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The biological fixation of dinitrogen (N») by marine microbes called “diazotrophs”
sustains ~50% new production in the ocean, boosting CO. absorption by
photoautotrophs and thus contributing to the mitigation of climate change. New
environmental conditions sustaining N» fixation have been revealed in recent years,
enabling more accurate forecasting of future nitrogen inputs and localized hot spots.
However, at present the paucity and biased geographical coverage of N» fixation
and diazotroph diversity measurements impede attempts to reconcile global nitrogen
budgets with observed rates. Most studies have been conducted at disparate
spatiotemporal scales, including: (i) discrete and short duration measurements in small
seawater volumes isolated from the environment, and (ii) spatial extrapolations and
global models of diazotrophy projected over decades to centuries. We argue that
this knowledge gap lies at the fine scales: dynamic seawater structures < 200 km
wide and < 2 months lifetime. However, the spatiotemporal resolution of conventional
oceanographic cruises, with stations separated by tens to hundreds of kilometers, is
too poor to resolve fine scale processes. Bridging this gap requires leveraging high
spatiotemporal resolution measurements. Here we present and discuss the advantages
and disadvantages of contemporary methods and equipment able to provide high-
resolution measurements at sea. We also provide insights into high-resolution sampling
approaches to be developed in the near future. Increasing the spatiotemporal resolution
of diazotroph activity and diversity will provide more realistic quantifications of nitrogen
fluxes in the dynamic ocean.

Keywords: diazotrophs, fine scale dynamics, physical-biological coupling, cyanobacteria, N, fixation

THE GAP IN OCEANIC N> FIXATION

Nitrogen is considered the predominant nutrient limiting primary production in the ocean (Tyrrell,
1999). Most of the ocean surface is too remote to benefit from land and atmospheric inputs
but can receive from dinitrogen (N;) fixation: the reduction of N, to ammonia carried out
by specialized types of microbes called “diazotrophs.” Diazotrophs play a crucial role in ocean
biogeochemistry: they sustain ~50% of marine new production (Mahaffey et al., 2005) and can
contribute > 70% to carbon sequestration in the vast oligotrophic regions of the ocean (Karl et al.,
2012; Cafhin et al., 2018).
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Our current knowledge of diazotroph diversity and activity
(diazotrophy) is derived from disparate spatiotemporal scales
(Figure 1). At smaller spatiotemporal scales, diazotrophs are
studied by manipulating communities in incubation bottles with
restricted volumes (typically < 5 L). Such incubations require
a physical isolation from their environment, which can lead
to exposure to well known “bottle effects” that introduce bias
in our results (Zobell and Anderson, 1936). These small scale
discrete incubations as well as local nutrient climatologies can be
used to extrapolate rates of N fixation regionally (e.g., Hansell
et al., 2004; Luo et al, 2012). On larger scales, the isotopic
composition of dissolved and particulate nitrogen are used to
infer regional N, fixation rates (e.g., Bates and Hansell, 2004;
Knapp et al., 2016). Mathematical models allow the extrapolation
of diazotroph and N, fixation rate distribution patterns up to the
global scale (Ward et al.,, 2013; Dutkiewicz et al., 2014; Gruber,
2016). Current estimates of fixed nitrogen inputs to the ocean
via small or large scale approaches vary by dozens of Tg N
y~! (Luo et al,, 2012; Landolfi et al.,, 2018). These discrepancies
are perhaps not surprising given the spatiotemporal variation
between these approaches.

