (EU, 2016).

Multivariate cluster (métier) analysis is an exploratory analysis
that identifies structures within the data to quantitatively
categorize individual fishing events (or trips) to a métier, thereby
allowing segregation of the data at a finer resolution (Pelletier and
Ferraris, 2000; Holley and Marchal, 2004). Various methodologies
have been employed through time to identify and define métiers
within global fishing fleets (Deporte et al., 2012). The majority
of these have been developed within the European Union (EU).
This is because the European Common Fisheries Policy (CFP) has
increasingly recognized the importance of fleet-based approaches
to management, through accounting for heterogeneity in fishing
practices. In the EU, métier analysis is viewed as an approach
that can facilitate the formulation of integrated mixed-fisheries
management plans (Deporte et al., 2012; Ulrich et al., 2012).
Examples of the types of published métier analyses include
variants of hierarchical clustering algorithms (HCA) such as
hierarchical agglomerative clustering (HAC), which Lewy and
Vinther (1994) used to classify métiers in Danish North Sea trawl
fisheries and principal component analysis (PCA) combined with
visual inspection, which Biseau and Gondeaux (1988) used to
define métiers in a Celtic Sea fishery. Pelletier and Ferraris (2000)
used HAC after running a PCA on the original data to identify
métiers within an artisanal Senegalese fishery and Celtic Sea
fishery, a methodology that has since proven popular among
their contemporaries (Ulrich and Andersen, 2004; Tzanatos
et al., 2006; Campos et al., 2007; Ziegler, 2012). Lastly, non-
hierarchical clustering methods, including partitioning around
medoids (PAM) (Kaufman and Rousseeuw, 1990), were used
by Duarte et al. (2009) to define clusters of vessels in a
Portuguese purse-seine fishery, while its variant, Clustering Large
Applications (CLARA) (Kaufman and Rousseeuw, 1990), was

used by Castro et al. (2010, 2011) to identify métiers in the
Spanish bottom pair trawl and longline fleets, respectively. The
main advantages of non-hierarchical clustering methods, such as
PAM, over traditional approaches, such as HAC, are that they are
less computationally expensive to run when using a large dataset
and less sensitive to outliers (Reddy and Vinzamuri, 2014).

Most of the aforementioned métier analyses have either
been undertaken using primarily catch composition data (see,
e.g., Lewy and Vinther, 1994; He et al., 1997; Marchal,
2008) or both catch composition and fishing effort data
with spatial and temporal references (see, e.g., Pelletier and
Ferraris, 2000; Maynou et al., 2011; Ziegler, 2012). While
métier analysis is often applied using solely quantitative catch
composition and effort data from fishery logbooks (e.g., He
et al., 1997; Marchal et al., 2006), some analyses have also
incorporated qualitative information using direct interviews
with fishers and questionnaires to develop a typology of
individual fishing practices (e.g., Neis et al., 1999; Nielsen
and Christensen, 2006; Boonstra and Hentati-Sundberg, 2016).
While métier analysis is commonly used in mixed fisheries
with multiple gear types, it is possible to be equally useful
in single-gear type fisheries as inherent spatial heterogeneity
and temporal variability in the marine environment promotes
the diversification of fishing practices (Maynou et al., 2011;
Zhou et al., 2019).

Following a comprehensive review of the classical clustering
approaches for métier analysis, we developed a novel multivariate
non-hierarchical clustering framework that improves upon these
methodologies through the use of: (i) alternative methods
for encoding and transforming fisheries data; (ii) variable
(feature) selection methods; (iii) complementary metrics and
methods for internal métier validation; and (iv) use of a
network science method to model and analyze vessels’ fishing
practices. To illustrate function and pertinence, we create a
typology of fishing practices within the Eastern Tuna and
Billfish Fishery (ETBF) between 2010 and 2017. The ETBF
is a single-gear (pelagic longline) Australian Commonwealth
fishery targeting multiple species, including yellowfin tuna
(Thunnus albacares), bigeye tuna (Thunnus obesus), albacore
tuna (Thunnus alalunga), broadbill swordfish (Xiphias gladius),
and striped marlin (Tetrapturus audux) off Cape York, east
and south to the Victorian—South Australian border, including
waters around Tasmania and the high seas of the Pacific Ocean
(Figure 1). Despite being a single-gear fishery, there is a
diversity of fishing practices (Campbell et al., 2017). Differences
pertain, in particular, to the structural composition of the
fleet, geographic mobility, access to quota, targeting practices,
and specific gear configurations (see Campbell et al., 2017
for more information). Despite these differences, management
decision-making has often treated vessels in the ETBF as
fixed elements, which ignores the inherent heterogeneity in the
fishery and the likely different responses to regulations and
policy. Consequently, we use a novel non-hierarchical clustering
framework to describe the dynamics of fishing practices within
the ETBF between 2010 and 2017 to facilitate the incorporation
of fisher and fleet-wide behavioral information in management
decision-making.
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FIGURE 1 | Area and relative fishing intensity in the Eastern Tuna and Billfish Fishery (ETBF) between 2010 and 2017 calendar years.

