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The ecosystem dynamics of benthic communities depend on the relative importance
of organism reproductive traits, environmental factors, inter-specific interactions, and
mortality processes. The fine-scale community ecology of sessile organisms can be
investigated using spatial analyses because the position of the specimens on the
substrate (their spatial positions) reflects the biological and ecological processes that
they were subject to in-life. Consequently, spatial point process analyses (SPPA)
and Bayesian network inference (BNI) can be used to reveal key insights into the
ecological dynamics of these deep-sea communities. Here we use these analyses to
investigate the ecology of deep-sea glass sponge dominated community "The Forest
of the Weird" (2,442 m depth, Ridge Seamount, Johnston Atoll, Pacific Ocean). A 3D
reconstruction was made of this community using photogrammetry of video stills taken
from high-resolution ROV video. The community was dominated by two genera of
Hexactinellids: Farreidae Aspidoscopulia sp. and Euplectellidae Advhena magnifica with
octocorals Narella bowersi, Narella macrocalyx, and Rhodaniridogorgia also present in
large proportions. SPPA of the dead vs. alive organisms revealed a random distribution
of dead amongst the living, showing a non-density dependent cause of death for
the majority of taxa. However, in the high-density ridge crest region there was non-
random aggregation of dead specimens, revealing density-dependent mortality for
Aspidoscopulia. SPPA showed that the glass sponges and octocorals were each most
strongly influenced by different underlying processes, and reacted to the environmental
conditions differently. The octocorals responded to higher density areas with increased
intra-specific competition, whilst the glass-sponges seemed impervious to a doubling
of specimen density. BNI found that mutual habitat associations between different taxa
resulted in inter-specific competition at larger (2–4 m) spatial scales, with instances of
competition at small-spatial scales (<0.75 m) in the higher-density ridge crest section. To
our knowledge, this study is the first to analyze the mortality, population and community
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dynamics of a deep-sea sponge community using SPPA. Our results provide the first
insight into the variety of ecological behaviors of these different glass sponges and
octocorals, and show how these different organisms have developed diverse responses
to the biological and environmental gradients within their habitat.

Keywords: sponges, benthic ecology, deep-sea ecology, Bayesian network inference, community ecology,
mortality dynamics, spatial point process analyses, ecological network

INTRODUCTION

Sponge and coral dominated deep-sea communities are complex
habitats, providing habitat, and refuge for other benthos creating
biodiversity hotspots in the deep ocean (Buhl-Mortensen et al.,
2010; Hogg, 2010; Maldonado et al., 2017; Rossi et al., 2017).
Deep-sea sponges create these biodiversity hotspots by providing
biogenic structures which increase vertical habitat complexity,
providing substrate and refugia for macroinvertebrates and
demersal fish (Dayton, 1972; Dayton et al., 2013; Kazanidis
et al., 2016; Maldonado et al., 2017; Dunham et al., 2018; Meyer
et al., 2019; Vieira et al., 2020). Sponges also provide a key link
between benthic and pelagic systems, by pumping and filtering
large quantities of water (Reiswig, 1974; Bell, 2008), and so
increase diversity beyond providing a hard substrate (Mitchell
et al., 2020b). Environmental settings have a strong influence
on benthic community composition and density across multiple
different scales, from global latitudinal and depth gradients to the
kilometer and meter scale. Sponge distributions are influenced
by different factors such as depth, surface temperature, silicate
levels, salinity, sea-floor characteristics and POC over broad
scales (Beazley et al., 2015, 2018; Howell et al., 2016; Murillo et al.,
2020). Sponges, corals, and other filter feeders often found on
elevated features such as seamounts (Genin et al., 1986; Lundsten
et al., 2009; Clark et al., 2010), hills (Durden et al., 2015),
mounds, and ridges (Chu and Leys, 2010), where raised seabed
morphology often induces faster currents providing a richer flow
and deposition of organic matter (Lundsten et al., 2009; Howell
et al., 2016). Seamounts and other elevated seafloor features
often have high species richness and diversity (Richer de Forges
et al., 2000; Samadi et al., 2006; Rowden et al., 2010), different
community composition and structure (McClain et al., 2009;
McClain and Barry, 2010; Mitchell et al., 2020a) with sponges
further contributing to this high diversity (Beaulieu, 2001; Kahn
et al., 2015; Hawkes et al., 2019).

Ecological analyses of sponge populations and communities
have mostly focused on specific ecological processes, such as
the importance of episodic recruitment events (Dayton, 1989;
Dayton et al., 2013, 2016), distribution patterns (Kenchington
et al., 2013; Knudby et al., 2013; Howell et al., 2016; Beazley
et al., 2018; Murillo et al., 2020), associations of taxa with
the habitat complexity (Robert et al., 2017) or competition
and facilitation between sponges (Dayton, 1971; Easson et al.,
2014). As such, less is known about the community dynamics
in terms of the relative occurrence of multiple different sorts
of processes within communities, such as dispersal limitation,
habitat associations, facilitation and competition. In this study
we infer multiple different types of intra and inter-taxa

interactions and associations at the centimeter to meter scale
using Spatial Point Process Analyses (SPPA) and Bayesian
Network Inference (BNI).

SPPA capitalizes on the spatial position of organisms on
the substrate because there are only four different sets of
processes which can influence these positions: (1) interactions
with environment, (2) dispersal limitation, (3) interactions
such as facilitation and competition within and between taxa
populations, and (4) density-dependent mortality processes
(Illian et al., 2008; Wiegand and Moloney, 2013). Therefore, by
analyzing the spatial distributions of the sessile community, the
most likely underlying processes for the patterns can be inferred
using SPPA. SPPA has been developed extensively for use in forest
ecology, but is equally applicable to other sessile organisms such
as fungi (Liang et al., 2007) and corals (Muko et al., 2014). Within
SPPA each organism is treated as a point and spatial distributions
are calculated using distance measures such as pair correlation
functions (PCFs) which then describe how the density of points
change over different spatial scales (Illian et al., 2008). SPPA
has not been widely applied to sessile animal communities, but
has been used to investigate coral colony aggregations (Muko
et al., 2014), to consider mortality due to adult proximity (Gibbs
and Hay, 2015), and has been suggested for quantifying changes
over time (Piazza et al., 2020). Most SPPA studies of benthic
communities have focused on disease spread through sponge and
coral populations (e.g., Jolles et al., 2002; Zvuloni et al., 2009;
Muller and van Woesik, 2012; Easson et al., 2013; Deignan and
Pawlik, 2015) with limited numbers of analyses using SPPA to
investigate population spatial aggregations (Prado et al., 2019).
These previous studies on benthic communities mostly focus
on describing the spatial patterns found. However, the power
of SPPA is the methodological techniques that enable the fitting
of multiple different models, which correspond to different
underlying processes, to determine the most likely processes
within these benthic communities, and thus the driving factors
behind their community ecology (cf. Mitchell et al., 2019).

When considering interactions between pairs of taxa, auto-
correlation from chains of interactions need to be eliminated
to ensure only causal relationships are reported. For example,
if taxon A directly interacts with taxon B and B interacts
directly with taxon C, we could expect a non-random spatial
distribution between A and C. However, this non-random
distribution would not be the result of a direct interaction,
but would just be a reflection of the two interactions between
A and B and B and C. One approach to finding only
realized dependencies between taxa is using BI) to reconstruct
the ecological network of the community (Heckerman et al.,
1995) and then apply bivariate SPPA analyses to these BNI
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dependencies (Mitchell and Butterfield, 2018). Bayesian networks
are probabilistic models that show causal relationships between
variables, whereby different variables are the network nodes;
and where a dependency exists between two nodes, this is
depicted as an edge (Heckerman et al., 1995). BNIs can infer
network structures and non-linear interactions, and have been
used extensively to reveal gene regulatory networks (Yu et al.,
2002), neural information flow networks and ecological networks
(Smith et al., 2006; Milns et al., 2010; Mitchell et al., 2020a),
paleontological communities (Mitchell and Butterfield, 2018) and
more recently using these networks to infer likely changes for
benthic systems (Mitchell et al., 2020b). Note that the Bayesian
network found reflects the associations caused by co-localizations
rather than a specific association or interaction, which is why
SPPA is needed to then infer the most likely underlying process.

