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With increasing human populations in coastal regions, there is growing concern
over the quality of wastewater treatment plant (WTP) discharge and its impacts on
coastal biodiversity, recreational amenities, and human health. In Australia, the current
system of WTP monitoring and reporting varies across states and jurisdictions leading
to a lack of data transparency and accountability, leading to a reduced ability to
comprehensively assess regional and national scale biodiversity impacts and health
risks. The National Outfall Database (NOD) was developed to provide a centralized
spatial data management system for sharing and communicating comprehensive,
national-scale WTP pollutant data. This research describes the structure of the NOD
and through self-organizing maps and principal component analysis, provides a
comprehensive, national-scale analysis of WTP effluent. Such a broad understanding of
the constituents and level of pollutants in coastal WTP effluent within a public database
provides for improved transparency and accountability and an opportunity to evaluate
health risks and develop national water quality standards.

Keywords: effluent, outfalls, pollutants, spatial data management, impacts, human health, environment

INTRODUCTION

With increasing human populations in coastal regions and an increase in extreme weather events
due to climate change (Meehl et al., 2000), there is growing concern over the quality of wastewater
treatment plant (WTP) discharge and the impacts of effluent on coastal biodiversity and human
health (Schwarzenbach et al., 2010; Jagai et al., 2015). Land-based pollutants, from sewage and
storm water runoff, enter the coastal marine environment through discharge points, typically from
WTPs (Carey and Migliaccio, 2009; Mallin et al., 2009). This effluent significantly increases organic
and inorganic nutrients and turbidity levels in receiving waters, which can cascade across several
levels of ecological organization to change the key properties of benthos and fish communities
(Roberts, 1996; Burd et al., 2012; Campbell et al., 2015; Yu et al., 2016; White et al., 2018). An
increase in the level of pollutants can have an impact on coastal ecology and biodiversity and affect
the health of recreational water users (Reopanichkul et al., 2009; Schwarzenbach et al., 2010; Zhao
et al., 2015; Boehm et al., 2017). Often the economic sector, such as aquaculture industries, are
also affected due to high levels of bacterial contamination, which decrease production during the
harvest season (Campos et al., 2015).
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There are many ways to resolve these issues, one of them
is cooperation between governments, policy makers, scientists,
and civil society through data transparency and information
disclosure. The concept of data transparency has played an
important role across most, if not all, disciplines (Friesike
et al,, 2015) and it has been shown that increased transparency
leads to improved accountability of industrial (Lopez and
Fontaine, 2019), corporate (Auld and Gulbrandsen, 2014) and
government agencies (Harrison and Sayogo, 2014). “Openness”
and information disclosure has often been associated with not
only economic prosperity, but also improvements to social
capital and the environment (Koltay, 2016; Lee et al., 2019).
While “transparency” has multiple definitions, as well as multiple
purposes, targets, and justifications, the most common one is to
resolve issues that a lack of information pose (Fung, 2013). The
most suitable form of transparency is constitutional transparency
through freedom of information (FOI). The FOI gives citizens
the right to request and access government information not
exempt under the FOI Act (European Parliament, 2001; OAIC,
2013; OIP, 2019). Other initiatives to increase transparency
and accountability and ensure public access to information are
through e-government programs (e.g., data.gov) (Pina et al,
2007; Lourengo, 2013). Access to information, under these
programs is meant to facilitate organizational accountability
toward environmental and public health obligations. More
importantly, accurate data and transparent methods are needed
for governments to make good policy decisions and for the
general public to, for example, assess health risks and make
informed decisions about sustainable use of the environment
(Gupta, 2010; Friess and Webb, 2011). There is further evidence
that improved governance through integrated forms of civil
society—led meta-governance is related to information disclosure
(Schleifer et al., 2019). Therefore, transparency may lead to well-
informed environmental policy, which may play a critical role in
anticipating the wider impacts water quality (Fezzi et al., 2015).

Many countries have established a legal framework to protect
the health of aquatic and marine environments. Australia, for
example, obligated to manage resources of national interest
(matters of national environmental significance) and as a
signatory to the Convention on Biological Diversity, is required to
safeguard its biological diversity, as well as manage the impacts of
nutrients on ecosystem function and structure [Aichi Biodiversity
Targets (8)] (NRMMC, 2010). The state/territory governments
have each established Environment Protection Authorities
(EPAs). Each EPA acts as an independent environmental
protection regulator to prevent and control pollutant impacts to
human health and the environments. With regards to wastewater
effluent, each state or territory EPA has a role in regulating WTP
discharge. Any activity that may produce a discharge of waste that
by reason of volume, location or composition adversely affects
the quality of any segment of the environment will require a
license from the Authority (DECC NSW, 2009). Throughout each
state and territory, emission sources are required to monitor
their discharges and to be in compliance with the conditions
set out in their licenses. Each WTP is required to conduct
monitoring within the vicinity of their outfalls, analyze the
samples and report the results to the EPA (DECC NSW, 2009;
EPA VIC., 2009).