Flow instabilities such as mesoscale (10-200 km, weeks)
and submesoscale (1-10 km, days) structures—here collectively
referred to as “fine scales”—control major processes fundamental
to microbial physiology, including nutrient advection and export
(Falkowski et al., 1991; Johnson et al., 2010; Guidi et al., 2012).
Despite their importance, there is currently a spatiotemporal
gap between small- and large-scale approaches in typical
oceanographic research, limiting our understanding of microbial
dynamics at fine scales (Figure 1). The inherent dynamic and
sporadic character of fine scale structures makes them difficult
to observe on individual oceanographic cruises (Mahadevan,
2016; McGillicuddy, 2016). Satellite ocean color data enables the
observation of how fine scale dynamics accumulate or disperse
chlorophyll, and even specific groups of phytoplankton (reviewed
in Lehahn et al., 2017a). These approaches have formed a solid
foundational understanding of physical-biological interactions
in the ocean. However, in situ sampling remains imperative
to measure changes in distributions at depth and microbial
processes, which cannot be captured by satellite oceanography.
Typical oceanographic cruises transect geographic locations
separated by hundreds to a few thousand kilometers. With a
regular navigation speed of ~18 km h=! (or 10 kn) and sampling
operations that last several hours, such approaches result in
poor spatiotemporal resolution sampling, incapable of resolving
fine scale dynamics for most chemical and biological processes
(Lévy et al,, 2012).

As the physical features that create biogeochemical conditions
dictating microbial activity, fine scale structures should be a
focus, but they require a sampling scale that matches the structure
of interest (Lévy et al., 2012). Recent technological advances
have significantly improved this resolution. In this perspective,
we provide an overview of the role of fine scale processes
in structuring diazotrophic communities, the available tools to
measure diazotrophic activity, abundance and diversity at high
spatiotemporal resolution, and provide recommendations for
future developments in the field.
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FIGURE 1 | The spatiotemporal scales of diazotrophy studies in the ocean
ranging from minutes to 100 years in time and from nm to 4.01 x 10% km (the
circumference of the Earth) in space. Light and dark gray ellipsoids depict the
spatiotemporal scales of diazotrophy studied to date, i.e., lower and larger
scales in light and dark gray, respectively. The white ellipsoid depicts the
current gap in knowledge: the fine scales. This gap can only be filled by
developing novel methods capable of measuring diazotroph community
composition, abundance and activity at high spatiotemporal resolution. (1) We
refer as “molecules” to molecular processes covered in transcriptomic
studies. Gene transcription typically takes place in a time range of minutes. (2)
The interaction between molecules and cells is approached by nano- to
microscale techniques exploring chemical microenvironments with
microsensors (e.g., Eichner et al., 2017, 2019), substrate uptake using
nanoscale secondary ion mass spectrometry (e.g., Finzi-Hart et al., 2009;
Thompson et al., 2012; Bonnet et al., 2016), or molecular marking targeting
proteins (e.g., Lin et al., 1998; Foster et al., 2006; Hynes et al., 2009) at the
single-cell level. This spatiotemporal scale ranges in space from the size of
intracellular compartments visible with those techniques to the maximum size
of a single diazotroph cell. In time, this spatiotemporal scale reaches the
maximum incubation time used in such studies, i.e., usually up to 72 h. (3)
The localization of substrates or sub-cellular structures of interest in colonies
and or aggregates can be approached with the techniques included in (2). The
size, shape and horizontal/vertical distribution of aggregates in the ocean is
usually resolved with microscopy (e.g., White et al., 2018), bench flow
cytometry (Bombar et al., 2013; Mclnnes et al., 2014), field semiautomated
flow cytometry (Dugenne et al., 2020), or automated underway devices such
as the video plankton recorder (Davis and McGillicuddy, 2006). The size of this
spatiotemporal scale ranges from tens of microns to several mm. The time
range is considered to range between several hours and a few weeks,
although the fate of aggregates in the ocean or how long they remain intact or
alive is uncertain. (4) The composition and distribution of diazotroph
populations is usually approached by discrete sampling along oceanographic
cruise transects spanning hundreds to a few thousands of km. Such studies
cover a time range from a few days to several weeks and depict communities
using microscopy and/or molecular analyses such as quantitative PCR (e.g.,
Moisander et al., 2010; Bonnet et al., 2015; Benavides et al., 2016; Shiozaki
et al., 2017). Trichodesmium blooms can cover extensions of hundreds to
thousands of square km and are studied with customized algorithms applied
to satellite products such as SeaWiFS or MODIS (Hood et al., 2002;
Subramaniam et al., 2002; Rousset et al., 2018). (5) Submesoscale (1-10 km,
days) structures such as filaments, and mesoscale (10-200 km, several
weeks) structures including fronts and eddies (here collectively referred to as
“fine scales,” see section “How Fine Scale Processes May Affect Diazotrophs”
of the main text). Studies seeking to link fine scales to diazotrophy have
conducted discrete sampling along the central edge of mesoscale eddies at
stations situated tens of km apart at best (e.g., Fong et al., 2008; Zhang et al.,
2011; Loscher et al., 2016; Liu et al., 2020). In these studies, the distribution
(Continued)
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FIGURE 1 | Continued