As part of the National Oceanic and Atmospheric
Administration CAPSTONE field campaign, throughout 2015–
2017 a series of expeditions was conducted to collect data from
the previously unexplored deep-water habitats within the Pacific
Remote Islands Marine National Monument (PRIMNM) region
in the Pacific Ocean (Kennedy et al., 2019). The 2017 Laulima O
Ka Moana Expedition was focused on increasing the knowledge
of deep-sea benthic communities within this Johnston Atoll
Unit of PRIMNM, in order to support science, management and
conservation efforts (Malik et al., 2018). During Dive 11 of cruise
EX17-06, Johnston Atoll, a very high density community which
was dominated by medium to large hexactinellids was discovered
on top of a ridge, informally named “The Forest of the Weird”
(Kelley et al., 2018; Hourigan et al., 2020). We used NOAA
video data of the sponge community “The Forest of the Weird”
(hereafter FW) to create a 3D reconstruction (Robert et al.,
2017) from which we then extracted a community map of the
organism taxonomic identifications and positions. We used RLA
to investigate mortality processes within this community, and
univariate SPPA to consider the relative influences of physical
and biological processes on each taxon population. BNI was used
to find the direct dependencies between taxa, and then bivariate
SPPA was used to infer the most likely underlying processes
between the taxa pairs found by BNI. These analyses enable us
to describe the mortality processes, population and community
ecology of the most abundant taxa of the FW community.

MATERIALS AND METHODS

Study Site
In this study we have focused on the “Forest of the Weird” (FW)
community, which was recorded on Dive 11 of Okeanos Explorer
expedition EX1706 of the Johnston Atoll Unit in PRIMNM
(Kelley et al., 2018, p. 11; Figure 1). ROV data places the mapped
community between 14◦28′24.156′′ N, 170◦51′18.231′′ W and
14◦28′24.198′′ N, 170◦51′17.553′′ W at depths of 2,365–2370 m,
which corresponds to the ridge running northwest to south east
consisting primarily of pillow lava formation of basalt bedrock
with manganese crust, with areas of cemented cobble and basalt
boulders (Kelley et al., 2018; Malik et al., 2018). The ridge slopes
up to the ridge crest at an angle of 24–4.81 m taller than the

starting point, then slopes down at a 43◦ angle (Figure 2). The
steeper area of the mapped area of the ridge (hereafter named
the Ridge Crest area) was notably more dense than the gentler
sloped ridge area (hereafter named the Ridge area). The FW
community was observed during the dive (Kelley et al., 2018,
p. 11) to be dominated by two genera of hexactinellids: Farreidae
Aspidoscopulia sp. and Euplectellidae Advhena magnifica with
large proportions of the octocorals Narella bowersi, Narella
macrocalyx, and Rhodaniridogorgia (which was confirmed by our
analyses, Table 1). Other octocorals Coralliidae, Isididae, and
Primnoidae were also present, but not in sufficient numbers for
the analyses within this study (Kelley et al., 2018; NOAA Office of
Ocean Exploration and Research, n.d.).

Video Processing
With the advent of high-resolution ROV cameras and high-
powered computers, it is now possible to reconstruct entire
benthic communities using photogrammetry to centimeter or
millimeter scale (Robert et al., 2017, 2020; Baker et al., 2019;
Prado et al., 2019; Price et al., 2019), so providing greater
accuracy and resolution than the meter scale of ROV location
data alone (Kennedy et al., 2019). These 3D photogrammetric
reconstructions avoid the problems of controlling for altitude that
often accompany 2D photo-montages because the triangulation
of points using photographs from multiple angles limits the
possible errors—if there is not enough photographs to accurately
reconstruct the area, then the 3D model will not be generated
(see Robert et al., 2017 for further details). However, errors can
be introduced due to specimen movement, which occurred for
this dataset, so size analyses were not performed.

The video recorded from the ROV was 720p five mega-bit
per second resolution (Malik et al., 2018). The 3D reconstruction
of the FW community was created using photogrammetry in
Agisoft Metashape 1.5.4 (formerly Agisoft Photoscan) following a
similar procedure to Robert et al. (2017), with the 2D projections
of the reconstruction performed in Geomagic Wrap 2015.

1. The start of the FW community was taken to be from the
ROV track starting at 14◦28′24.156′′ N, 170◦51′18.231′′
W until 14◦28′24.198′′ N, 170◦51′17.553′′ W.

2. The edges of the community were taken to be the edges
of the ridge. There were organisms outside this region,
but the reconstruction did not have sufficient tie point
matches to reconstruct the region accurately.

3. This segment of video was sampled at a capture rate
of 1 frame/second using ffmpeg—an open source video
encoder/decoder.

4. Out of focus and shaky frames were removed, as were
frames that were close up of individual specimens and/or
had other objects obstructing the view in the frame.

5. The files were then imported into Agisoft Metashape.
6. Chunks of 100 frames were auto-aligned to form a

sparse point cloud.
7. These chunks were then aligned into the complete

community which was formed from 583 out of a total 600
input frames and 131,322 tie points.
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FIGURE 1 | Different taxa identified within this study. Red laser dots are 10 cm apart. (A) A photograph of the Ridge Crest Area, (B) Advhena magnifica, (C) Narella
macrocalyx, (D) Aspidoscopulia, (E) Narella bowersi, and (F) Rhodaniridogorgia.

8. A dense cloud (6 million points) and mesh (4.398 million
faces) was created from the combined sparse point cloud.

9. The frames were matched to the ROV GPS tracks by
using the epoch timestamp in the GPS log and matching
it (using a “join query” in Access) to the image frames,
which had been renamed to match. Distances were
checked using photographs where 2 red laser dots (10 cm
apart) to correctly scale the reconstruction.

10. Individual organisms were marked up and identified on
the frames within the 3D reconstruction. Note that the
resolution of the videos was less than that of the high-
resolution photographs taken which hinders resolution
for smaller specimens and also meant that very small
(∼<2 cm) specimens may not have been marked.

11. Specimen positions were checked from multiple
viewpoints.

Screen shots of the 3D reconstruction show both the strengths
and weakness of the reconstruction (Figure 2). Generally the
substrate and the attachment to the substrate are well resolved.
The video footage focused on the ridge so that areas outside
the ridge were not well resolved (and thus not included in the
analyses). However, the edge of the ridge is clearly visible, and
shows a notable decrease in density. The dark blue areas were
the deep far-ground which was not sufficiently well resolved to
be accurately reconstructed. The organisms’ tops often appeared
disconnected from their base, probably due to movement, but it
was straightforward to infer which holdfast they belonged to.

In order to get the 2D map for our analyses, the 3D
reconstruction was exported into Geomagic Wrap, and a best-
fit plane was fit to the Ridge and Ridge Crest areas, respectively.
The 2D maps for each area were created by rotating the specimen
positions to the best-fit planes for each section separately, which
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FIGURE 2 | Screenshots of the 3D reconstruction. (A) Side view showing the two different areas with the Ridge Crest area on the left and Ridge area on the right.
(B) A closer view of the Ridge Crest community. The dark blue areas above the community and rising to the left and right are artifacts of the photogrammetry where
frames included a lot of the farground. The substrate beyond the edge of the ridge to the right and left has good resolution, and so the edge of the community is
clearly resolved. Note the badly resolved section at the bottom of the screenshot, where there wasn’t sufficient video coverage to reconstruct the substrate (which
was sparsely populated).

were then exported then rejoined as a single 2D projection
(see SI for data).

Spatial Analyses
Four different types of spatial analyses were performed on the
data: (1) Random labeling analyses were used to investigate
the mortality dynamics within the community. (2) Univariate
SPPA were used to investigate the population ecology of each
taxon. (3) BNI was used to identify primary dependencies
between taxa. (4) Bivariate SPPA was used to determine the
most likely underlying processes to the primary dependencies
found using BNI.

The simplest scenario within SPPA analyses is that all the
points (here different organisms) are randomly distributed
within the study area. This random distribution is known as

complete spatial randomness (CSR), and can be modeled as an
homogeneous Poisson model (Illian et al., 2008). Where CSR is
found to best describe the spatial distributions observed, there
are no biotic and abiotic processes which significantly effect
that population at the spatial scales considered. If the spatial
distributions are non-CSR, then they can be aggregated, whereby
the organisms are closer together than CSR; or segregated,
where the organisms are more spaced out than CSR. Non-
CSR distributions could also have aggregation and segregation
operating at different spatial scales, which is reflecting different
processes operating at different scales. Univariate or single
population aggregations can be caused by habitat associations,
where the taxon has an environmental preference, such as
altitudes for alpine tree species (Wang et al., 2012), and these
habitat associations are best modeled by heterogeneous Poisson
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TABLE 1 | Summary table.