Monitoring of WTP effluent is managed through license
conditions determined together by the EPA and the water
treatment authorities (WTA), the body that manages a WTP.
License conditions ultimately depend on EPA requirements,
WTP treatment level, and the condition of the marine
environment (EPA NSW, 2003; EPA VIC, 2017). While WTP
operators are largely interested in minimizing expense and
staying within their license conditions, the EPA has an
interest in regulating “developments and activities that may
impact on environmental quality and to promote best practice,
sustainable environmental management” (EPA NSW, 2013;
EPA VIC, 2017). This system of WTP effluent monitoring
and reporting varies across states, jurisdictions and regions.
Inconsistency in monitoring requirements, confounded by non-
binding international standards for assessing pollutant risk, and a
lack of national-level standards for data collection, transmission
and sharing, results in a lack of transparency and a reduced
ability to comprehensively assess regional and national scale
biodiversity impacts and health risks (ANZECC and ARMCANZ,
2000; Reichman et al, 2011; Borgman, 2012; Gemmill et al,
2019; Rohmana et al, 2019). This can hamper the ability
to adequately assess progress toward biodiversity conservation
targets (Bull et al., 2018).

Through the lens of transparency and accountability, a non-
government organization, the Clean Ocean Foundation (COF),
with the support of National Environmental Science Program
(NESP), developed the National Outfall Database (NOD, 2020)".
This initiative provides a centralized spatial data management
system for sharing and communicating comprehensive, national-
scale pollutant data from outfalls. It provides the potential
to empower coastal communities to monitor and evaluate
health risks of the outfall effluent, and for federal and
state government to prioritize outfall infrastructure reform.
It promotes and supports transparency as well as openness
of pollutant management from WTPs and accountability of
these organizations against environmental and human health
obligations. The NOD also provides a baseline of information to
develop national-scale monitoring and wastewater re-use.

Data-centric, e-government portals, designed with the
intention developing transparency and accountability in
waste water management have been developed elsewhere. The
European Union (EU) built the Water Information System
for Europe (WISE) which consists detailed information of
the EU water policies, reported dataset for both inland and
marine water, modeling, and relevant research (European
Environment Agency, 2017). The notion of having a water
portal is also applied in the United States. The Water Quality
Exchange (WQX) under Clean Water Act was created under
the sponsorship of The United States Geological Survey
(USGS), Environmental Protection Agency (EPA) and National
Water Quality Monitoring Council (NWQMC) to integrate
publicly available any water related data, including current and
historical water data as well as water quality monitoring data
(NWQMC, 2016).

While these are mostly government initiatives, this work
describes the development of a data portal under the direction

Lwww.outfalls.info
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of a non-governmental organization and outlines how the data
can be used to increase transparency, accountability and guide
policy development and the attainment of international goals and
targets. Therefore, the purpose of this research is (1) to describe
the structure of the NOD, (2) provide the first national-scale
analysis of WTP effluent into the marine environment, and (3)
examine the spatial patterns of water quality variables across
Australia and interrelations among them. The description of the
NOD and an analysis of its data is further discussed in the context
of data transparency and government accountability with regards
to outfall monitoring and reporting standards. The importance
of this research is that it provides a comprehensive and
transparent data platform to guide government accountability
at a national scale through overcoming inconsistencies in data
reporting methods.

MATERIALS AND METHODS

Data Collection — The National Outfall
Database

The NOD, currently, provides a national inventory of Australia’s
181 coastal outfalls including the volume of water and the
amount of pollutants and nutrients disposed of into coastal

receiving waters (Figure 1). Water quality data, recorded in
the NOD, were collected from 42 WTAs around Australia.
Sampling conducted by the WTAs were taken from the
sampling points within the WTP premises as described in
the licenses (EPA VIC. 2009; EPA NT, 2013; EPA SA,
2016). Data describing water quality parameters (Table 1)
and outfall characteristics were transcribed into a database.
Outfall characteristics consist of outfall name, manager, license
number, WTP capacity, population serviced, treatment level, and
location description.

In order to display the data spatially, the database was
equipped with a location map, pivot table and trend chart for
each parameter. The descriptive statistics function was applied
to each outfall to calculate the mean and standard deviation
of water quality parameters and the summary of discharge
volume. To ensure proper storage and use of the data, the data
collected from the public agencies are treated in accordance with
the objectives of the Freedom of Information Act 1999 (Cth)
and equivalent legislation in each jurisdiction, which require
government agencies to make information publicly available,
subject to certain exceptions listed in that legislation.