and activity of diazotrophs has been approached with traditional methods for
the characterization of the diazotroph community (i.e., microscopy,
quantitative PCR, 1°N, stable isotope incubations). Underway Ny fixation rate
measurements hold great promise in providing submesoscale resolved data
(e.g., Moore et al., 2018; Tang et al., 2019), but to date such approaches have
not been investigated in depth with parallel physical oceanography
parameters. (6) Regional studies often stem from direct N fixation rates or
diazotroph abundance measurements obtained from a single oceanographic
cruise or a combination of several datasets extrapolated over a given region
(Luo et al., 2012; Tang et al., 2019). Indirect methods to obtain N, fixation
estimates such as the N* parameter or §'°N distributions (e.g., Hansell et al.,
2004; Deutsch et al., 2007) as well as modeling approaches integrating
nutrient climatologies, repeated transect datasets and ocean circulation
(Landolfi et al., 2008; Torres-Valdés et al., 2009) have also been used to infer
regional diazotrophy estimates. The temporal span of this scale is thus large,
ranging from several weeks to tens of years. Finally, (7) global marine
diazotrophy studies have been addressed with models integrating
biogeochemistry, ecological and circulation models (e.g., Monteiro et al.,
2011; Dutkiewicz et al., 2014; Wang et al., 2019). At present, our poor
mechanistic knowledge of the diversity, physiology, trophic interactions and
environmental constrains of different diazotrophs, combined with
computational power constraints makes it difficult to run models considering
more than two or three diazotroph ecotypes. The numbering of the different
spatiotemporal scales considered in this figure is illustrative and does not
intend to exclude possible subdivisions, overlaps or clustering between scales
in marine diazotrophy yet to be described by new techniques and sampling
approaches.

HOW FINE SCALE PROCESSES MAY
AFFECT DIAZOTROPHS

Although there are a limited number of diazotroph taxa, their
ecologies are very distinct (referred to here as “ecotypes’;
Thompson and Zehr, 2013), with different morphologies,
activities and physiological constraints which dictate their
biogeographical and seasonal distribution globally (Zehr and
Capone, 2020). Due to the high variability of physical and
chemical factors at the fine scale, the extent to which physical
features affect diazotrophs will depend on how the resulting
physicochemical changes affect each ecotype’s physiology and
metabolism (Lévy et al, 2012). Due to the range of factors
contributing to the relative success of each ecotype, rates alone
cannot provide enough information to model diazotrophy. It
is necessary to collect rates while quantifying the organism(s)
responsible to better characterize the bottom-up controls on
distributions and activities of each ecotype.

Fine scales comprise a wide range of structures including
filaments, fronts and eddies, with different physical dynamics
that influence their biogeochemical properties. For example,
vertical transport in submesoscale fronts causes rapid injections
of deep nutrient rich waters, enhancing phytoplankton growth
locally (Mahadevan, 2016). It is uncertain to which extent
diazotrophs may benefit from such rapid inputs given their slow
growth rates. Horizontal stirring strains fine scale features into
thinner filaments, distributing phytoplankton niches (d’Ovidio
et al., 2010) and regulating the access to limiting nutrients and
mortality due to grazing and viral infection (Lehahn et al,
2017b). The success of a given species will depend on the balance
between physical and biological time scales, e.g., when nutrient

delivery promotes sufficient growth to overcome grazing and
viral pressure (Lehahn et al., 2017b).