MATERIALS AND METHODS

A Métier Analysis Applied to the Eastern
Tuna and Billfish Fishery
A multivariate non-hierarchical clustering framework was
applied to the ETBF logbook catch and effort data to identify
métiers that describe fishing activity, behavior, and decision-
making between 2010 and 2017 based on the proportions
of species in retained catch (i.e., number of species) and

fisher decision variables (e.g., hooks per basket, time of
set). This was undertaken at the individual set level rather
than trip level as previous research has shown that multiple
targeting strategies can be utilized within individual trips
(Campbell et al., 2017). The general sequence of analyses is
presented in a flowchart (Figure 2), depicting our clustering
framework, which was based upon best practices from the
machine learning literature and those applied specifically to
fisheries by Pelletier and Ferraris (2000); Duarte et al. (2009),
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FIGURE 2 | Flowchart of our clustering framework illustrating the inputs/outputs, decisions, and processes undertaken. The light blue shading represents a step we
consider novel in our clustering framework. Key: ellipse = start of process; parallelogram = input/output point; diamond = decision point; rectangle = process;
oval = end of process.

and Campbell et al. (2017). All analyses were performed
using the statistical computing program R (R Core Team,
2019) and WEKA (Hall et al., 2009). The list of relevant
R packages is provided in the Supplementary Material
(see Supplementary Table S1a). WEKA was only used
for the implementation of feature selection methods (see
Supplementary Table S1b for a description), which was
not available in R.

Initial Variable Selection
First, catch profiles or target species were identified and defined
based on the catch composition data. Second, fishing métiers
were described based on the similarities between sets considering
catch and fisher decision variables such as fishing location, set
time, and month for each fishing set.

Out of the 28 species reported in the commercial logbooks,
a total of nine were selected, where each one individually
made up more than 1% of retained catch and collectively
accounted for 97.5% of the total retained catch numbers (see
Table 1 and Supplementary Figure S1). This included: yellowfin
tuna, bigeye tuna, albacore tuna, broadbill swordfish, striped
marlin, southern bluefin tuna (Thunnus maccoyii) mahi mahi
(Coryphaena hippurus), Ray’s bream (Brama australis), and
oilfish (Lepidocybium flavobrunneum). Ideally, métiers should
reflect the fishing intention (e.g., species targeted) (Marchal,
2008) but in the ETBF, fishers often report more than one species
as “targeted” in their logbook, with only 35% of all sets reporting
a single targeted species. Nevertheless, when reporting a single
target species, fishers were very effective at catching this species,

particularly when targeting either broadbill swordfish or southern
bluefin tuna (Supplementary Table S2).

A total of 17 fisher decision variables were derived from the
logbook data (Table 1). These included date and time of set, lunar
phase, location, and gear configuration variables such as length
of mainline, number of hooks set, number of hooks per basket,
and number of light-sticks. Location variables included latitude
and longitude of set. Time and date variables included set start
time and date as well as month, while the lunar phase variables
included the lunar phase at the time of set. We also included
additional gear configuration variables that were proxies for light
density and depth by combining and/or transforming existing
variables to improve the analysis (see LPB and LTSPB in Table 1
for a description of acronyms). Lastly, bait was not included in
the gear configuration variables because the majority of sets used
mixed bait types and we were able to conduct subsequent internal
métier validation analysis by excluding it (i.e., due to it being the
only nominal variable).

Compositional Data
Catch compositional data that are converted into proportions
are often used in métier analysis, with a common approach
being to use either a logit transformation or an arcsine square-
root transformation of the data to normalize the distributions,
followed by a calculation of the Euclidean distance (He et al.,
1997; Campbell et al., 2017). However, the logit transformation
is not possible when there are too many zeros present in the
dataset (as removing records with zero values leads to significant
information loss). The arcsine square-root transformation can
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TABLE 1 | The set of 26 fisher decision and catch variables that were derived from the ETBF logbook data for the métier analysis and their corresponding definition.

Fisher decision variable Definition Catch variable Definition

LAT Start decimal latitude of set YFT Number of yellowfin tuna retained

LONG Start decimal longitude of set BET Number of bigeye tuna retained

HPB Number of hooks per basket SBT Number of southern bluefin tuna retained

MAINL Length of mainline (km) STM Number of striped marlin retained

HOOKS Number of hooks deployed POA Number of Ray’s bream retained

LGHTS Number of lightsticks deployed DOL Number of mahi mahi retained

LPB (MAINL/HOOKS)*HPB ALB Number of albacore tuna retained

LTSPB ((LGHTS + 1)/(HOOKS))*HPB BBL Number of broadbill swordfish retained

SETTIME Start time of set OIL Number of oilfish retained

SETTIMEX X component of start time of set

SETTIMEY Y component of start time of set

MONTH Date of operation

MONTHX X component of month of operation

MONTHY Y component of month of operation

PHASE Lunar phase at the date of operation

PHASEX X component of lunar phase

PHASEY Y component of lunar phase

also be unsuitable, as it may not result in a normalized
distribution (see Supplementary Figure S2 for example from
ETBF data). Martín-Fernández et al. (1998) suggested that the
best practice for compositional data analysis is to use a variant
of a logarithmic transformation where the natural logarithm is
applied to each component of a compositional vector scaled to
its geometric mean. Since our compositional data at the set level
contained many zeros, we needed to manage these zeros before
conducting a variant of logarithmic transformation.