Sites that monitored a consistent set of water quality
parameters (n 162) were included in the analysis. These
parameters include enterococci (ENTCC), fecal coliform (FC),
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FIGURE 1 | Australian coastal outfalls recorded in the NOD.
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TABLE 1 | Water quality parameters recorded in the database with their assigned
database ID and units of measurement.

ID Name Unit

1 Total suspended solids* mg/L

2 Total phosphorus* mg/L

3 Total nitrogen*® mg/L

4 Oil and grease* mg/L

5 Flow volume ML

6 Fecal coliform* org/100 mL
7 pH* pH

8 BODs_gays mg/L

9 Ammonia nitrogen mg/L

10 Enterococci* org/100 mL
11 Total dissolved solids* mg/L

13 E. coli org/100 mL
14 Turbidity* NTU

15 Color Pt. Co. Units
16 Nitrate nitrogen mg/L

17 Total kjeldahl nitrogen mg/L
18 Surfactants (MBAS) mg/L

19 Total coliforms org/100 mL
20 Blue green algal bloom Frequency
21 Chemical oxygen demand mg/L
22 Total algae count Cells/mL
23 Total blue-green algae count Cells/mL
24 Electrical conductivity* wS/cm
25 Calcium mg/L
26 Magnesium mg/L

27 Sodium absorption ratio SAR

28 Sodium mg/L

Asterix (*) indicates parameters used for the analysis.

electrical conductivity (EC), turbidity (NTU), oil and grease
(OG), alkalinity or acidity (pH), total dissolved solids (TDS), total
nitrogen (TN), total phosphorus (TP), and total suspended solids
(TSS) (Table 1). The remaining parameters were not analyzed
due to either a lack of samples or inconsistent sampling of
parameters across sites.

Data Analysis

Due to the enormity and diversity of the dataset, unsupervised
machine learning methods were utilized to explore and observe
hidden patterns. Firstly, self-organizing maps (SOM) approach
was used because its process allowed the categorization of
pollutant characteristics to a set of outfall class structures,
identifying similarities and differences in class factors that may
influence effluent quality between outfall sites. Secondly, the
principal component analysis (PCA) was applied in order to
validate the patterns in the SOM plane visualization and to help
identify patterns not detected in the SOM planes. Lastly, to
determine outfall grouping and support our goal of increased
transparency and the establishment of standards, a cluster
analysis was conducted using a gap statistics and k-means. All
data analyses were conducted using MATLAB 2019a software
(MATLAB, 2019). The results were plotted to identify data

clusters of, or similarities, between the discharge of WTPs
across Australia.

Self-Organizing Maps

The SOM is an unsupervised classification method, in which
networks learn to form their own classifications of the training
data without external input. The SOM detects patterns or
classes in a set of data, preserving the proximity to a set
of classes or neighboring relations (Kohonen, 2001). In other
words, similar clusters in the multidimensional space are
located together on a 2D grid allowing intuitive visualization
of classes (Bagdo and Lobo, 2010). The process includes a self-
organizing neighborhood mechanism, the neighboring clusters
of the winning reference vector in the 2D lattice space are
also adapted toward the sample vector through an iterative
training process. Through this approach, an input vector is
presented to the multi-class network and the output is compared
with the target vector, projecting the topological neighborhood
relationships of the high dimensional data space of the class
“lattice” (Kelvin, 2006). In order to visualize the neural network
map (lattice), a suitable map size was first identified. The size
determination is crucial for cluster clarification. If a map is
too small, patterns between the nodes are less likely to resolve
important detectable differences (Céréghino and Park, 2009;
Vatanen et al., 2015). The initialization and training of the input
data were performed to calculate the distance of every neuron
in the network. Training steps also define the SOM map quality
by examining the quantization error (QE) and topograhic error
(TE). QE is the average distance between each node and its best
matching unit (BMU), while TE measures the wellness of the
map structure by calculating the node’s first and second BMUs
and their position in relation to each other (Villmann et al., 1997;
Kohonen, 2001; Breard, 2017). Smaller QE and TE values indicate
a better fit of the map itself (Kohonen, 2001; Breard, 2017).
Once the SOM has been trained, the data was visualized into a
U-matrix (unified distance matrix) along with eight component
planes. The U-matrix shows the clustering structure of the SOM
data by visualizing the distance between neighbors of the SOM,
while the component planes represent the pattern and behavior
of one parameter toward others (Kohonen, 2001; Ba¢do and
Lobo, 2010). The darker areas in the U-matrix represent shorter
distances between nodes, which then forms clusters. Light areas
represent longer distances, as well as borders for each cluster.
In summary, similarity between clusters is measured as the
minimum distance between data vectors and each node on the
map (Vesanto et al., 2000). The analysis was conducted using
SOM Toolbox version 2 for MATLAB by Vesanto et al. (2000).