Eddy trapping can isolate planktonic assemblages in
Lagrangian coherent structures where lateral exchange with
surrounding waters is limited (Lehahn et al, 2011). Such
structures may act as a shield impeding dilution of nutrients
permitting phytoplankton growth, or as a trap if a given species
gets “trapped with the enemy” (i.e., predator; Bracco et al., 2000;
Lehahn et al.,, 2014). Mills and Arrigo (2010) argued that non-
Redfield usage of nutrients by non-diazotrophic phytoplankton
lowers N:P ratios, creating diazotroph niches. Following this
logic, we hypothesize that non-diazotrophic phytoplankton
thrive in coherent eddies until the nitrogen trapped within
them is depleted. While non-diazotrophic phytoplankton
thrive, diazotrophs would be outcompeted (likely with the
exception of UCYN-A, as discussed below). Once nitrogen is
depleted diazotrophs may succeed, benefiting from a decrease
in competition for phosphorus and trace metals with non-
diazotrophic phytoplankton. This balance is likely further set
by grazing and viral infection on diazotrophs. Indeed, Dugenne
et al. (2020) observed higher growth rates and lowered grazing
pressure on Crocosphaera inside a lower-biomass anticyclonic
eddy as compared to a cyclonic eddy.

Eddy pumping is postulated to explain differences in
diazotroph abundance and/or N, fixation rates, i.e., anticyclonic
eddies deepen isopycnals, lowering nutrient availability and
promoting diazotroph development, while the reverse occurs
in cyclonic eddies. For example, Trichodesmium is sensitive
to dissolved inorganic nitrogen (Knapp et al, 2012) and
accumulates in anticyclonic eddies (Davis and McGillicuddy,
2006; Fong et al, 2008). However, anticyclones do not only
hamper the upwelling of nitrate, but also of dissolved inorganic
and organic phosphorus which exert an important control in
the growth and diazotrophic activity of Trichodesmium (e.g.,
Dyhrman et al., 2006; Hynes et al., 2009).

Trichodesmium harbors gas vesicles that provide them
with buoyancy control (Villareal and Carpenter, 2003).
Trichodesmium may be thus treated as buoyant particles
accumulating at frontal structures (Taylor, 2018). Forced
accumulation at surface frontal structures may increase nutrient
limitation in Trichodesmium colonies while increasing sunlight
exposure, potentially inducing cell mortality via autocatalytic
death pathways and thereby vertical export (Berman-Frank
et al., 2004). The unicellular diazotroph Crocosphaera watsonii
can be found as small (2-3.5 pm) and large (4-5 pm) cell
types (Bench et al, 2016). While the oligotrophic conditions
that promote Trichodesmium in anticyclonic eddies similarly
contribute to the proliferation of C. watsonii (Fong et al., 2008;
Liu et al,, 2020), physical accumulation at high density frontal
areas is less likely for non-floating unicellular diazotrophs. The
large cell type may be more prone to accumulation aided by the
excretion of extracellular polymeric substances and formation of
aggregates, a characteristic not described for the small cell type
(Webb et al.,, 2009; Sohm et al., 2011) and implied previously
to explain their distinct vertical distributions at the edge of an
anticyclone (Bench et al., 2016). Wilson et al. (2017) quantified
an 11% contribution to net community production attributed
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to N, fixation by abundant Crocosphaera near an anticyclonic
eddy, and an increased contribution of N, fixation to particulate
nitrogen export flux.