Replacing Zero Values in the
Compositional Data
The common practice for the treatment of zeros is replacing
them with a small positive value. This replacement can be
implemented in various ways, including replacing the zeros by
a constant or adding a constant to all values in the dataset.
These ad hoc methods are not suitable for compositional data
as it may distort the relationship between zero and non-
zero observations (Pawlowsky-Glahn and Buccianti, 2011). In
a fisheries context, these zeros are either true zeros (i.e.,
absence of species in the area fished or selective nature of the
fishing gear) or false zeros (i.e., not recorded, misreported or
underreported in logbook by the fisher). While different methods
are available for replacing zeros in compositional data, our
framework caters for zero observations through the use of a
geometric Bayesian-multiplicative estimation method proposed
by Martín-Fernández et al. (2014) to impute the probable value
of these zeros. This method performs Bayesian estimation of
the zero values, assuming a Dirichlet prior for the multinomial
distribution. Then, a multiplicative modification of the non-
zero values was applied, so that the ratios between parts and
the total of the initial vector before the replacement were
preserved. Theoretical and empirical studies show that the
geometric Bayesian-multiplicative estimation using a Dirichlet
prior outperforms other Bayesian multiplicative replacements

when the hyper parameter of the prior is the geometric mean of
the compositional vector (Martín-Fernández et al., 2014).

Cyclical Data Transformation
Cyclical data (e.g., month, set start time) are commonly encoded
in métier analysis as either nominal or ordinal variables (see,
e.g., Pelletier and Ferraris, 2000; Deporte et al., 2012) but this
does not capture their similarities appropriately. For example, an
encoding system that orders set start time from 1 to 24 incorrectly
implies that 1:00 is furthest away from 24:00, when in reality
(from the perspective of the fishing activity) they are very close.
To represent these data more appropriately, set start time (and
other cycling data such as month) were graphed onto a two-
dimensional space and given x and y values so that they were
modeled as a circle with 12 points.

Selecting Distance and Clustering
Algorithm
Once the catch and gear composition as well as cyclical data
were processed, we defined a distance measure between the data
points in order to conduct the métier analysis. For data with a
similar component type (e.g., discrete or continuous), a simple
Euclidean distance metric would be sufficient for grouping and is
often used (e.g., Holley and Marchal, 2004; Castro et al., 2011).
However, our fisheries data were mixed with both discrete (time)
and continuous (location) data at different scales. Therefore, we
used Gower distance (Gower, 1971) to measure dissimilarities
between data points for grouping as:∑N

k=1 wijkdijk∑N
k=1 wijk

where wijk is the weight for variable k between observations i
and j and dijk is the distance between i and j on variable k.
Essentially, Gower distance is a weighted average of the distances
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on the different variables. The advantage of this distance metric
is that in contrast to traditional distance metrics, dijk does not
apply the same equation to all variables. For example, for discrete
variables, an equal/not equal comparison is used, while for
numeric variables, absolute difference was scaled to [0 −1] range
that is the distance between k components of matrix x is equal to

(dijk =
∣∣xik−xjk

∣∣
rk

) where rk is the range across all observations in
the k component (Gower, 1971).

We used non-HCA (i.e., PAM method) to conduct the métier
analysis for the ETBF. Our decision was mainly informed by
the computational efficiency of PAM and the fact that it is
less sensitive to outliers compared to variants of HCA. The
most computationally efficient HCA (bottom-up) requires O

(
n3)

time (where n is the number of records). This algorithm
groups the data using a sequence of nested partitions from
singleton clusters to a cluster including all individual records.
In contrast, our choice of algorithm only requires O

(
n2k2) time

(where k is the number of clusters, ranging from five to 10
in our study). The k-means (MacQueen, 1967) and k-medoids
algorithms (Kaufman and Rousseeuw, 1987) are well-known
non-hierarchical algorithms for determining métiers that cluster
the dataset of n objects into k clusters with k known a priori.
k-means clustering finds the k centroids iteratively and assigns
every point to the closest centroid, where the coordinate of each
centroid is the mean of the coordinates of the points in the cluster.
In contrast, k-medoids clustering relies on the most centrally
located point in a cluster, making it preferable over k-means
clustering because it is less sensitive to outliers.

Choosing k and Cluster Validation
The use of the k-medoids algorithm (i.e., PAM method) to
conduct the métier analysis required k as an a priori specification
of the number of métiers. Consequently, we used the silhouette
concept (Rousseeuw, 1987) as a heuristic to guide our selection of
the number of métiers. Silhouette width (a value ranging from
−1 to +1) is a measure that aims to combine two metrics to
take into account internal homogeneity within each métier and
external separation between them. It facilitates a more objective
selection of the most appropriate number of clusters compared
to simple visual inspection (Rousseeuw, 1987). One popular
technique for selecting the most appropriate number of métiers is
to maximize the average silhouette width across all métiers (e.g.,
Castro et al., 2010, 2011; Cambiè et al., 2020). However, due to
the high dimensionality and inherent disorder of our fisheries
dataset and the fact that the optimal solution may still exhibit
strong biases toward one or the other metrics, we were cautious to
not solely select the k value that resulted in the maximum average
silhouette width across all métiers. Instead, we examined a range
of values close to the proposed k guided by the maximum average
silhouette width to choose the final k and subset of variables that
satisfy our internal cluster validation requirements.