Principal Component Analysis (PCA) and

Cluster Analysis

Principal component analysis (PCA) is a technique to emphasize
variation of patterns in a dataset and has been widely used
across a variety of scientific areas (Abdi and Williams, 2010). It
is a way of identifying patterns and expressing data to highlight
similarities and differences. Since patterns can be hard to find in
data of high dimensions, a PCA is a powerful tool for multivariate
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data analysis. PCA provides useful information to identify the
relationship of similar characteristics by representing the spatial
and temporal variations of wastewater parameters (Zuur et al.,
2007; Abdi and Williams, 2010). Prior to deriving the principal
components, Kaiser normalization and varimax rotation were
used to weight the water quality samples equally and maximize
the loading variances. Principal components, coefficients, scores
and variance, were then calculated using the eigs function
in MATLAB (Mathworks, UAS). The component coefficients
represent pollutants loading while the scores represent WTP sites.

Cluster analysis was applied to the PCA score matrix using
gap statistics and k-means methods. The gap statistics helps
determine the optimal number of clusters (k) (Tibshirani et al.,
2001), while the k-means procedure performs the grouping of
water quality data according to the identified optimal k values
(Hair et al., 2010). The k-means method is generally based on a
proximity measure, meaning that it measures the distance and
location of the mean samples and groups them accordingly (Hair
et al., 2010; Jain, 2010; Hardle and Simar, 2015). Each k consists
of samples that are close to each other. Due to its simplicity
and quick response during the analysis for vast dataset (Hair
et al., 2010), k-means was chosen as the method to analyze our
data. The major challenge of k-means is determining the number
of clusters (k) needed prior to conducting the analysis. In this
case, a gap statistic method was used. The gap statistic evaluates
the dataset and provides the highest possible number of clusters
suitable for the analysis (Tibshirani et al., 2001; Brodinova et al,,
2019). After the gap value was calculated, the accurate k value was,
then, applied to the k-means method. The clustering results will
be visualized along with the PCA plot.

RESULTS

Monitoring Data

Of the 181 outfalls, 114 are categorized as ocean outfalls, meaning
that effluent is directly discharged into the coastal marine
environment. Sixty-seven of them are categorized as estuary or
river outfalls. Because effluent is discharged from these WTPs
into estuaries or rivers, the dilution and transport of pollutants to
the coastal environment is also dependent on other variables such
as rainfall, river flow, and tides. The state of Queensland had the

highest number of combined (coastal and estuary/river) outfalls
at 51, followed by Tasmania (41) and New South Wales (34),
Victoria (19), The Northern Territory (14), Western Australia
(12), and South Australia (10).

Summary statistics of the assessed parameters are presented
in Table 2. EC varied between 390 and 6,700 wS/cm, with an
average of 1,937 pS/cm. ENTCC and FC tended to have a wide
range of values with a mean of 29,945 and 647,153 org/100mL and
standard deviation (SD) of 351,951 and 8,095,710 org/100 mL,
respectively. OG values ranged from 0 to 312.6 mg/L and reported
pH values ranged from 3.22 to 7.8. TDS ranged from 200 to
33,000 mg/L with a mean of 2,737 mg/L. The mean values of
TN, TP, and TSS were 15.9, 4.8, and 24.5 mg/L, respectively. The
mean concentration value of NTU was 35.7 mg/L. The range
and standard deviations values across ENTCC, FC and TDS are
extremely high.

SOM, Covariance, PCA, and Clustering

The TE and QE map size for self-organizing maps is critical for
the implementation and visualization of the analysis. The QE and
TE were computed at different map sizes. A map size of 10 x 7
with 70 nodes was the most appropriate with the QE value of
0.624 and TE 0.049 (Table 3).

The SOM component planes of each water quality parameter
across the whole dataset is shown in Figure 2. It shows that
all variables had a clear trend of color gradients for each
parameter. The trends also reveal the correlation strength
between parameters. The similar patterns of color gradients with
the values increasing to the bottom left of the plane were shown
on the ENTCC, FC, OG, TN, TP, TSS, and slightly on the EC. On
the other hand, pH, TDS, and NTU had almost similar patterns of
color gradients with lower values dominating the upper left areas
and higher values on the bottom right of the map.