Taxon All Ridge Crest Ridge

n Prop. Int n Prop. Int n Prop. Int

Aspidoscopulia brown 194 0.33 1.73 102 0.38 3.48 91 0.29 1.27

Aspidoscopulia white 68 0.11 0.61 27 0.10 0.92 41 0.13 0.57

Aspidoscopulia white and brown 7 0.01 0.06 2 0.01 0.07 5 0.02 0.07

Advhena magnifica 17 0.03 0.15 5 0.02 0.17 12 0.04 0.17

Holdfast disc 44 0.07 0.39 15 0.06 0.51 29 0.09 0.41

Holdfast disc with stalk 101 0.17 0.90 47 0.17 1.60 54 0.17 0.76

Narella bowersi 33 0.06 0.29 14 0.05 0.48 19 0.06 0.27

Narella macrocalyx 16 0.03 0.14 8 0.03 0.27 7 0.02 0.10

Other corals 18 0.03 0.16 9 0.03 0.31 10 0.03 0.14

Other sponges 8 0.01 0.07 5 0.02 0.17 3 0.01 0.04

Rhodaniridogorgia 23 0.04 0.21 8 0.03 0.27 15 0.05 0.21

Small undetermined. 63 0.11 0.56 30 0.11 1.02 33 0.10 0.46

All Aspidoscopulia (brown, white and mixed) 269 0.45 2.40 131 0.48 4.47 137 0.43 1.92

All Advhena magnifica (Advhena magnifica and stalked discs) 118 0.20 1.05 52 0.19 1.77 66 0.21 0.92

n is the number of specimens, Prop. is the proportion of the community, and Int. is the density per meter squared of that taxon.

TABLE 2 | Discretized data for BNI.

Aspidoscopulia Advhena magnifica Rhodaniridogorgia Narella macrocalyx Narella bowersi

Zero 8 10 24 32 20

Low 18 21 13 6 15

High 15 10 4 3 6

Abundant sponge and coral taxa for the area studied. The boundary between the Low and High groups was defined as the median value for each taxa.

models (Wiegand et al., 2007b; Wiegand and Moloney, 2013).
Habitat associations can also cause univariate and bivariate
segregation when the habitat which the taxon/taxa occupy is
itself segregated (Mitchell and Kenchington, 2018). Univariate
aggregations can also be caused by dispersal processes, whereby
offspring surround their parent (Mitchell et al., 2015), and
these are best modeled by Thomas cluster models for a
single reproductive event, or double Thomas cluster models
for two reproductive events (Wiegand et al., 2007b; Illian
et al., 2008). Habitat associations can also result in bivariate
(between two taxon) aggregations, which can be best modeled
by heterogeneous Poisson models or shared source models
(also called shared parent models) where the two sets of
taxon aggregate around the same set of mutually exclusive
points, i.e., the focus of the taxon clusters are points that
are not biological taxa, but some other “environmental” factor
(Wiegand et al., 2007b; Wiegand and Moloney, 2013). Bivariate
aggregations can also be caused by facilitation whereby one
taxon increases another’s chance for survival, and is modeled
as a linked Thomas cluster model, with aggregations of the
facilitated taxon centered on the facilitating taxon (Dickie et al.,
2005; Getzin et al., 2006; Dale and Fortin, 2014). Alongside
habitat associations, univariate and bivariate segregation also
occurs through competition between organisms for resources
(Wiegand et al., 2007a; Illian et al., 2008) where it can be
modeled by hard-core (where there is no overlap of organisms
within a given radius) and soft-core (where organism density

is reduced) processes. While untangling processes from these
spatial pattern is imprecise (Law et al., 2009; McIntire and
Fajardo, 2009), the use of complementary types of SPPA with
multiple model fitting and assessment means that the most
likely underlying process can be inferred (Levin, 1992; Wiegand
and Moloney, 2004, 2013; Illian et al., 2008; Waagepetersen,
2009).

Density-dependent mortality processes are best investigated
using a subset of SPPA called Random Labeling Analyses
(RLA) (Raventós et al., 2010). While density-dependent mortality
processes can be detected through distance measures as described
above, RLA is preferable because no assumptions need to
be made about the processes underlying the initial spatial
distributions, enabling the uncovering of subtle processes that
may otherwise be obscured. Instead, the spatial distributions of
the dead among the living are investigated in order to investigate
whether the dead specimens are aggregated, indicating density-
dependent mortality.

Random Labeling Analyses
To investigate mortality processes, we investigated how a state
of an organism (dead or alive in this study) changes within
organism locations, using RLAs (Pélissier and Goreaud, 2001;
Raventós et al., 2010). We followed methods similar to Mitchell
et al. (2018). RLAs are a type of SPPA whereby random models
are simulated whilst the positions of the specimens remain the
same and a given property, such dead or alive, is repeatedly
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permutated: the points remain in the same place, but the state
allocated to them (representing either dead or alive) is changed.
As such, RLAs do not directly measure the aggregation or
segregation between two populations, and so do not test the
processes that resulted in sponge location, but instead measure
the differences in spatial distributions of live/dead state between
two populations.

Spatial distributions are commonly described using PCFs
which describe how the density of points (i.e., sponge specimens)
changes as a function of distance from the average specimen
(e.g., Illian et al., 2008). RLAs assess the differences between
two characters (dead/alive) of the populations by calculating
variations between PCFs by considering the Difference and
Quotient tests (Wiegand and Moloney, 2013). The Difference
test is the calculation of the distribution of PCF 11 − PCF 22,
where PCF 11 is the univariate PCF for group 1 and PCF 22 is
the univariate PCF for group 2. If PCF 11 − PCF 22 = 0 then
both groups are randomly distributed within the locations (i.e.,
both groups exhibit the same spatial behavior). If PCF 11 − PCF
22 > 0, then group 1 is more aggregated than group 2; if PCF
11 − PCF 22 < 0, then group 2 is more aggregated than group
1. To further investigate the differences between the dead and
alive populations, the PCF 21 − PCF 22 and PCF 12 − PCF 11
are calculated. These differences test the relative aggregation (or
segregation) of the dead and alive spatial distributions compared
to the relative spatial distribution of the dead to alive (and vice
versa). If PCF 12 − PCF 11 < 0 then group 1 (alive) are positively
correlated with other alive points, and if PCF 21 − PCF 22 < 0
then group 2 (dead) are positively correlated with other dead
specimens. The difference PCF 12 − PCF 21 was used to test
for edge effects within the study area. If there are excursions
outside the Monte Carlo simulations (as is common at larger
spatial scales), then edge effects have a significant impact on
the analyses, and the scales over which the analyses are done
should be reduced.

The Quotient test calculates the bivariate PCF between groups
relative to the pattern of both groups taken together (the joined
pattern), where PCF12 is the bivariate distribution of group 2
relative to group 1 and PCF 21 is the bivariate distribution of
group 1 relative to group 2. For joint patterns, PCF 1,1+2 is the
bivariate distribution of group 1 relative to both groups together,
and PCF 2,2+1 is the bivariate distribution of group 2 relative
to the joint pattern. Thus, the Quotient test is the calculation
of the distribution: PCF 1,1+2 - PCF 21/PCF 2,2+1 where PCF
12/PCF 1,1+2 - PCF 21/PCF 2,2+1 > 0 indicates that group 2 is
mainly located in areas with high density of the joint pattern, and
group 1 is in low density areas (i.e., group 2 has more neighbors
than group 1). If this quotient is significantly non-zero, then
the process underlying the characters is density-dependent; for
example, dead specimens occur more commonly in high-density
areas, indicating density-dependent mortality.

We test three null hypotheses of mortality spread using RLA
of dead/alive state with the organism positions:

(1) H0
Comm: The spatial distribution of dead specimens are

randomly distributed within the living community of
corals and sponges.

(2) H0
Asp: The spatial distribution of dead specimens of

Aspidoscopulia are randomly distributed within the living
population of Aspidoscopulia.

(3) H0
Bol: The spatial distribution of dead specimens dead

specimens of within Advhena magnifica population are
randomly distributed within the living population of
Advhena magnifica.

Establishing whether the null hypotheses of the Difference and
Quotient Tests should be rejected or not is complicated, because
there is a lack of independence of the spatial points (organism
positions) and a variety of different point pattern distributions
(Illian et al., 2008). Two different methods are commonly used
to establish acceptance or rejection of the null hypotheses for
ecological data (e.g., Wiegand and Moloney, 2013 and references
therein): (1) Monte Carlo simulations (Illian et al., 2008), and (2)
Diggle’s goodness-of-fit test pd, which represents the total squared
deviation between the observed pattern and the simulated pattern
across the studied distances (Diggle, 2002; Diggle et al., 2005).
The two comparisons are used together because: (1) the Monte
Carlo simulation envelopes do not necessarily correspond to
confidence intervals, and they run the risk of Type I errors if
the observed PCF falls near the edge of the simulation envelope
(Illian et al., 2008); (2) the pd does not strictly test whether a
model should be accepted or rejected, but rather whether the
test calculation for the observed data are within the range of
the stochastic realization of the null hypothesis (Diggle, 2002);
and (3) the pd depends on the range over which it is calculated,
meaning that the model may not fit at very small distances
due to the physical occupation of that space by the organisms
themselves, but may fit well at larger distances (Diggle, 2002;
Illian et al., 2008). Thus visual inspection of the PCFs with Monte
Carlo simulation envelopes, coupled with pd, ensures that these
errors are minimized. The underlying mathematics is described
in detail by Wiegand and Moloney (2004, 2013) and Wiegand
et al. (2006).