In our iterative internal métier validation process, we used
a bootstrapping method and the Jaccard coefficient concept
(Jaccard, 1901), which measures the similarities between sets, as
a measure of cluster stability. Given a candidate k-métier with
a set of catch and fisher decision variables, we sampled the data

100 times from the underlying distribution of these variables with
replacement, and then made a cluster-wise comparison. For each
métier from the sampled data, we found the most similar métiers
in our candidate clustering and if these two métiers matched
less than 50% (Jaccard coefficient value < 0.5) of the time, we
labeled the métier as “dissolved.” Hennig (2007) suggested that a
valid stable cluster should yield a mean Jaccard similarity value
of ≥0.75 and a highly stable métier should yield a mean Jaccard
similarity value of ≥0.85.

Feature Selection
After each clustering attempt for a given k and nominated
set of variables, we determined which subset of catch and
fisher decision variables efficiently represented the input data
to ensure only the highest stable clusters were selected. To do
so, we used 11 different (feature) selection methods to rank the
variables according to their contribution to the métiers after
each clustering attempt (see Supplementary Table S1b). This
approach is different from the commonly used approach in
métier analysis (e.g., Pelletier and Ferraris, 2000) where data
are mapped to lower dimension spaces by a linear or non-
linear combination of the variables [e.g., principal components
analysis (PCA)] which may result in information loss, weakly
supported conclusions, and loss of readability and interpretability
of the transformed variables. These selection methods can
be categorized into three main feature selection methods:
correlation-based, information gain-based, and learner-based
(Hall, 2000; Karegowda et al., 2010; Chandrashekar and Sahin,
2014). Each selection method ranks the variables according
to their contribution to the clusters. We then nominated the
variables that appeared in the top 10 in each method and
used the majority rule to find the subset of catch and fisher
decision variables that ranked highest among all feature selection
methods to inform our decision about what variables to retain
and discard. The main advantage of our majority selection rule is
that it reduces the biases of choosing variables using a particular
selection method. Ultimately, a subset of 11 (out of 26) catch and
fisher decision variables were retained including: YFT, BBL, and
SBT from catch composition, location (LAT, LON), proxies for
light stick densities (LTSPB), gear depth (HPB and LPB), and one
axis of projected cyclical data (STIMEX, MONTHY, PHASEX)
from the fisher decision variables (Table 2), which led to the
selection of seven internally validated clusters.

Summarizing the Clustering Results
To provide a graphical summary of the final métier selection
for the ETBF, we transformed all catch and fisher decision
variables to a scale between zero and one and generated heat
map dendograms using hierarchical clustering considering the
Manhattan distance as the metric for grouping similar métiers.
The color density in each cell represented the mean value of each
variable included in the final métier selection with dark (light)
shading representing a relatively higher (lower) value.

Lastly, we borrowed the concept of community structure from
network science theory to construct a network of individual
fishing practices in the ETBF between 2010 and 2017 before
grouping the network into a smaller number of sub-groups
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TABLE 2 | The set of 11 fisher decision and catch variables that were retained following the analysis of their contribution to the métiers using feature selection methods.

Fisher decision variable Definition Catch variable Definition

LAT Start decimal latitude of set YFT Number of yellowfin tuna retained

LONG Start decimal longitude of set BBL Number of broadbill swordfish retained

HPB Number of hooks per basket SBT Number of southern bluefin tuna retained

LPB (MAINL/HOOKS)*HPB)

LTSPB ((LGHTS + 1)/(HOOKS))*HPB)

SETTIMEX X component of start time of set

MONTHY Y component of month of operation

PHASEX X component of lunar phase

(communities). The network contains vertices that represent
both vessels that fished all years and the final métier selection
for the ETBF. If a vessel was active in a métier, then we
connect the vessel’s node to the corresponding métier. This
defines the edges between vessels and corresponding métiers.
We also define a second group of edges between métiers. For
example, if there is a vessel that was active in two métiers,
then we connect these two métier vertices with an edge. This
represents a weighted network where the weight of each edge
is the frequency of interrelation between the vertices. Several
definitions and algorithms for detecting community structure
have been reported in the literature (Clauset et al., 2004;
Estivill-Castro and Parsa, 2016). For our purposes, we used the
modularity maximization algorithm developed by Clauset et al.
(2004) to find the community structure of ETBF vessels, which
does not require, a priori, the number of clusters.

RESULTS

General Summary of the Eastern Tuna
and Billfish Fishery Data Used in the
Métier Analysis
There were a total of 58.4 million hooks deployed by 63 individual
vessels across 38,710 sets in the period of analysis from 2010
to 2017 in the ETBF (Table 3). There was minimal variation in
the number of sets and fishing trips between years. In contrast,
the number of active vessels declined from 52 in 2010 to 40
in 2013 before remaining relatively stable, while the number of
hooks have gradually increased from 6.5 million in 2013 to 8.6
million in 2017.