The uncultivated unicellular diazotroph UCYN-A is a
small (<1 pm) cyanobacterium in obligate symbiosis with a
prymnesiophyte host to whom they provide fixed nitrogen in
exchange for fixed carbon (Thompson et al, 2012). While
widely distributed in warm low latitude seas (Moisander et al.,
2010), UCYN-A also thrives in nutrient-rich and cold waters
such as coastal upwelling ecosystems and polar seas (Agawin
et al., 2014; Harding et al., 2018; Moreira-Coello et al., 2019).
Both UCYN-A and its host are dependent on N, fixation
for their nitrogen needs even in the presence of abundant
inorganic nitrogen, which has been found to stimulate N,
fixation (Mills et al., 2020). Such tolerance makes UCYN-A a
good candidate to benefit from the biogeochemical conditions
provided by eddy pumping in cyclonic eddies. However,
abundant UCYN-A have been reported in anticyclones but not
cyclones (Fong et al,, 2008; Robidart et al., 2014; Liu et al,
2020). Perhaps driven by Ekman pumping of deep nutrient-
rich waters in anticyclonic eddies (Anderson et al., 2011), as
proposed to explain higher abundances of Trichodesmium in
cyclonic eddies in the North Atlantic (Olson et al., 2015). Counter
to expectations, episodic nutrient advection at the periphery of
an anticyclonic eddy has previously been found to contribute to
lower nifH transcription from both UCYN-A and Crocosphaera
(Robidart et al., 2019).

Non-cyanobacterial diazotrophs (bacteria and archaea)
cannot photosynthesize, which renders them dependent
on organic matter to fulfill their energy and carbon needs
(Bombar et al, 2016) although other metabolisms such as
chemolithoautotrophy are plausible (Riemann et al, 2010).
Their prevalence in anticyclonic eddies has been attributed to
the accumulation of organic matter within the core (Loscher
et al,, 2016), while a separate study finding higher abundances
in cyclonic eddies predicted that is was due to the alleviation
of phosphorus stress (Zhang et al, 2011). Finally, diatom-
diazotroph associations (DDAs) dominate in low salinity and
high silicate waters of river mouths such as the Mekong and the
Amazon river plumes (Foster et al., 2007; Bombar et al., 2011).
As the plume dilutes, the diazotrophic community shifts toward
unicellular diazotroph ecotypes, indicating that the dispersion of
the plume ultimately determines their geographical distribution
(Grosse et al., 2010). In the oligotrophic North Pacific, Harke
et al. (2019) measured coordinated gene expression between
the Richelia-Rhizosolenia DDA over the same anticyclonic
transect as Crocosphaera and Trichodesmium high-resolution
metatranscriptomes mentioned previously (Wilson et al., 2017;
Frischkorn et al, 2018, respectively). Comparative analysis
of these metatranscriptomes within the dynamic physical
environmental context may reveal conserved mechanisms of
response associated with N, fixation.

As discussed above, fine scale structures may affect diazotroph
ecotypes in different ways according to their autoecology and
physiology as well as trophic interactions within the planktonic
community. The biogeochemical characteristics and trophic
interactions taking place within these structures change between

formation and dissipation. We thus predict that the impacts on
diazotrophs evolve over the lifetime of these structures.

TOOLS FOR HIGH-RESOLUTION
DIAZOTROPH SAMPLING

Fine scale structures are dynamic and ephemeral, making
instrumentation for high-resolution measurements
indispensable for their study. This instrumentation must be
capable of providing activity, abundance and diversity data at
spatiotemporal resolutions equal to or smaller than that of the
physical and biological processes under study (Lévy et al., 2012).
Below we present currently available technology to address the
dynamics of diazotroph assemblages embedded in dynamic fine
scale structures.