The following RLAs were conducted using Programita
software across three different areas: All mapped area, the
Ridge and the Ridge Crest (Wiegand and Moloney, 2004, 2013;
Wiegand et al., 2006; Raventós et al., 2010):

(1) To test H0
Comm all living specimens of both coral and

sponge taxon were contained in the alive group and, and
all brown specimens (including the dead Aspidoscopulia,
holdfast discs with long stalks and holdfast discs) were
grouped as dead. The univariate PCFs of the dead
and the alive populations were calculated by creating a
distribution map of each dead/alive state according to a
10 cm× 10 cm grid of surface within which the specimen
density was calculated. The Difference tests were then
performed between the two groups.

(2) To test H0
Asp the white specimens of Aspidoscopulia were

assumed to be alive, brown specimens dead and those
with white and brown patches were excluded from the
analyses (7 specimens in total so not sufficient to run
separate analyses). Difference and Quotient tests were
performed between the dead and alive groups. If the dead

Frontiers in Marine Science | www.frontiersin.org 7 October 2020 | Volume 7 | Article 565171

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-565171 October 14, 2020 Time: 17:3 # 8

Mitchell and Harris Spatial Ecology of Deep-Sea Sponges

and alive specimens did not have significantly different
spatial distributions when compared using the Difference
test, they are most likely to be subjected to the same
biotic and abiotic processes and so are likely to come
from the same single population. If the Difference test
finds no significant difference between the dead and alive
populations, then the Quotient test was to determine
whether the dead specimens are randomly distributed
within this population.

(3) To test H0
Bol the holdfast brown discs with long stalks

were assumed to be the dead Advhena magnifica, and the
yellow/white specimens were assumed to be alive. Testing
proceeded as for H0

Asp.

Each hypothesis was tested by running 999 Monte Carlo
simulations for each group in order to generate simulation
envelopes around the random PCF value (i.e., PCF 11− PCF
22 = 0). pd values were calculated using Diggle’s goodness-of-fit
test (Diggle et al., 2003). A total of 999 simulations were run
(instead of 1,000, for example) because the pd value is calculated
using the model simulation data (not the theoretical model), and
so by using 999 the pd simulations could be measured in 0.001
increments. If the observed PCF 11 − PCF 22 fell outside the RLA
simulation envelopes and had pd < 0.1, then the distributions
were found to be significantly different.

Univariate SPPA
Initial data exploration and data visualization were performed in
R (R Core Team, 2017) using the package spatstat (Berman, 1986;
Baddeley and Turner, 2005; Baddeley et al., 2011). The software
Programita (Wiegand et al., 1999, 2006; Wiegand and Moloney,
2004, 2013; Loosmore and Ford, 2006) was used to calculate the
PCF and to perform aggregation model fitting (described in detail
in Berman, 1986; Wiegand and Moloney, 2004, 2013).

The following analyses were performed on each abundant
taxon (Aspidoscopulia, Advhena magnifica, Rhodaniridogorgia,
Narella macrocalyx, and Narella bowersi) across the entire
mapped area (All), the shallower section of the ridge (Ridge) and
the steeper area of the ridge (Ridge Crest).

To test whether a taxon PCF exhibited CSR, 999 Monte Carlo
simulations were run on a homogeneous background and the
simulation envelopes chosen to be the 49th highest and lowest
values (Wiegand and Moloney, 2013; Mitchell et al., 2018). The
models were simulated around CSR, that is PCF = 1. The fit of
the observed data to CSR was tested using Diggle’s goodness-of-
fit test (Diggle et al., 2005) pd (where pd = 1 corresponds to CSR,
and pd = 0 corresponds to non-CSR) with PCF deviations outside
the simulation envelope combined with a pd < < 1 interpreted
to indicate significantly non-CSR distributions.

If a taxon was not randomly distributed on a homogeneous
background, and was aggregated, the random model on a
heterogeneous background (HP model) was tested by creating a
heterogeneous background from the density map of the taxon
under consideration, being defined by a circle of radius R
over which the density is averaged throughout the sample area.
Density maps were formed using estimators in 0.10 m increments
over the range of 0.1 m < R < 1 m, and the R corresponding to the

best-fit model was used. The radius was increased to account for
differing granularity of heterogeneity—the R = 0.1 m will model
granular heterogeneities whereas the R = 1 m will be relatively
smooth. If excursions outside the simulation envelopes for both
homogeneous and heterogeneous Poisson models remained, then
Thomas cluster models were fitted to the data as follows:

(1) The PCF and L functions (Levin, 1992) of the observed
data were found. Both measures were calculated to ensure
that the best-fit model is not optimized toward only
one distance measure, and thus encapsulates all spatial
characteristics.

(2) Best-fit Thomas cluster processes (Besag, 1974) (TC)
were fitted to the two functions where PCF > 1. The
best-fit lines were not fitted to fluctuations around the
random line of PCF = 1 in order to aid good fit
about the actual aggregations, and to limit fitting of the
model about random fluctuations. Programita used the
minimal contrast method (Diggle, 2002; Diggle et al.,
2005; Wiegand et al., 2007b) to find the best-fit model.

(3) If the model did not describe the observed data well, the
lines were refitted using just the PCF. If that fit was also
poor, then only the L-function was used.

(4) 999 simulations of this model were generated to create
the simulation envelope. The 49th highest and lowest
simulation values were chosen in line with previous work
to be the limits of the simulation envelopes (Wiegand and
Moloney, 2013), and the fit was checked using the O-ring
statistic (Wiegand and Moloney, 2004).

(5) pd was calculated over the model range.
(6) If there were no excursions outside the simulation

envelope and the pd -value was high, then a univariate
homogeneous Thomas cluster model was interpreted
as the best model.

(7) The best-fit TC model was simulated on the best fit HP
model following points 4–5 to simulate a Thomas cluster
model on a heterogeneous background (ITC).

Bayesian Network Inference
The Bayesian network inference (BNI) algorithm used in this
study requires discrete data which ensures data noise is masked
and only the relative densities of each taxon are important (Yu
et al., 2002; Milns et al., 2010). Previous work has shown that
ecological datasets using three different bins provide a good
balance between maintaining the amount of information present
in the dataset, statistical power, and greater noise masking (Yu,
2005; Milns et al., 2010; Mitchell et al., 2020a). The data were
split into three intervals: zero counts, low counts and high counts.
Zero was treated as a separate entity because the presence of one
individual is very different to a zero presence, in contrast to zero
gene expression, for example. Low counts consisted of counts
below the median for the species group and high counts were
counts over the median. Medians were used rather than means
because for some groups the high counts were very high, and
would result in a very small number of samples grouped in the
highest interval (cf. Milns et al., 2010).
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The BNI software used was Banjo v2.0.0, a publicly available
Java-based algorithm (Smith et al., 2006). For details of the
algorithm please see Smith et al. (2006) and Milns et al. (2010).
Pre and post-processing was performed using custom scripts
in Haskell (Jones, 2003)1 and in R (Mitchell, 2011; R Core
Team, 2017). The discretized data was input into Banjo which
then generated a random network based on the input variables.
A “greedy search” was repeated 10 million times for each set of
input data and the most probable network was then output. The
maximum number of edges leading to a node was set to 3 to limit
artefacts (Yu, 2005).

To convert the spatial positions of specimens into discretized
data suitable for BNI analyses the following steps were taken
(following (Milns et al., 2010):

(1) Node definition. The nodes were defined by taxa
groups (Figure 1).

(2) Quadrat selection. Abundance data were calculated in
terms of specimen density within quadrats (2 m × 2 m).
This size of quadrat was chosen to ensure an even split
between the three bins.

(3) Discretization. For each quadrat, taxon densities were
split into three intervals: zero counts, low counts (under
the median) and high counts (above the median) to
capture the maximum amount of data information
while masking noise.

(4) Contingency test filtering. To exclude false positive
dependencies between taxa we used contingency filtering
(χ2-tests, p > 0.25).