The ETBF was a year-round fishery from 2010 to 2017 (see
Supplementary Figure S3) with sets generally distributed evenly
across the year. In contrast to the relative stability in seasonal
effort through time, the set starting time varied annually with
a bimodal distribution from 2010 to 2015 where sets were
conducted around 5–9 am or 1–5 pm but in 2016 and 2017 the
majority of the sets started in the early afternoon between 1–3 pm
(see Supplementary Figure S4). Overall, the majority of sets in
the ETBF between 2010 and 2017 were deployed between 5 am
and 7 pm and occurred between the second and third quarters of
the lunar phase (moon position), or in other words pre and post
full moon (see Supplementary Figure S5).

Catch data from logbooks indicated that albacore and
yellowfin tuna were the species caught in greatest numbers
between 2010 and 2017, with albacore tuna catch increasing
through time and a variable yellowfin tuna catch (Supplementary
Figure S6). Annual catches of broadbill swordfish, bigeye tuna,
striped marlin and oilfish were relatively constant between
2010 and 2017, while catch of southern bluefin tuna has
increased since 2012.

Results of the Eastern Tuna and Billfish
Fishery Métier Analysis
A total of seven métiers were identified for the ETBF when
considering the catch and fisher decision variables during the
period 2010–2017. The size of the métiers was variable, with
métier 4 having the greatest number of attributed sets and métier
1 the least (Figure 3). There were different temporal patterns
among métiers, with the number of sets classified as métiers 1 and
4 increasing through time, métiers 2 and 6 decreasing through
time and métiers 3 and 5 remaining relatively stable (Figure 4).
Since 2012, the number of sets classified in métier 7 has been
slowly increasing through time. The average Jaccard coefficient
values for the seven métiers were 0.98, 0.92, 0.82, 0.86, 0.81,
0.92, and 0.98 respectively, indicating that all métiers are stable
(i.e., >0.75).

Métiers 3 and 5 were the most similar, according to the non-
hierarchical clustering analysis using the Manhattan distance,
while métier 1 was the most distinctive (Figure 5). A highly
characteristic target or dominant species was identified for all
métiers. Métiers 2 and 7 primarily target yellowfin tuna year-
round (Figure 5) using comparable gear configurations but

TABLE 3 | Summary of Eastern Tuna and Billfish Fishery (ETBF) operational fishing
data for period 2010–2017.

Year No. of sets No. of trips No. of hooks set No. of active vessels

2010 5,655 1,359 7,734,887 52

2011 4,804 1,230 6,590,291 49

2012 4,485 1,201 6,566,672 45

2013 4,340 1,187 6,514,494 40

2014 4,488 1,137 6,797,298 39

2015 5,068 1,231 7,957,297 39

2016 4,732 1,140 7,597,395 37

2017 5,138 1,204 8,617,340 39
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FIGURE 3 | Number of sets attributed to each métier in the Eastern Tuna and
Billfish Fishery (ETBF) for the period 2010–2017.

set their gear at different depths and latitudes. Métier 7 sets
are further north, while métier 2 sets are further south off
eastern Australia (Figure 6). Furthermore, sets in métier 2
occur frequently between 7 and 9 am, while those in métier 7
were bi-modal, occurring either late afternoon or early morning
(Supplementary Figure S7). Métier 6 also targets yellowfin
tuna (Figure 5) but at different set times (early morning
5–7 am) and with a greater number of hooks per basket
than métiers 2 and 7 (Supplementary Figure S7). Métiers
3, 4, and 5 are also similar in that they primarily target
broadbill swordfish (Figure 5) with variations in season and
lunar phase (Supplementary Figures S8, S9). Métier 3 sets
are primarily in autumn/winter before and on the full moon
(Supplementary Figures S8, S9). In contrast, métier 5 sets
are primarily in summer/spring before and on the full moon
(Supplementary Figures S8, S9). Métier 4 sets occur year-round
on and after the full moon (Supplementary Figures S8, S9).
Métier 1 solely targets southern bluefin tuna (Figure 5) with a
distinctive gear configuration during the winter months of the
year (Supplementary Figure S8).

Five sub-fisheries were distinguished (Figure 5) based on
their location (latitude and longitude variables, see Figure 6)
and targeting practices (catch variables) including: (i) a northern
yellowfin tuna sub-fishery (métier 7); (ii) a north-eastern
swordfish sub-fishery (métiers 3, 4, and 5); (iii) albacore and
yellowfin sub-fishery (métier 6); (iv) a south-eastern yellowfin
tuna sub-fishery (métier 2); and (v) south-eastern southern
bluefin tuna sub-fishery (métier 1) (see Figure 6 for spatial
distribution of métiers).

The proportion of each targeted species within each métier,
rescaled to a range between zero and one, is shown in
Figure 7. Métier 1 has the highest proportion of southern
bluefin tuna, while métiers 2, 6, and 7 have the highest
proportion of yellowfin tuna and métiers 3, 4, and 5 have the
highest proportion of broadbill swordfish. Métier 6 also has

a high proportion of albacore tuna and métier 3 has a high
proportion of bigeye tuna.