The studies that have sought to understand the role of fine
scales on structuring diazotrophic communities or modulating
N, fixation rates have used traditional sampling approaches
consisting of CTD-rosette casts at discrete stations. These
approaches may suffice when applying a Lagrangian sampling
strategy, i.e., following a given water mass at the pace it
moves. However, ephemeral submesoscale structures associated
with eddies are not easily quantified or characterized with
traditional sampling (Johnson et al., 2010). In the past decade,
technological developments have allowed the quantification of
diazotroph ecotypes at a higher frequency than that provided
by conventional sampling. The first study to do so used
a towed video plankton recorder to continuously visualize
Trichodesmium colonies across the North Atlantic, finding clear
associations with anticyclones (Davis and McGillicuddy, 2006).
Using an ecogenomic sensor, Robidart et al. (2014) found that
diazotroph abundances changed over three orders of magnitude
in less than 2 days and 30 km in the North Pacific. Most recently, a
microbiological autosampler collected 1 sample/h over a transect
in the North Atlantic, showing record abundances of UCYN-
A in cold coastal regions and less abundant Trichodesmium in
warmer waters offshore (Tang et al., 2020). In the same region,
another study with a spatial resolution of 1 sample each ~5 km
found peak abundances of Trichodesmium coinciding with steep
gradients of current velocity at the edge of the Gulf Stream
(Palter et al., 2020).

Geochemical approaches to measure N, fixation include the
N* parameter, which measures the concentration of nitrate in
excess (or deficit) of that expected from the remineralization of
phosphate at Redfield stoichiometries (Gruber and Sarmiento,
1997). This method has been used to study diazotrophy within
mesoscale eddies in the eastern tropical South Pacific (Loscher
et al,, 2016). The 8!°N approach measures the relative '4N/!>N
isotope signature and relates low values (31°N~0.6%0) to
diazotrophic activity (Karl et al., 2002). Geochemical methods
have the disadvantage that N fixation signatures (N* > 2.5 pwmol
kg~! or low 8'°N values) can be caused by processes other than
N, fixation (Hastings et al., 2003; Zamora et al., 2010), but have
the advantage that they can be used in large oceanic regions and
are incubation-independent.

The most common biological method to measure N fixation
rates is using stable isotope tracers in 24 h incubations
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(Montoya et al, 1996; White et al, 2020). In situ stable
isotope incubations have been previously adapted to surface
drifters (the Submersible Incubation Device, or SID), with
4 x 24 hour incubations per deployment (Bombar et al., 2015).
Indirect methods such as hydrogen production measurements
or the acetylene reduction assay allow working with smaller
volumes and shorter incubation times, thus providing a faster
measurement alternative for high spatiotemporal resolution
studies. Hydrogen production measurements are based on the
principle that N, reduction produces hydrogen (H;) in an
equimolar reaction, so that every mole of H, produced can be
equated to a mole of N, fixed (Wilson et al., 2010b). However,
uptake hydrogenase enzymes are also present in diazotrophs
to re-assimilate H, and recover energy, altering the ratio of
N, reduced to H, released, which in practice varies between
0.2 and 13 (Wilson et al.,, 2010b; Wilson et al., submitted).
This method yields rates every ~20 min, and can be used
in diel cycle studies (Wilson et al, 2010a,b) or on high-
frequency measurements over oceanographic cruise transects
(Moore et al., 2014, 2018).

The acetylene reduction assay is based on the ability of the
nitrogenase enzyme to reduce other triple-bonded molecules
such as acetylene, which is reduced to ethylene and converted
to N, fixation rates using a ratio of 3:1 or 4:1 depending
on if hydrogen re-assimilation is considered or not (Stal,
1988; Capone, 1993), but just as with hydrogen measurements,
empirically determined ratios vary widely (Mulholland et al,
2004, 2006). Recently, this assay has been adapted to measure
continuous N fixation in underway seawater systems (Cassar
et al.,, 2018; Tang et al,, 2020). Indirect methods measure gross
N, fixation rates, i.e., how much N, has been reduced by the
nitrogenase enzyme, independent of whether it is channeled
to diazotroph biomass or released extracellularly as dissolved
nitrogen compounds. Because diazotrophs are known to release
significant amounts of fixed N extracellularly (Mulholland et al.,
2004; Benavides et al., 2013; Berthelot et al, 2015; Bonnet
et al,, 2016), gross N, fixation measurements may provide better
estimates of fixed N inputs to the ocean.