The discretized data for the BNI analyses are given in
Table 2. To minimize bias from outliers, we bootstrapped at
95% level (Magurran, 2013) by randomly selecting 95% of the
total number of grids cells for each subsample and then finding
the subsample network using Banjo. For each edge calculated,
the probability of occurrence was calculated as the proportion
of the bootstrapped samples in which the edge appeared. The
resultant distributions analyzed to find the number of Gaussian
sub-distributions using normal mixture models (Fraley et al.,
2012). This probability distribution was bimodal for each dataset,
which suggests that there were two distributions of edges, those
with low probability of occurrence, and those highly probable
edges. The final network for each area was taken to be those edges
which were highly probable. The threshold for being labeled
“highly probable” was 55% for this dataset. The magnitude of the
occurrence rate is indicated in the network by the width of the
line depicting the edge.

The direction of the edge between nodes in the network
indicates which node (taxon) has a dependency on the other
node (taxon); this direction is indicated in the network by an
arrowhead. For each edge, the directionality was taken to be
the direction which occurred in the majority of bootstrapped
networks. Where there was no majority (directional edges have
a probability between 0.35 and 0.65) an edge was said to have
bi-directionality, or mutual dependency was indicated; these are
shown without arrows.

1https://github.com/egmitchell/bootstrap

The influence score (IS) can be used to gauge the type
and strength of the interaction between two nodes. Positive
dependencies have an IS > 0: that is, a high density of
taxon 1 corresponds to a high density of taxon 2, and so
the dependency arrow would point from taxon 2 to taxon 1.
Negative dependencies have an IS < 0: a high density of taxon
1 corresponds to a low density of taxon 2. Where the dependency
is non-monotonic the IS = 0 so that nature of the dependency
changes with taxon abundance. The mean IS for each edge was
calculated for each site.

Bivariate SPPA
For every dependency found between taxa by BNI, bivariate
SPPA were used to infer the most likely underlying processes (cf.
Mitchell and Butterfield, 2018).

Bivariate PCFs were calculated from the population density
using a grid of 10 cm × 10 cm. To minimize noise, smoothing
was applied to the PCF dependent on specimen abundance. The
amount of smoothing required depends on the number of points
in each taxon’s population, with smaller sample sizes requiring
more smoothing to ensure that outliers do not overly change the
distribution (Illian et al., 2008; Wiegand and Moloney, 2013): A
five cell smoothing over this grid was applied to Aspidoscopulia—
N. bowersi, six cells to Advhena magnifica—N. bowersi, and seven
cells to N. macrocalyx—N. bowersi, across the entire mapped area
(All), the shallow section of ridge (Ridge) and the steeper area of
the ridge (Ridge Crest) (Figure 2).

For each taxon pair which displayed aggregation (bivariate
PCF > 1), CSR, HP, Linked clusters (LC) and shared parent
(SP) models were fitted to the data. For segregated bivariate
distributions (bivariate PCF < 1), CSR, HP, hard and soft core
models (HC), and hard/soft core on heterogeneous background
(HCHP) models were fitted as follows. The magnitude of the PCF
reflects the intensity of underlying biotic and abiotic processes:
two taxon populations with a PCF = 4, for example, are four times
more aggregated than if they exhibited CSR; thus, the relative
magnitudes of the PCFs can be used to compare relative strengths
of interactions and associations.

If a taxon was aggregated, the random model on a
heterogeneous background (HP model) was tested. Creation
of the heterogeneous background was as for the univariate
distribution, but instead of a single taxon, the density map of the
joint distribution of the two taxon was used.

For each taxon pair, two best-fit Linked cluster models (LC)
were found. First, Taxon 1 was kept constant and Taxon 2
was modeled as a Thomas Cluster aggregation around Taxon 1
(following the same procedure as fitting univariate TC models).
Then Taxon 2 was kept constant and Taxon 1 was modeled as
an aggregation. The shared parents models (SP) modeled both
taxa distributions as Thomas Cluster models around randomly
distributed shared points, with the respective Thomas Cluster
models fitted as per the univariate models.

Segregated distributions were modeled on both homogeneous
background and on heterogeneous background. Three different
models were determined: Segregation around Taxon 1, around
Taxon 2 and around both Taxon 1 and Taxon 2. For each of
these the radius was increased from 0.10 m to 1.00 m in 0.10
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m increments. The severity of the segregation was modeled in
two ways: hard and soft-core. For hard-core models (corresponds
to HCp = 0.01), no points are modeled inside the segregation
radius while for a soft-core model the density of points within
the segregation radius was reduced by a given probability. Where
HCp = 1 the probability of placing points is a linear relationship
from the point to the radius edge, and is defined by the formula
(Wiegand and Moloney, 2013; Getzin et al., 2014): phc(r) = d 1/p.

RESULTS

The mapped community consisted of 592 specimens over
100.7 m2 of substrate. The community was dominated (69.7%)
by two genera of Hexactinellids: Farreidae Aspidoscopulia sp.
and Euplectellidae Advhena magnifica with octocorals Narella
bowersi, Narella macrocalyx, and Rhodaniridogorgia also present
in large proportions (Table 1). There was significant increase in
organism density between the Ridge and Ridge Crest (4.47 vs.
9.28 specimens/m2) which were split into two different sub-areas
of 71.41 m2 for the Ridge area and 29.31 m2 for the Ridge Crest
area for further analyses (Table 1 and Figure 3). Community
composition remained similar across both areas, with a < 0.5%
mean change in taxa proportions between the two areas (Table 1).

Random Labeling Analyses
Analyses to detect edge effects (Table 3: PCF 12 − PCF 21) found
that for the Aspidoscopulia population, edge effects occurred over
4.3 m. Therefore, the spatial scale was limited to 0–4.0 m for all
plots to enable consistent comparisons.

Within the whole community there was no evidence of
significant deviations from zero for any of the RLAs (Figure 3A),
that is the dead specimens were randomly distributed within
the living communities (all pd > > 0.1), so we fail to reject
H0

Comm. The Advhena population and stalks also did not display
significant deviations from zero (all pd > > 0.1; Figure 3C).
Furthermore, the differences of the univariate distribution of
Advhena with the univariate distribution of stalks had a very
good model fit to zero (pd = 0.991), which provides confirmatory
evidence that the stalks are likely to be the dead skeletons of
Advhena.

The RLAs of the Aspidoscopulia population found no
significant deviations from zero for the difference between the
univariate alive and dead Aspidoscopulia populations (all PCF 22
− PCF 11 pd > > 0.1, Figure 3B) nor the bivariate difference (all
PCF 12 − PCF 21 pd > 0.1). The difference between the univariate
alive Aspidoscopulia and the bivariate distributions was also not
significantly deviate from zero (all PCF 12 − PCF 11 pd > 0.1).
There were significant deviations from zero for the Quotient tests
(Figure 3B) for the population across the whole sample area
(pd = 0.034), and in the high density Ridge Crest area (pd = 0.043),
but notably not in the Ridge area (pd = 0.240). This pattern is
further reflected in the Difference tests (PCF 21 − PCF 22) which
found that the difference of bivariate distribution with the dead
univariate did deviate significantly from zero (Table 1) for the
whole area (pd = 0.033), and in the high density Ridge Crest area
(pd = 0.042) but not the Ridge area (pd = 0.221). The significant

deviations in the whole area are likely to reflect the signal from
the Ridge Crest sub-section. Within the Ridge Crest section dead
specimens of Aspidoscopulia were more likely to be found near
each other than near living specimens, and these dead specimens
occurred in the higher density areas of the joint distribution of
alive and dead specimens. In contrast, the dead specimens did
not show significant aggregations to each other or to high density
areas within the Ridge sub-section of the mapped area.

Univariate SPPA
Rhodaniridogorgia was the only taxon to have a good model-fit to
the CSR model (pd = 0.704), although the HP model (pd = 0.825)
was a better fit (Table 4). The Monte Carlo simulations
showed no deviations outside the envelope (Figure 5E), so the
Rhodaniridogorgia spatial distribution should be described as
CSR. Of the four of the abundant taxa that exhibited non-CSR
best-fit models, Advhena magnifica had the same best-fit model
(HP) for both the Ridge (pd = 0.817) and Ridge Crest sections
of the mapped area (pd = 0.562), with significant segregations
occurring over 1.3 m for the Ridge section and over 3 m for the
Ridge Crest regions (Figure 5C and Table 4). The Aspidoscopulia
(Figure 5D and Table 4) had a best-fit model of Thomas cluster
models for both Ridge (pd = 0.727) and Ridge Crest sections of
the mapped area (pd = 0.547) with a segregation in the Ridge
area over 1.2 m. In contrast, the N. macrocalyx displayed different
spatial distributions in the Ridge and Ridge crest area (Figure 5A
and Table 4). The Ridge Crest area was best-modeled by a
Thomas Cluster for the aggregations < 1.1m (pd = 0.375), and
showed a strong segregation above 1.1 m, whereas the Ridge
area was segregated under 0.7 m, and the aggregation above
0.7 m was best-modeled by a heterogeneous Poisson model
(pd = 0.848). The N. bowersi also exhibited different spatial
distributions between areas (Figure 5B and Table 4), with the
Ridge Crest area showing strong aggregation best-modeled by a
heterogeneous Poisson model > 1.3 m (pd = 0.761) whereas the
Ridge area showed strong segregation < 1.3 m (pd = 0.729).