The network of individual fishing practices in the ETBF
defined three clear vessel groups (i.e., communities) within the
data (Figure 8). The results suggest there is a clear exchange
between ETBF vessels fishing in métiers 1 (targeting southern
bluefin tuna) and 2 (targeting yellowfin tuna) along the south-
east and east coast and similarly for those vessels fishing in
métiers 3, 4, and 5 (targeting swordfish) off the north-east coast
and six (targeting albacore) off the north-east coast (Figure 8).
In contrast, there were two vessels that fished exclusively in
métier 7 (targeting yellowfin tuna) in the north and one
vessel in this sub-group that also fished in métiers 5 and
6 (Figure 8).

DISCUSSION

A Robust Framework for Clustering
Commercial Fisheries Data
Our framework of encoding and transforming fisheries data
involved: (i) application of a Bayesian-multiplicative method
to impute zero values and (ii) mapping cyclical data into a
two-dimensional Euclidean space to represent closeness. While
conventional methods for transforming fisheries catch data
in métier analyses involve either log (when zero values are
absent) or arcsine square-root transformation (when zero values
are present), our analysis suggests that the arcsine square-
root transformation does not necessarily ensure the data are
normalized and the replacement of zeros with some small
constant value to perform a log transformation can distort
the relation between zero and non-zero values. The mixed
Bayesian-multiplicative estimation method applied in this study
minimizes the possibility of distortion. Moreover, we encourage
the use of a simple method of mapping cyclical data (e.g., time
of set) into a two-dimensional Euclidean space to overcome
the closeness of such data, which is not often captured in
other métier analyses that treat the data as either ordinal
or categorical variables (see, e.g., Pelletier and Ferraris, 2000;
Deporte et al., 2012).

Our use of 11 different (feature) selection methods, to
rank the fisher decision and catch variables according to
their contribution to the métiers after each clustering attempt,
reduces the biases of choosing variables using a selection
method. The variable selection in métier analysis is usually
undertaken by mapping the dataset to a new space with lower
dimensions using a linear or non-linear transformation, such
as PCA and extracting a subset of the principal components
that explain most of variability in the data (e.g., Pelletier
and Ferraris, 2000). A limitation of this approach is this
new space cannot be linked to the variables in the original
space. Therefore, any further analysis of the new space
becomes problematic, as there is no interpretable meaning
for the transformed variables obtained from these methods.
Our feature selection method, however, retains readability and
interpretability as it preserves the original variable values in
a reduced space.
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FIGURE 4 | The distribution of sets attributed to each métier annually in the Eastern Tuna and Billfish Fishery (ETBF) between 2010 and 2017.

As noted by Jain and Dubes (1988), “validation of clustering
structures is the most difficult and frustrating part of cluster
analysis,” but is necessary for ensuring the clusters accurately
reflect the “real-world” data (O’Farrell et al., 2019). We
note that suitable computational internal validation methods
are available in the machine learning literature but have
been given only a fraction of attention in métier analysis.
In our internal validation method, we iteratively resample
the dataset at random, re-clustering them and verifying
that the same clusters are found for different subsets. In
contrast, most studies that use non-hierarchical clustering
frameworks (Duarte et al., 2009; Castro et al., 2010, 2011;
Winker et al., 2013) determine the final number of valid
métiers based on the maximum average silhouette width
across clusters. While this facilitates a more objective selection
of the most appropriate number of clusters compared to
simple visual inspection (Rousseeuw, 1987), we examined a
range of values close to the proposed k guided by the
maximum average silhouette width through the use of an
internal validation method taken from the machine learning
literature (Hennig, 2007). This provides additional robustness
for validating the results because it does not consider the
sensitivity to the algorithm of choice (e.g., PAM, HAC)

but relies solely on the structure in the data, which can
reduce associated bias. Furthermore, to externally validate
our métier selection, we provided initial results of the
métier analysis to the applicable management authority—
the Australian Fisheries Management Authority (AFMA), who
confirmed that they were credible and reflective of the fishing
operations in the ETBF across that study period (Bromhead, D.,
pers. comm., 2018).

Finally, we introduced the concept of community structure
from network science to construct an undirected network to
graphically represent vessel-métier interrelations and detect
the community structures within the networks. Through this
process, we were able to quantitatively determine which métiers
a vessel was highly associated with, rather than make a
subjective decision based on the number of sets associated
with a particular métier. Membership to a particular vessel
group meant that these vessels had a high probability of
targeting the same group of species and employed similar
fishing tactics. The advantage of this type of analysis is that
it can provide a basis for investigating whether the disclosed
vessel groups are reflective of social (e.g., market demand,
cultural issues) and ecological (e.g., fish abundance and behavior)
components of the fishery.
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FIGURE 5 | Heat map dendrogram of the similarity [based on color density with dark (light) shading meaning high (low) relative value] between the seven métiers in
the Eastern Tuna and Billfish Fishery (ETBF) for the selected fisher decision and catch variables between 2010 and 2017. See Table 1 for description of acronyms.