A covariance matrix was computed to corroborate these
patterns (Table 4). Further, it suggests particularly strong
correlations between EC and TP (r = 0.70), ENTCC and FC
(r = 0.94), FC and OG (r = 0.62), OG and TSS (r = 0.74), and
TN and TSS (r = 0.62). A moderate correlation also can be seen
between ENTCC, OG (r = 0.47) and TSS (r = 0.53), FC and TSS
(r=0.57), and OG and TN (r = 0.53).

Prior conducting the PCA and cluster analysis, gap statistics
were applied to determine the optimal values for k-means clusters

TABLE 2 | Summary statistics of assessed parameters.

Parameter Unit N Min Max Mean SD SE
EC uS/cm 156 390 6,700 1,937.4 1680.9 134.6
ENTCC org/100 mL 2,228 0 10 x 106 29,945.4 351,950.9 7,471.4
FC org/100 mL 2,860 0 240 x 108 647,152.8 8 x 106 151,566.8
oG mg/L 2,492 0 312.6 4.6 16.1 0.3
pH pH 3,882 3.22 12.9 75 0.6 0
TDS mg/L 628 200 33,000 2,736.9 5,269.9 210.5
TN mg/L 4,320 0 373 15.9 17.0 0.3
TP mg/L 4,227 0 86 4.8 51 0.1
TSS mg/L 4,463 0 1,692.5 24.5 60.2 0.9
NTU NTU 369 0 336 35.7 62.7 3.3
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TABLE 3 | QE and TE values for deciding the optimal map size.

Map size 10 x 6 9x7 8x8 13 x5 11 x6 10x7

QE 0.668 0.654 0.663 0.631 0.619 0.624
TE 0.049 0.043 0.049 0.049 0.062 0.049

In bold is the optimal map size.

(Tibshirani et al., 2001). The result shows that a cluster of five is
suitable for this research with the gap value of 0.49 (Figure 3).
Results of the PCA and cluster analysis are shown in Figure 4.
The first principal component, explaining 65% of the variance
on the horizontal axis, has positive coeflicients (right) for six
parameters and slightly negative (left) for pH. TSS, OG, ENTCC,
and FC have a strong influence toward PC 1. The second principal
component, explaining 21% of the variance on the vertical axis,
has positive coefficients (top) for six parameters, especially EC,
and negative coefficients for OG, ENTCC and FC (bottom).
The clusters appear to separate outfalls with extreme levels of
pollutant concentrations. On the lower right, cluster two and
portions of cluster five have high correlation with increased
inputs of OG, ENTCC, and FC. The top right quadrant contains
the majority of cluster three, four and few from cluster five. These
represent high contributions of EC, TP, TN, and TSS. On the top
left, pH is the only parameter which seems to be related to some
outfall sites in cluster one and three.

Not surprisingly, the cluster analysis results suggest that each
outfall site did not group according to its state or territory, instead
state and territory representation was spread over five clusters
(Figure 5 and Table 5). Tasmania was the most diverse state
with sites in four out of five clusters. The second most diverse

was New South Wales and Western Australia outfall sites across
three clusters. Northern Territory outfall sites were grouped into
two clusters only. Cluster 3 is the only group that consists all
states/territory (Table 5).

Cluster two consists two Tasmanian outfalls (Pardoe
and Ulverstone), which discharge some of the highest FC
and ENTCC values in the nation. Cluster four represents
outfalls (Berrimah, Leanyer Sanderson, Palmerston, Port
Pirie and Bolivar WTP) across the Northern Territory and
South Australia, which are responsible for contributing
higher concentrations of EC, TP, and NTU. Cluster five
contains three of the largest outfalls in the nation, located
in Sydney (Bondi, Malabar and North Head), Electrona
(Tasmania) and Point Peron (Western Australia). These outfalls
are responsible for contributing higher concentrations of
OG, TN, and TSS.

DISCUSSION

Water quality parameters were collected from 162 outfalls around
Australia. The highest level of oil and grease were associated
with highly urbanized and industrial areas, as were organic
pollutants (nitrogen and phosphorous). Higher levels of N and
P were not always associated with agricultural regions (Xia et al.,
2016; Tromboni and Dodds, 2017; Rohmana et al., 2019), as
other studies have found (Booth, 2015; Clendenon and Atkins,
2016). Clusters identify outfalls that share high fecal coliform
and enterococci and discharge high levels of oil and grease
and nutrients (e.g., cluster 2 and cluster 5, Figure 5). General
patterns showed a strong correlation between enterococci

U-matrix EC ENTCC
3.76 0.867 3.64
. 1.94 ‘HOJGQ: ‘HLM:
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oG pH TDS
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4.32
‘ Hz.og :
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™
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FIGURE 2 | SOM component planes of all parameters, electrical conductivity (EC), enterococci (ENTCC), fecal coliform (FC), oil and grease (OG), pH, total dissolved
solids (TDS), total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), and turbidity (NTU). Dark color indicates low values and light color means high

values. n indicates that the data was normalized.