Bayesian Network Inference
The Bayesian network inference found three significant
dependencies between four of the five abundant taxa (Figure 6),
with Rhodaniridogorgia not connected to the network.
Rhodaniridogorgia also showed a good CSR model fit for
the univariate distributions (Figure 5E and Table 4). All three of
the dependencies found were positive with a mean interaction
strength of IS = 0.3109. Narella bowersi had a dependency
upon Aspidoscopulia (IS = 0.3454), while both Advhena and
N. macrocalyx had dependencies upon N. bowersi (IS = 0.3139
and IS = 0.2735), reflecting similar levels of dependency for
all connected taxa.

Bivariate SPPA
The bivariate distribution for N. bowersi—Aspidoscopulia was
best-modeled by a heterogeneous Poisson process of their joint
densities across both Ridge (pd = 0.896) and Ridge Crest sections
of the mapped area (pd = 0.817) which were aggregated at
distances over 2 m (Figure 7A and Table 5). There was significant
segregation for the Ridge Crest area over 2.8 m but no significant
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FIGURE 3 | Spatial maps. (A) All specimens identified, (B) Density map of the 2D project in square meters, and (C) the analyzed data. Shaded area of (C) in purple is
the Ridge area and green is the Ridge Crest area.

TABLE 3 | Random labeling analyses.

Hypothesis Dataset Pd value for difference tests Pd for quotient
test < 2.0 m

PCF 22–PCF 11 PCF 12–PCF 11 PCF 21–PCF 22 PCF 12–PCF 21 PCF 12–PCF 21 Excursions

H0
Adv All 0.991 0.915 0.911 0.301 None 0.892

H0
Adv Ridge Crest 0.751 0.811 0.346 0.870 None 0.205

H0
Adv Ridge 0.265 0.412 0.387 0.278 None 0.260

H0
Comm All 0.411 0.436 0.672 0.790 None 0.363

H0
Comm Ridge Crest 0.833 0.617 0.885 0.208 None 0.822

H0
Comm Ridge 0.498 0.158 0.726 0.982 None 0.192

H0
Asp All 0.618 0.873 0.033 0.429 > 4.3 m 0.034

H0
Asp Ridge Crest 0.862 0.997 0.042 0.112 > 4.3 m 0.043

H0
Asp Ridge 0.546 0.826 0.221 0.755 None 0.240

Each hypothesis was tested using all the area mapped (All), the area leading up to the Ridge Crest (Ridge) and the high density area over the Ridge Crest (Ridge Crest).
PCF 11 describes the spatial distributions of the alive organisms, PCF22 the dead organisms, PCF21 the bivariate distribution of the dead relative to the alive and PCF12
the alive to the dead. pd indicates the goodness-of-fit of the model (difference or quotient = 0) to the observed values with pd = 1 indicating perfect fit (i.e., no difference)
and pd = 0 indicating significant deviations from zero, which is given in bold.

segregation in the Ridge area. For the N. bowersi—Advhena
distribution, the best-fit model was a linked cluster model
(Figure 7B and Table 5), with the Advhena clustering around
the N. bowersi for both the Ridge (pd = 0.823) and Ridge Crest
areas (pd = 0.631). The N. bowersi—N. macrocalyx displayed
aggregation best-modeled as heterogeneous Poisson < 1.0 m for
the Ridge area (pd = 0.912) and segregation < 1.2 m for the Ridge
Crest area (pd = 0.841).

DISCUSSION

This study reconstructed the 592 specimens over 100.7 m2 of
the benthic community of “The Forest of the Weird” from

still frames taken from a single stream of video footage using
photogrammetry methods (Figure 3). There were limitations to
the data we could extract from the reconstruction. Our methods
accurately reconstructed the sea floor, but the reconstruction
of some organisms was more variable due to shadowing or
movement. Shadowing occurred where the video footage had not
captured all the way around an individual, and so the software
needed to approximate the missing data. Movement caused a
blurring of specimens and/or stalks to be absent. These issues
meant that while the position data was likely to be accurate, size
data was less so, and so size-based SPPA was not performed on
this data. The lack of size data precludes more detailed analyses
of community development. The reconstruction was done using
the video data which had a lower resolution than the still
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TABLE 4 | Summary table of univariate PCF analyses.

Dataset Area Segregation
present

CSR HP TC ITC Hard core HP radius
(cm)

σ 100ρ Number in
clusters

Hard core
radius

Hcp

Aspidoscopulia A No 0.001 0.395 0.727 0.23 NA 20 18.694 0.104 37 NA NA

Aspidoscopulia RC No 0.002 0.227 0.547 0.25 NA 10 19.048 0.042 38 NA NA

Aspidoscopulia R 1.2–2.1 m 0.001 0.505 0.618 0.158 NA 10 19.048 0.042 38 NA NA

Rhodaniridogorgia A No 0.704 0.825 0.001 0.001 NA 50 2.262 4.798 5 NA NA

N. macrocalyx A No 0.012 0.232 0.651 0.211 NA 20 8.737 0.135 17 NA NA

N. macrocalyx RC >1 m 0.004 0.003 0.375 0.245 NA 20 8.737 0.135 17 NA NA

N. macrocalyx R No 0.27 0.848 0.498 0.249 NA 30 8.737 0.135 17 NA NA

Advhena magnifica A No 0.001 0.875 0.253 0.352 NA 20 5.351 0.555 11 NA NA

Advhena magnifica RC >3 m 0.021 0.562 0.093 0.102 NA 20 7.174 0.468 14 NA NA

Advhena magnifica R >1.3 m 0.007 0.817 0.201 0.154 NA 20 5.351 0.555 11 NA NA

N. bowersi A No 0.032 0.889 0.772 0.43 NA 20 5.499 1.097 11 NA NA

N. bowersi RC No 0.001 0.761 0.632 0.316 NA 20 5.499 1.097 11 NA NA

N. bowersi R <1.5 m 0.117 0.117 0.093 0.066 0.729 20 5.499 1.097 11 5 0

The sample area is the entire community (A), the Ridge Crest sub-section (RC) or the Ridge sub-section (R). For the inhomogeneous point processes (HP and ITC), the moving window radius is 0.5 m, using the same
taxon density as the taxon being modeled. pd = 1 corresponds to a perfect fit of the model to the data, while pd = 0 corresponds to no fit. Where observed data did not fall outside CSR Monte Carlo simulation
envelopes, no further analyses were performed, which is indicated by NA. σ, cluster radius; ρ, density of specimens; CSR, Complete spatial randomness; HP, Heterogeneous Poisson model; TC, Thomas cluster model;
ITC, inhomogeneous Thomas cluster model. Mean number in cluster refers to the mean number of individuals in a cluster estimated as λ/ρ. Note that if the cluster model is not a good fit, the mean number in cluster
and number of clusters will not necessarily be appropriate. The extent to which the segregation is hard-core (no points within the given radius) or soft-core (reduced points) is given by Hcp where Hcp = 0 indicates
a hard-core process and Hcp = 1 indicates a linear increase in point density between points. CSR models were fitted to the whole spatial scale (0–4 m) and the aggregations and segregations were fitted only to the
aggregations (PCF > 1) or the segregations (PCF < 1), depending on the observed distribution. The pd values for the best fit models are given in bold.
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FIGURE 4 | Random labeling analyses plots showing the Quotient test.
(A) Whole community analyses of the dead population relative to the alive
population (including all corals and sponges mapped) showing no significant
deviations from zero. (B) The Aspidoscopulia analyses of dead vs. alive
specimens. Note the whole community and the Ridge Crest sub-section both
show excursions outside the simulation envelopes. (C) The Advhena
magnifica analyses of dead vs. alive specimens showing no significant
deviations from zero.

photographic data and so we were able to use the photographs
to compare to the stills extracted from the video. The two
consequences of using the lower resolution video were: (1) that
small white specimens (<1 cm) may not have been distinguished
from the substrate and (2) it was hard to consistently identify
different taxonomic groups for smaller specimens. We focused
on the most abundant taxa, sponges and those corals which could
easily be distinguished by distinct morphologies, which limits
more detailed analyses of community composition and diversity.
Nonetheless we were able to establish the mortality dynamics and
spatial ecology of the five most abundant taxa.