Fishing Practices in the Eastern Tuna
and Billfish Fishery
For a single-gear, mixed species fishery, the ETBF has a diversity
of fishing practices, with our study identifying a total of seven
métiers, five sub-fisheries, and three clear vessel groups in the
period 2010–2017. Each métier was defined by a characteristic
target species as was found in métier analyses by both Ziegler
(2012) for the Tasmanian Scalefish fishery and Maynou et al.
(2011) for the Mediterranean small-scale coastal fishery. Similar
to Pelletier and Ferraris (2000), fishing location appeared to be
central in defining both the number of métiers and subsequent
sub-fisheries in the ETBF, comprising of a northern yellowfin
tuna sub-fishery (one métier), a north-eastern swordfish sub-
fishery (three métiers) and albacore sub-fishery (one métier), a
south-eastern yellowfin tuna sub-fishery (one métier), and south-
eastern southern bluefin tuna sub-fishery (one métier).

Within the north-eastern broadbill swordfish sub-fishery
(métiers 3, 4, and 5), gear configuration and set start times were
similar. Set start times were mainly in the afternoon and early
evening, for soak times stretching across the night, with 12–13
hooks deployed per basket and the use of lightsticks. According
to Campbell and Young (2012), the number of hooks per basket

is a proxy for fishing depth, with less than 15 hooks per basket
reflective of fishing at shallow depths. These fishing practices
were not too dissimilar to the Hawaiian-based U.S. longline
fishery targeting broadbill swordfish (He et al., 1997). This is
because they reflect the daily availability of swordfish (and striped
marlin), which is typically high during the night at depths less
than 100 m (peaking around 50 m) and low during the day for
all depths (Sepulveda et al., 2010; Dewar et al., 2011; Campbell
et al., 2017). Importantly, it seems that seasonal availability of
target species is central in defining the selection of métiers in
the north-eastern broadbill swordfish sub-fishery. Campbell et al.
(2017) had previously identified that availability of the key target
species in the ETBF may change on a seasonal basis and for the
north-eastern broadbill swordfish sub-fishery it seems there is
an autumn-winter métier (métier 3), which is juxtaposed with
a spring-summer métier (métier 5) with the former targeting
bigeye tuna and the latter striped marlin before and after the
full moon with similar gear configuration and fishing depths.
There is also a year-round métier (métier 4) which also targets
bigeye tuna after the full moon with similar gear configuration
and fishing depth. The variances in métiers 3 and 5, however, are
driven by availability of target species, with Campbell et al. (2017)
highlighting that nominal CPUE for bigeye tuna is higher in the
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FIGURE 6 | Area and relative fishing intensity of the seven métiers identified in the Eastern Tuna and Billfish Fishery (ETBF) between 2010 and 2017 calendar years.

autumn and winter months but lower over summer, while striped
marlin is higher over the spring and summer months.

The northern-eastern broadbill swordfish sub-fishery also
has linkages with the north-eastern albacore sub-fishery, with
the same vessels fishing in both sub-fisheries throughout the
period 2010–2017. There are clear differences, however, in gear
configuration between these sub-fisheries, with fishing in métier
6 characterized by a greater number of hooks and hooks per
basket (26) as well as set start times mainly in the early morning
with fewer lightsticks. According to Campbell and Young (2012),
deploying more than 15 hooks per basket is reflective of fishing
at deeper depths, consistent with albacore targeting. This gear
configuration also reflects the daily availability of albacore, which
is relatively low at shallow depths during the day and highest at
greater depths between 150 and 200 m, while availability at night
is considerably lower for all depths (Campbell and Young, 2012).
Seasonal and lunar phase availability of the target species is also
reflected in the results for métier 6. Nominal CPUE for albacore
tuna is higher in the autumn and winter months but lower over
summer (Campbell et al., 2017), while CPUE is higher in the week
preceding and following the new moon (Campbell, unpublished).

Many vessels fished in the south-east yellowfin tuna sub-
fishery (métier 2) during the period 2010–2017, with clear

linkages to the south-east southern bluefin tuna sub-fishery
(métier 1). For example, there were clear similarities in gear
configuration (hooks per basket, depth fished, use of lightsticks),
which is probably a reflection of vessels switching from targeting
yellowfin tuna to southern bluefin tuna during the winter months.
However, the fishing practices in relation to set start times, lunar
phase, and seasonality were divergent. Métier 1 had no obvious
patterns in relation to set start time or lunar phase, with the
majority of sets occurring in winter. While in contrast, métier
2 was characterized by early morning set start times, around
the new moon occurring in all seasons. These fishing practices
were similar to the Hawaiian-based U.S. longline fishery targeting
yellowfin tuna (He et al., 1997) and are again a reflection of the
daily availability of yellowfin tuna, which is highest in depths less
than 50 m during the day and lowest at night (Campbell and
Young, 2012). Although métier 2 was fished all year round in our
dataset, the nominal CPUE for yellowfin tuna is highest in the
late autumn to early spring and higher in the week preceding and
following the new moon (Campbell, unpublished), which may
explain the majority of sets being deployed in the autumn months
around the new moon during the period 2010–2017. Similarly,
southern bluefin tuna CPUE (and hence availability) is highest in
the winter months when they make annual winter migrations to
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FIGURE 7 | Heat map dendrogram of the proportion of each catch variable [based on color density with dark (light) shading meaning high (low) relative value] within
the seven métiers in the Eastern Tuna and Billfish Fishery (ETBF). See Table 1 for description of acronyms.

the Tasman Sea, off south-eastern Australia and interact with the
fishery (Hobday and Hartmann, 2006).