NTU
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TABLE 4 | Covariance matrix of water quality parameters (r).

EC ENTCC FC oG pH TDS TN TP TSS NTU
EC 1 —0.02 —0.02 —0.05 0.18 —0.03 0.02 0.70 0.04 0.07
ENTCC 1 0.94 0.47 —0.10 —0.02 0.23 0.08 0.53 —0.01
FC 1 0.62 -0.13 —0.02 0.22 0.08 0.57 —0.02
oG 1 —0.30 —0.05 0.53 0.13 0.74 —0.05
pH 1 0.24 —0.16 0.08 0.07 0.25
TDS 1 0.00 —0.02 0.05 —0.01
TN 1 0.40 0.62 0.10
TP 1 0.26 0.02
TSS 1 0.34
NTU 1

—, negative correlation. Bold indicates a strong correlation. Italic numbers are the matching variable that showed differences between the covariance matrix and the PCA

plot.
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TABLE 5 | Australian state and territory distribution over five clusters along with
the number of outfalls sites in each group.

Cluster State/Territory (N)

1 New South Wales (19), Queensland (41), South Australia (5), Tasmania

(10), Victoria (14), and Western Australia (7)
Tasmania (2)

New South Wales (5), Northern Territory (1), Queensland (8), South
Australia (3), Tasmania (28), Victoria (5), and Western Australia (4)

Northern Territory (3) and South Australia (2)
New South Wales (3), Tasmania (1), and Western Australia (1)

and fecal coliform, and total nitrogen, total phosphorus, and
total suspended solids (Figures 2, 4 and Table 4). These
correlations were confirmed by the SOM planes, PCA, and the
covariance matrix.

Enterococci and fecal coliform are the most common
bacterial indicator for monitoring water quality. In order
to decrease human health risk, these bacteria have been
widely used to detect pathogens in marine and aquatic
environments (Havelaar et al., 1986; Efstratiou, 2019). Fecal
bacteria, commonly, appear within the wastewater (Ashbolt et al.,
2001) and high concentrations of fecal coliform and enterococci
occurs when treatment plants have inadequate processes to
remove bacteria from effluent (US EPA, 1998; Adams et al,

2008). The most noticeable level of high fecal bacteria counts in
cluster two were represented by two Tasmanian outfalls (Pardoe
and Ulverstone) (Figures 4, 5). According to the Tasmanian
emission limit guidelines for existing sewage treatment plants,
fecal coliform must not exceed 1000 org/100 mL (DPIPWE,
2001). However, in this case, these two outfalls exceeded the
acceptable limits and have consistently discharged high counts
of fecal bacteria since 2015 (NOD, 2019a,b). The permit
conditions showed that Pardoe WTP does not have any bacterial
limits, although it is required to monitor levels. Ulverstone
WTP has a maximum limit of 2000 org/100 mL for fecal
coliform in the effluent quality. Currently, the EPA Tasmania
and TasWater are in the process of upgrading Pardoe and
Ulverstone WTP infrastructures (Infrastructure Tasmania, 2019;
OTTER, 2019) to improve the levels of bacterial contamination
in these coastal waters.

There are several outfall sites that cluster around the
PCA coefficients of total phosphorus, total nitrogen and total
suspended solids (Figure 4). These sites consist of outfalls in
cluster three (Port Sorell, TAS), cluster four (Berrimah, NT) and
cluster five (Electrona, TAS and Point Peron, WA). Those two
Tasmanian outfalls tend to have slightly high total phosphorus,
total nitrogen and total suspended solids, respectively, compared
to the Tasmanian acceptable emission limits (DPIPWE, 2001).
These elevated levels are likely due to the license conditions of
each outfall. Port Sorell STP is not required to monitor the TP,

Frontiers in Marine Science | www.frontiersin.org

September 2020 | Volume 7 | Article 564598


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Rohmana et al.

Increased Transparency and Resource Prioritization for WTPs

TN, and TSS, while Electrona STP has maximum limit of 12,
65, and 186 mg/L for TP, TN and TSS, respectively. Despite
discharging slightly higher concentrations of total nitrogen, Point
Peron WTP (WA) did not exceed the 230 mg/L acceptable
limit of Western Australian Environmental Quality Guidelines
(ANZECC and ARMCANZ, 2000). There is no clear explanation
where Berrimah WTP discharge point has a limit on these three
parameters on their license, but it has four reported monitoring
points limit which all says >30 pg/L (TP), >300 pg/L (TN),
and >15 pg/L (TSS) (EPA NT, 2018). However, persistent
elevated concentrations of nutrients will eventually affect the
marine environment. The cumulative impact of nutrients and
suspended solids might alter the original composition of marine
environment by increasing eutrophication, algal growth, and
reduce the light penetration into the waterbody which may
impact marine biodiversity (ANZECC and ARMCANZ, 2000
Thompson and Waite, 2003; Beck and Birch, 2011; Clendenon
and Atkins, 2016; Weerasekara et al., 2016).