This study has demonstrated how SPPA and BNI provide
two new types of insights into the ecology of deep-sea
benthic systems. First, SPPA can detect many different types of
interactions and associations without any a priori knowledge
nor expectations of the system. For example, SPPA was able to
detect both the competition between N. bowersi—N. macrocalyx,
the facilitation of the Advhena magnifica around the N. bowersi,
and the habitat associations between N. bowersi—Aspidoscopulia
(Figure 7 and Table 5). Secondly, SPPA enables the quantification
on a continuous scale of interactions and associations from
centimeter to meter scale, establishing at what scale the type
of interactions may change, such as N. bowersi—Aspidoscopulia
changing from a mutual habitat association to competition
around 3 m (Figure 7B).

Mortality Dynamics
A high proportion (37.5%) of the specimens mapped were
dead glass sponge skeletons (Table 1). The majority of dead
specimens within the community were either the stalks of
Advhena or dead Aspidoscopulia. Of the two possible causes
of sponge death, age-related mortality or a pathogen, our
results suggest that a species-specific pathogen is most likely.
The univariate spatial distributions of the dead specimens is
not statistically significantly different from the alive specimens
(Table 3, PCF 22 − PCF 11) for either of the sponge species.
Aspidoscopulia are best-modeled by a Thomas Cluster model
(Table 4), which describes reproductive events (Seidler and
Plotkin, 2006) so that if these sponges died due to age-related
mortality, we would expect the dead specimens to have the spatial
distributions corresponding to previous generations (cf. Mitchell
et al., 2015). As such, the dead and alive specimens should have
different univariate spatial distributions, and because they do
not (Table 3), it is more likely their death is due to a pathogen.
Advhena exhibited a non-dispersal spatial pattern so we can’t be
sure that they were also killed by this pathogen over age-related
mortality. However, the unusually high proportion of dead
specimens and the presence of a mass-mortality pathogen for the
Aspidoscopulia suggests that a pathogen cause is likely. While the
remains of holdfast discs (12.9% of the dead specimens mapped)
were not taxonomically identifiable, they resembled the Advhena
and Aspidoscopulia holdfasts. The lack of density-dependent
mortality (non-random RLA) for the Advhena magnifica and
the Ridge area Aspidoscopulia suggests that the pathogen was
likely to be water-borne, since transfer via mobile organisms
or physical touching of specimens results in mortality clusters
(Jolles et al., 2002).
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FIGURE 5 | Univariate PCF for the abundant taxa. (A) Narella macrocalyx, (B) Narella bowersi, (C) Advhena magnifica, (D) Aspidoscopulia, (E) Rhodaniridogorgia.
The gray area is the simulation envelope for 999 Monte Carlo simulations of complete spatial randomness. The x-axis is the inter-point distance between organisms
in meters. On the y-axis PCF = 1 indicates complete spatial randomness (CSR), < 1 indicates segregation, and > 1 indicates aggregation.

The Advhena mortality was randomly distributed throughout
both the Ridge and Ridge Crest areas of the communities
(Table 3 and Figure 4). However, the mortality dynamics were
different for the Aspidoscopulia, with the Ridge community
showing random mortality, but the Ridge Crest community
showing significant aggregations of the dead specimens relative

to the living ones (Figure 4 and Table 3). Aspidoscopulia in
the Ridge Crest area had a notably higher density than the
Ridge area (4.47 vs. 1.92/m2) and a higher proportion of dead
to living specimens (77 vs. 66%), suggesting that the presumed
pathogen was spreading faster in these high density areas,
but only for the Aspidoscopulia. If this difference was due
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just to density (i.e., not taxon specific) we would expect the
Advhena to also have density-dependent mortality, as would the
community as a whole, but instead it seems to be Aspidoscopulia
specific, suggesting a lower resistance to the pathogen in these
high density areas.

The Janzen-Cornell hypothesis is an explanation of how
high diversity is maintained in tropical forests and coral reefs,
whereby species-specific predators or pathogens are attracted
to adults and/or high density areas resulting in high mortality
surrounding the adults or in the high-density areas (Janzen, 1970;
Connell, 1971). Within sponge communities, species-specific
disease prevalence has been suggested as a mechanism to help
maintain balance in abundance between species (Wulff, 2007).
The species-specific mortality then enables different species to
occupy these areas. Most studies testing this hypothesis are
focused on shallow-water reefs, and have found no density-
dependent mortality for giant barrel sponges (Deignan and
Pawlik, 2015), Caribbean sponge Aplysina cauliformis (Easson
et al., 2013) nor Caribbean corals (Muller and van Woesik,
2012), but density-dependent death due to corallivory has
been detected in Indo-Pacific corals (Gibbs and Hay, 2015).
In our study, we find that species-sensitive density-dependent
mortality is likely once a density threshold was reached for
Aspidoscopulia. The mortality within this community was likely
to be a mass-mortality infection rather than a longer-term
endemic pathogen because of the high proportion of dead
skeletons coupled to relatively few dying specimens (those with
brown patches (cf. Luter et al., 2017). In order for the Janzen-
Cornell hypothesis to explain this high density community,
we would expect episodic infections, so populations build up
through time; thus any effects of this species-specific mortality
would only become apparent if there were frequent mortality
events. At the broad taxonomic levels used in this study, the
two areas (Ridge and Ridge Crest) show significantly different
densities, but similar community compositions (Table 1),
suggesting that either this mortality event was rare, or if
such events were frequent, then it did not lead to increased
diversity (at least in terms of the coarse taxonomic identification
used here). Further study of this site and other sites with
similar community compositions may be able to elucidate
whether such pathogens are likely to contribute to Janzen-
Cornell effects.

Mass-mortality events and sponge diseases are on the
increase (Webster, 2007) but have been primarily reported
from shallow water sponge populations (Luter and Webster,
2017). The underlying causes are suggested to be anthropogenic
changes, such as increasing temperature, which increase the
susceptibility of benthic organisms such as corals and sponges
to diseases through either a weakening of the organisms and/or
an increase in pathogen virulence or abundance (Muller and
van Woesik, 2012; Luter and Webster, 2017). The death of
slow-growth sponges creates unoccupied patches which are
often re-populated by faster-growing species (cf. Dayton, 1989;
Dayton et al., 2013; Di Camillo and Cerrano, 2015). Sponges
provide many ecosystem services, and while some services,
such as providing habitat, can be replicated by other taxa
(Buhl-Mortensen et al., 2010), sponges are crucial to oceanic

FIGURE 6 | Bayesian networks of associations between abundant sponge
and corals. Dependencies between taxa are indicated by the lines connecting
the two taxa, the width of which indicates the occurrence rate in the bootstrap
analyses (wider lines indicate higher occurrence). Arrows indicate non-mutual
dependence between two taxa; A- > B indicates that B depends on A. Mean
interaction strengths of the correlations are indicated; positive interaction
strengths indicating aggregation, negative interaction strengths indicating
segregation. For more details, see section “Materials and Methods.”

mixing and benthic-pelagic coupling (Pile and Young, 2006;
Bell, 2008; Coppari et al., 2016) which may be harder to
replicate if they are replaced by organisms which do not pump
water through their system. As such, there is potential for
these deep-sea sponge diseases to impact the extent of benthic-
pelagic coupling.

Population Dynamics
The FW community showed a clear increase in density
and change of composition on the Ridge (seen in the 3D
reconstruction at the edge of Figure 2, and noted on the ROV
dive; Kelley et al., 2018). Furthermore, the sharper slope of the
area after the Ridge Crest showed a large increase in density
(Table 1) corresponding to faster water speed, and so probably
to greater water-column resources (Malik et al., 2018).

The strength of SPPA lies with describing how the density
of different taxa change over the fine scale (here 0–4 m), and
then using model fitting to determine the most likely underlying
processes. When spatial models such as heterogeneous Poisson
models, heterogeneous Thomas cluster models or hard/soft-
core models are the best-fit to observed spatial patterns, this
suggests that abiotic or habitat heterogeneities are the strongest
influence on the studied populations (Illian et al., 2008; Lin
et al., 2011; Wiegand and Moloney, 2013; Mitchell et al., 2019).
In contrast, random models or Thomas cluster models reflect
biological patterns (Illian et al., 2008; Lin et al., 2011; Wiegand
and Moloney, 2013; Mitchell et al., 2015), so that by fitting
these different models to the observed data we were able to
infer for each taxa whether biotic or abiotic effects had the
biggest influence. At these fine-spatial scales we found that abiotic
influence of habitat heterogeneities were the strongest driver for
the majority of the populations studied. Abiotic heterogeneous
Poisson models and hard-core models were the best fit for the
observed spatial distributions for the populations of Advhena,
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FIGURE 7 | Bivariate PCF analyses for the taxa with non-independent spatial
distributions. The gray area is the simulation envelope of complete spatial
randomness (CSR) for 999 Monte Carlo simulations. The x-axis is the
inter-point distance between organisms in meters. On the y-axis, PCF = 1
indicates CSR and is indicated by a black line, < 1 indicates segregation,
and > 1 indicates aggregation. (A) N. bowersi – Aspidoscopulia.
(B) N. bowersi – Advhena magnifica. (C) N. bowersi—N. macrocalyx.