FUTURE PERSPECTIVES

In situ DNA sensors, samplers and rate measurements have
provided abundance or activity data at an unprecedented
spatiotemporal resolution. Understanding how fine scales shape
diazotroph communities requires the combination of diazotroph
identification, enumeration and N, fixation measurements at
high, 4-dimensional spatiotemporal resolution.

Directed sampling within fine scale structures can be
challenging, requiring the inspection of hydrographic variables
and Lagrangian structures prior to the cruise (Nencioli et al,
2011; Doglioli et al., 2013). Following Lagrangian coherent
structures requires the deployment of floats or vehicles
capable of geolocalizing a moving water parcel. Fronts and
mesoscale eddies are easier to characterize than ephemeral
structures such as submesoscale filaments. Importantly, synoptic
measurements of physical and chemical variables including

horizontal and vertical current speed, vorticity, vertical turbulent
microstructure and inorganic and organic nutrient diffusion are
needed to comprehensively understand how fine scale processes
affect diazotrophs.

Recent advances in vehicles and sensors will contribute to
our understanding of physical-chemical-biological interactions
in situ. Measurements of turbulence are becoming more frequent
on seagliders (e.g., Fernandez-Castro et al., 2020). Deployed
nutrient sensors with nanomolar limits of detection (Beaton
et al, 2012) can facilitate the observation of episodic or
small-scale events in oligotrophic mixed layers. Autonomous
vehicles capable of Lagrangian drift can follow specific water
masses, sampling the microbial community in its environmental
context (Birch et al., 2019) and autonomous orientation using
chlorophyll concentrations allows targeted sampling of structures
within the water column (Zhang et al., 2019). Deployments of
combined sensors will enable a more thorough understanding
of diazotroph - environmental interactions on fine scales, to be
integrated across water masses for larger scale understanding.
Measurements of flux, although currently providing data at
higher resolution (Bombar et al., 2015; Tang et al., 2019; Wilson
et al., submitted) currently require ship-based manipulations
and/or analysis and are not yet capable of in situ deployment.
Integrated, cross-disciplinary field-based efforts are crucial to
resolve effects of short spatiotemporal scale dynamic processes
fundamental to microbial activity.

RECOMMENDATIONS

Providing detailed sampling procedures to study the effects
of fine scale structures on diazotrophs is challenging since
dedicated high-resolution sampling devices are not widely
available nor standardized for the oceanographic community.
Nevertheless, dedicated study of fine scale processes is required
in order to connect biological processes to underpinning
physical and biogeochemical drivers. Below we provide a list of
recommendations hoping to inspire microbial oceanographers to
embrace such studies in their research programs.

(1) Fine scales are dynamic and ephemeral, requiring
Lagrangian sampling approaches. Prior geolocalization
of structures with satellite products is required for
targeted sampling. Post-cruise satellite-derived data such
as altimetry and ocean color aid description of underlying
physical processes. In addition, in situ measurements of
current speed and vertical mixing are highly recommended
to better constrain fine scale structures.

(2) High-resolution measurements within large eddies can
deliver the same diazotroph dynamics observed via long-
term Eulerian measurements in time-series station data
(McGillicuddy et al., 1999; Robidart et al., 2014). Since
comprehensive time-series stations cannot be implemented
across the global oceans, strategic observations targeting
fine scale features should be implemented in representative
oceanic provinces to capture biogeochemical variability
over short field programs.
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(3) Diazotroph abundance and diversity measurements should
be measured synoptically with N, fixation measurements.
Fine scales comprise a wide array of structures which may
affect different diazotroph phylotypes in disparate ways.
Coupling activity and abundance/diversity measurements
will provide insights into passive (accumulation)
versus active (N, fixation activity stimulation) effects
on diazotrophs.

(4) Growth and mortality measurements should be
implemented (e.g., Dugenne et al., 2020). While few studies
have attempted to measure in situ growth of diazotroph
phylotypes, redistribution of assemblages by fine scale
structures may alter the balance between growth, mortality
and predator pressure.
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