In contrast to the south-east yellowfin tuna sub-fishery (métier
2), the northern yellowfin tuna sub-fishery (métier 7) was fished
by fewer vessels during the period 2010–2017 and used a unique
gear configuration. Fishing in métier 7 was characterized by
sets using a lower number of total hooks with no clear trends
in set time. This was the only métier in the ETBF where a
dissimilar number of total hooks were used (∼500 compared to
average 1000–1200). Nevertheless, there were some similarities
in seasonal availability between métiers 7 and 2, with the
majority of fishing sets deployed in autumn, when nominal
CPUE is highest (Campbell et al., 2017), as well as number of
hooks per basket.

The overarching results of our métier analysis align with
those of Campbell et al. (2017) and highlight that spatial and
temporal references (e.g., fishing location, season, lunar phase)

influenced métier delineation more than gear configuration in
the ETBF. This is due to changes in the spatial and temporal
availability of species, which is closely linked to the movement
of fish (Campbell et al., 2017). Consequently, oceanographic
conditions (e.g., chlorophyll, sea surface temperature) could
be included as variables in any future ETBF métier analysis
as they may influence species availability and subsequent
fishing practices. As the identified métiers are based on a
time period (2010–2017) when landing profiles and fishing
practices were influenced by species availability, the next
logical step is to use this baseline to develop dynamic models
that may allow predictions about the likely future behavior
of fishers and métiers when species availability, management
arrangements or socio-economic factors (e.g., market demands)
change (Holland and Sutinen, 1999; Wilen et al., 2002;
Ziegler, 2012). Lastly, periodic review of our métier analysis
using the same framework as outlined would be appropriate,

Frontiers in Marine Science | www.frontiersin.org 12 November 2020 | Volume 7 | Article 552391

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-552391 November 7, 2020 Time: 19:31 # 13

Parsa et al. A Robust Non-hierarchical Clustering Framework

FIGURE 8 | Network of vessels and métier interaction in the Eastern Tuna and Billfish Fishery (ETBF). Circles represent individual vessels and the squares represent
individual métiers. The color scheme represents a community of vessels (groups).

with a review period of 5–10 years considered suitable by
Davie and Lordan (2011) in the absence of significant socio-
economic or environmental changes, which would require a
shorter review period.

CONCLUSION

While we consider the application of our multivariate non-
hierarchical clustering framework to the ETBF provides an
improved framework for understanding the structure and
complexity of fishing practices, it is important to remain
cognizant of the fact that there remains no unified, agreed
method for conducting a métier analysis and defining the
optimal number of units within a fleet (Holley and Marchal,
2004). The subjective element of métier identification has
led some authors to contend that métiers are an analytical,
human-made concept that may not reflect the true dynamics
of fishing practices and targeting intentions of the fisher
(Wilson and Jacobsen, 2009; Ulrich et al., 2012; Boonstra and
Hentati-Sundberg, 2016). This is particularly the case in the

absence of discards in many métier analyses (including ours),
due to a lack of in situ reporting in logbooks, which may
create a source of bias (Marchal, 2008; Ulrich et al., 2012).
Nevertheless, we contend that our clustering framework offers
several advantages, but particularly regarding data validation. In
the absence of objective benchmarks for métier analysis (Holley
and Marchal, 2004) and subsequent extensive involvement of
stakeholders to determine true fishing intentions on a set
basis (Boonstra and Hentati-Sundberg, 2016), we advocate
for the use of internal validation methods (e.g., Hennig,
2007). By iteratively resampling the dataset at random, re-
clustering and verifying that the same clusters are found
for the different subsets, the level of subjectivity in métier
selection often associated with visual exploration is reduced and
is more robust than the standard non-hierarchical clustering
approach of using simply the maximum average silhouette width
(O’Farrell et al., 2019).

By separating many heterogeneous fishing sets into
homogenous métiers, whose definitions persist throughout
the period 2010–2017, our analysis has succeeded in creating a
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typology of fishing practices for the ETBF. The results of this
study can be used as a baseline to monitor and assess how the
identified seven métiers respond to future changes in regulations,
policies, or other changes, while also facilitating a more accurate
estimation of relative stock size, the impact of fishing mortality
on the stock, and the consequences of management measures on
stock dynamics through stock assessment and modeling (Pelletier
and Ferraris, 2000). By identifying differences in fishing tactics
when targeting different species in the ETBF, the results of our
métier analysis can identify the “effective effort” directed at
any single species and improve overall CPUE standardization
(Zhou et al., 2019). Furthermore, the development of a typology
of fishing practices provides decision-makers with additional
insights into which métiers are the most important to consider
when addressing a management issue (e.g., seabird bycatch,
see Parsa et al., 2020), while also avoiding over-stratification
and improving the design of fishery sampling programs (e.g.,
at-sea observer, discard, or catch) (Davie and Lordan, 2011;
Moore et al., 2019).
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