N. bowersi, and Rhodaniridogorgia [although the small numbers
of specimens, and lack of deviations outside the simulations
envelope for Rhodaniridogorgia, means that this model was not
significantly better than the random (biotic) model (Table 4
and Figure 5)]. For N. bowersi the interaction with the local
habitat changed between the Ridge and Ridge Crest area, with the
Ridge area showing significantly more segregation and thinning
of organisms, reflecting a likely resource limitation due to lower
water flow. The best-fit heterogeneous Poisson models for the
N. macrocalyx, N. bowersi, and Advhena populations were over
the same spatial scales of 20 cm, suggesting the same underlying
habitat heterogeneity for all three taxa. While it is not analytically
possible to determine what this heterogeneity is using our data,
the topological variation of the basalt bedrock is of a similar scale,
and so is a likely contender (Figures 1, 2).

In contrast Aspidoscopulia showed little sensitivity to these
habitat heterogeneities, and instead the population spatial
distributions reflected dispersal clusters. Narella macrocalyx
was unusual in this community because the factors which
most influenced its spatial distribution changed between the
two community areas. In the Ridge area of the community
N. macrocalyx was most strongly influenced by abiotic factors
(habitat heterogeneity), but in the Ridge Crest area biotic factors
(dispersal limitations) dominated. This change in influence is
likely to reflect resource limitation in the lower-density Ridge
area reducing the survival of juveniles, so that only the ones
that settled on the optimal habitat remain. In the Ridge Crest
region sufficient resources from increased water-flow result in
higher survival rates, and so are a closer reflection of the original
dispersal clusters.

The population ecology of the two sponges Aspidoscopulia
and Advhena remained remarkably similar between the Ridge
and Ridge Crest areas of the community, despite a doubling of
population densities showing a lack of sensitivity to meter-scale
variations in ridge topological and water-flow speed. In contrast,
the octocorals N. macrocalyx and N. bowersi both showed
significant differences in their spatial distributions, reflecting
a higher sensitivity to these abiotic factors. The change for
N. macrocalyx from an abiotic to biotic influence with increased
density demonstrates the interplay between different driving
forces and suggests that for at least some populations, different
effects drive population under different conditions highlighting
the need to record multiple different populations to understand
the factors which underlie their dynamics.

Competition Dynamics
Evidence for competition between marine sponges leading to
elimination of a species are relatively rare, and most commonly
involve outcompeting for a limited substrate, overflowing or
chemical mediation (Wulff, 2007). This study has found subtle
evidence of both intra and inter-specific competition. The large-
scale segregation of the Aspidoscopulia, Advhena, N. bowersi,
and N. macrocalyx suggests that a thinning of the populations
is associated with increased competition for limited resources
as organisms grow—they do not compete as juveniles but as
they increase in size, they need more resources, and when
they outcompete their neighbors, this leads to a reduction or
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thinning of the density (Getzin et al., 2006; Lingua et al., 2008).
N. bowersi also has small-scale segregation reduction of 50%,
which is likely to reflect intra-specific competition of juveniles,
rather than mature organisms (Getzin et al., 2006, 2014). If
the system is stressed, for example through reduction in the
nutrients for which the organisms compete, then the strengths
of competition are likely to increase, potentially leading to
elimination of the weaker taxa.

Community Dynamics
Community composition for deep-sea sponge and coral
communities is strongly driven by abiotic factors over broad
scales (∼1–100 km) (Murillo et al., 2020). High density and
very high density Pacific benthic communities show strong
associations with temperature and geography (Hourigan et al.,
2020). Despite a dramatic difference in community density
between the two sections of the community at FW there remains
a remarkable lack of differentiation of community composition
(Table 1), showing a certain robustness in response to differences
in ridge topography. This composition similarity, which is
admittedly at a very coarse taxonomic scale, is unlikely to
persist over long time scales due to density-dependent death
of Aspidoscopulia in the Ridge Crest area (in contrast to the
Ridge area and the random mortality patterns of Advhena).
This density-dependent death has resulted in a different
distribution of living Aspidoscopulia, and has provided a biogenic
structure for sponge Poliopogon sp. which has grown on the
top of the dead specimens (cf. Beazley et al., 2015). The BNI
analyses showed that four out of the five abundant taxa were
interconnected, with N. bowersi the most connected taxon
(Figure 6). This connectedness means that if one taxon changes
abundances, the other abundant taxon will also be affected—the
density-dependent mortality of the Aspidoscopulia will impact
the N. bowersi, which will then impact the Advhena and the
N. macrocalyx. As such, we should expect to see a change in
composition over time, leading to differentiation between the
Ridge and Ridge Crest community compositions due to the
linked dependences of the abundant taxa (Figure 6).

The nature of these changes depends on the different
biotic and abiotic intra and inter-specific interactions. For this
community, the strength of the inter-specific interactions (as
calculated by the PCF value; Figure 7) is of similar magnitude
to the intra-specific interactions (Figure 5), with the exception of
the univariate N. macrocalyx distribution which is significantly
more aggregated than the other taxa (Figure 5). The relative
strength of the bivariate interactions suggests that the community
will be more sensitive to changes in one taxon’s population than
a community with only weak bivariate interactions. However,
this cascade effect will depend on the nature of each interaction.
The habitat association N. bowersi—Aspidoscopulia is a mutual
correlation to a third factor, the habitat heterogeneity, and so
any community effects may be muted via this mutual factor,
making the N. bowersi—Aspidoscopulia interaction more robust
than the other two direct biotic interactions. Narella bowersi
and Aspidoscopulia share a mutual habitat heterogeneity, which
in higher density areas leads to spatial segregation over larger
spatial scales (Figure 7A), suggesting a level of competition or
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thinning out between larger specimens (Getzin et al., 2006).
Thus, if the density of Aspidoscopulia was reduced, the inter-
specific competition may also be reduced, potentially leading to
less thinning and so higher densities of the N. bowersi. Both
Advhena and N. macrocalyx have dependencies on N. bowersi,
and so these two taxa are likely to be affected by any population
changes. The Advhena– N. bowersi interaction was best-modeled
by a linked cluster model (Table 5), whereby the Advhena were
centered around the N. bowersi. This facilitation was likely due to
the Advhena filling the unoccupied space around the N. bowersi,
seen in the univariate segregation of the N. bowersi in the Ridge
area (Table 4 and Figure 5), and leading to an aggregation
of the Advhena around the N. bowersi (Figure 7). The same
best-fit link cluster described the bivariate distribution in the
Ridge Crest area but with a lower goodness-of-fit (Table 5),
suggesting that a weaker version of this effect was occurring
there. Therefore, if N. bowersi increases in density, such as via
a reduction in Aspidoscopulia, then the effect on Advhena is
likely to be positive, due to increased intra-specific N. bowersi
competition leading to increased segregation. An increase in
N. bowersi may lead to a decrease of N. macrocalyx because an
increase in density of N. macrocalyx may increase the strength
of the competition in the N. macrocalyx—N. bowersi interaction.
The mix of positive and negative biotic interactions coupled
to mutual habitat associations is therefore likely to result in a
mixture of positive and negative effects on the community in the
event of sudden changes and/or mass-mortality events.

CONCLUSION

To our knowledge, this study is the first to analyze the
mortality, population and community dynamics of a deep-
sea sponge community using SPPA. Our results provide the
first insight into the variety of ecological behaviors within this
benthic community, and show how these different organisms
have developed diverse responses for the biotic and abiotic
gradients within their habitat. We have demonstrated how
ecological interactions change with substrate topography, while
the community composition remains relatively constant. BNI has
demonstrated the connectivity of the abundant taxa, identifying

N. bowersi as the most connected taxon, and coupled with
SPPA analyses has enabled us to speculate on the possible
consequences, both positive and negative, of changes to the
community. By identifying and quantifying the strength of
abiotic and biotic interactions, these analyses have the potential
to identify how different taxa are likely to be affected by different
environmental changes. Identification of the crucial factors for
different taxa have the potential to be used in management and
conservation efforts to help mitigate anthropogenic changes.
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