Previous studies focused mainly on particular cases in
certain areas (Burridge and Bidwell, 2002; Thompson and
Waite, 2003; Adams et al., 2008; Manning et al., 2019) rather
than across a national scale, as in this study. Considering
the increasing availability of vast datasets at both national
and regional scales, decision makers have the capability
to conduct more comprehensive analyses to assist them
in allocating limited resources to minimize the impact of
wastewater on the environment (Edgar et al., 2016). There
are strong relationships between ecological patterns and
environmental covariates that emerge clearly when regional-
to-global-scale data are considered (Kerr et al., 2007; Webb
et al., 2009; Mora et al.,, 2011). As an unprecedented collection
of nationwide water quality data, the NOD acts as a tool to
facilitate cross institutional coordination across federal, state,
and local authorities to integrate infrastructure planning and
decision making of wastewater effluent from coastal outfalls
(Marine Biodiversity Hub, 2015).

Currently, each state/territory EPA produces separate
regulations and permits for WTPs to monitor their wastewater
quality (EPA NSW, 2015; EPA VIC, 2017; OTTER, 2019),
prohibiting a comprehensive analysis of national scale impacts.
A comprehensive understanding of the constituents and level
of pollutants in coastal WTP effluent within a public database
provides an opportunity to apply the best possible knowledge to
inform decisions in complex transboundary marine ecosystems,
such as Australia. The existence of the NOD raises awareness at
various scales — local, regional, state, national and international —
of the extent of our wastewater effluent and provides essential
information to assess the impacts on receiving waters. The
ultimate outcome could be an improvement in the management
of coastal biodiversity and assist agencies with their obligations
to inform citizens of recreational health risks. Important
environmental and human health implications are suggested by
our research findings. Across Australia, discharge pollution limits
appear to be set in a piecemeal and inconsistent manner, with
limits being elevated where a plant simply cannot perform. This
is not an appropriate way for regulating pollution discharge to
limit the risks to environmental and human health and research

helps to guide a more consistent and comprehensive approach to
ensuring environmental and human health.

Added to this diversity of wastewater levels of quality of
treatment and disposal across Australia, it can be seen that the
number and type of outfalls vary considerably by jurisdiction and
location. For example, Tasmania has one of the highest number
of outfalls per capita, while many of the states have poorly
performing outfalls. As Blackwell and Gemmill (2019) state,
“these can be explained in part by the number of outfalls and size
and geographical spread of relevant local populations that will
benefit from the upgrades but also by the individual jurisdictional
asset condition and their respective histories, evolutions and
success with water and wastewater reform.” In cases such as
Tasmania, where historical legacies prevail and upgrades present
a net cost to society, some form of subsidization by the nation
will be required to ensure that no single state falls behind others
(Blackwell and Gemmill, 2019). Blackwell and Gemmill (2019)
found that overall enough states gain a net benefit from upgrades
to compensate those states or territories that incur a net loss and
remain better-off and this presents a prima face case for some
form of subsidization.

National Outfall Standards for Monitoring
and Reporting

Currently, state and territory EPAs determine the monitoring
parameter standards and reporting requirements. The
inconsistency of reporting requirement has resulted in an
ambiguous process of governing water quality in Australia’s
coastal environment. This leads to a lack of clarity when
assessing progress against international environmental goals
and targets. Transparency equals good governance and elements
of good governance include a clear enforceable reporting
framework. For this reason, the Clean Ocean Foundation, using
the data from the NOD, has started to establish the Standards
and Guidelines for National Reporting of Outfall Data. National
standards will provide a further legal directive to reduce WTP
effluent impacts to the marine environment and improve health
outcomes for recreational users and enhance business output
(European Commission, 2017; European Commission, 2019;
World Bank, 2018). This national standard is designed to redefine
parameters, monitoring methods and reporting requirements in
an effort to expand Australia’s efforts in enhancing biodiversity
protection and achieving Sustainable Development Goal 14 and
in promoting data transparency and accountability of WTPs.
Many countries have already implemented national
wastewater standards in order to effectively govern their
aquatic and marine environments. Many of these standards
were based on the provision of large amount of water quality
data across a variety of environmental conditions. For example,
the U.S. Environmental Protection Agency developed a portal
(WQX) to store and manage water quality data for freshwater,
groundwater and coastal areas (Read et al., 2017). This portal
provides a centralized data repository for WTP monitoring
allowing for the centralized analysis, reporting and display of
water quality across the United States. Similar to the NOD, the
portal has a standardized format of data upload, presentation,
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analysis, and mapping. The WQX portal was established
primarily to reduce inconsistency between data sets, reduce
workloads, and increase time efficiency associated with data
management (Read et al., 2017). While, some data from the
WQX are commercialized or available upon request (Read et al.,
2017), the NOD enables free access to wastewater quality not
only in Australia, but also other countries. This will allow for
comparisons across countries and regions in establishing the
attainment of targets under SDGs. The NOD water quality data
can also be evaluated along with biodiversity surveys allowing
for the prioritization of biodiversity conservation, an obligation
under the Convention on Biological Diversity.

The European Commission (EC) has developed the Urban
Waste Water Treatment Directive (UWWTD) (91/271/EEC)
in 1991 (European Commission, 1991, 2019). The Directive
is directly related to Water Framework Directive (WED)
2000/60/EC and Environmental Quality Standards Directive
(EQSD) 2013/39/EU, for setting up the water quality parameter
concentration limits. It lays down four main obligations,
planning, regulation, monitoring and reporting. The UWWTD
has helped these countries successfully to reuse the water and
maintain the cleanliness of the rivers by having high rates (85%)
of recycled water (European Commission, 2019; Pistocchi et al,,
2019). The EC invested approximately EUR 25 million each
year for the UWWTD framework development, implementation,
wastewater infrastructure, drinking water supply, and water
conservation (European Commission, 2017). Similar to the
United States and European Union, having a standard reporting
in Australia may help the relevant stakeholders including citizen
science to promote healthy marine environment initiatives and
play an active governance role in developing national reporting
standards. In terms of accountability, the WTAs would be able to
commit to fulfill their obligations toward the general public for
improved management of the environment.

The research presented here is anticipated to provide support
for the development the Standards and Guidelines for National
Reporting of Outfall Data in Australia. Two salient points can
be made about these standards. Firstly, the results showed a
strong correlation between various parameters (Figures 2, 4 and
Table 4). Understanding these relationships overtime may be
useful for predicting the future patterns of water quality, which
can also help to redefine and reduce parameter limits (Shakhari
et al.,, 2019). Secondly, the outfall clusters will definitely help
water resource managers to discover where pollution problems
exist, where to focus pollution control and where water quality
improvements have been made (Figure 5). Once a national
standard is established, redefined monitoring and reporting may
help these sites assess water quality and biodiversity impacts in
achieving SDG goals. Furthermore, the improved effluent from
the WTP might be fully recycled as both potable and non-potable
use, which may increase the Australian water supply (NRMMC,
and EPHCA, 2006). With the NOD, a centralized database
would be a dynamic resource for sharing and communicating
comprehensive, national scale pollutant data from outfalls, which
may help to reduce the outfall emission into the environment and
supporting the sustainability of Australian marine environment
biodiversity (Rohmana et al., 2018).

CONCLUSION

The governance and performance of WTPs in Australia sits in
stark contrast to the frameworks that have been established in
other parts of the world. The NOD provides a comprehensive
database for making outfall monitoring data easily accessible
and transparent by allowing for the investigation of the general
patterns of the effluent quality across Australian coastal outfalls.
This research has revealed two key points, which will aid
decision makers in prioritizing water pollution governance
across Australian waters. Firstly, the correlation patterns of
various water quality parameters support the need to redefine
and reduce concentrations limit which drive water recycling.
Secondly, it helps decision makers to prioritize actions to reduce
water pollution and improve environmental and human health
outcomes and reduce health risks. The NOD, as with other
e-government data initiatives, attempts to provide accessible and
transparent data to not only address international environmental
obligations, but to also develop sense of transparency and
accountability for Australia’s WTP stakeholders. The NOD, an
NGO led initiative, was developed as a form of social reporting
to help not only achieve stakeholder accountability but to
guide the development of National Outfall Reporting Standards
in a consistent and collaborative fashion across all Australian
jurisdictions. The NOD acts as a third party between WTAs
and other stakeholders and provides a neutral platform for
unbiased decision making, improving governance and promoting
accountability. As the National Outfall Reporting Standards
is currently being developed, it is recommended that future
research focuses on evaluating its implementation and furthering
its potential toward advancing public accountability and
improved environmental and economic outcomes. Additional
research should focus on developing NOD capacity for handling
those pollutants that were inconsistently measured across outfall
sites and to take into consideration emerging pollutants.
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