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Human activities are changing ecosystems at an unprecedented rate, yet large-scale
studies into how local human impacts alter natural systems and interact with other
aspects of global change are still lacking. Here we provide empirical evidence that local
human impacts fundamentally alter relationships between ecological communities and
environmental drivers. Using tropical coral reefs as a study system, we investigated
the influence of contrasting levels of local human impact using a spatially extensive
dataset spanning 62 outer reefs around inhabited Pacific islands. We tested how local
human impacts (low versus high determined using a threshold of 25 people km−2

reef) affected benthic community (i) structure, and (ii) relationships with environmental
predictors using pre-defined models and model selection tools. Data on reef depth,
benthic assemblages, and herbivorous fish communities were collected from field
surveys. Additional data on thermal stress, storm exposure, and market gravity (a
function of human population size and reef accessibility) were extracted from public
repositories. Findings revealed that reefs subject to high local human impact were
characterised by relatively more turf algae (>10% higher mean absolute coverage)
and lower live coral cover (9% less mean absolute coverage) than reefs subject to
low local human impact, but had similar macroalgal cover and coral morphological
composition. Models based on spatio-physical predictors were significantly more
accurate in explaining the variation of benthic assemblages at sites with low (mean
adjusted-R2 = 0.35) rather than high local human impact, where relationships became
much weaker (mean adjusted-R2 = 0.10). Model selection procedures also identified
a distinct shift in the relative importance of different herbivorous fish functional groups
in explaining benthic communities depending on the local human impact level. These
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results demonstrate that local human impacts alter natural systems and indicate that
projecting climate change impacts may be particularly challenging at reefs close to
higher human populations, where dependency and pressure on ecosystem services
are highest.

Keywords: climate change, reef degradation, ecological reorganisation, ecological homogenisation, generalised
additive models, model selection

INTRODUCTION

Humans have become a dominant force of planetary change
(Steffen et al., 2007). Ecosystems worldwide are being
fundamentally altered by climate change impacts against a
diverse backdrop of local anthropogenic stressors. Our ability to
reliably predict the future configuration of affected ecosystems
requires a thorough understanding of interactions between
these different stressor types (Williams et al., 2019). Increasing
evidence indicates that ecosystems are being reorganised or
homogenised into stress-tolerant or opportunistic communities,
leading to novel systems that differ from their previous state in
terms of their dominant constituents (Graham et al., 2014; Morse
et al., 2014). Quantifying ecological reorganisation over broad
scales remains challenging due to coarse taxonomic resolution
inherent to large datasets that are necessary to address this
topic. Nonetheless, this phenomenon may significantly alter a
system’s relationship with various environmental and climate
change-related drivers (Côté and Darling, 2010; Williams G.J.
et al., 2015). Understanding what role local human impacts
play in driving ecological reorganisation and changing a
system’s relationship with its biophysical environment is thus
pivotal to improving predictive models and informing local
management (Robinson et al., 2018; Jouffray et al., 2019;
Henderson et al., 2020).

Inherent high biodiversity and the presence of multiple
stressors acting at local and global scales make tropical coral
reefs a unique system to examine how local human impacts
drive ecological states (Hoegh-Guldberg et al., 2007; Ban et al.,
2014; Norström et al., 2016; Darling et al., 2019). Locally, rapidly
expanding coastal development, sewage input, and agricultural
practices are reducing water quality, whilst the modernisation
of fishing gear and expedited market access are facilitating
overexploitation of coastal fisheries resources (Fabricius et al.,
2005; Brewer et al., 2012; Hamilton et al., 2012). Globally, the
intensity and frequency of thermal anomalies, unusual weather
patterns, and destructive storm events are increasing (Gattuso
et al., 2015; van Hooidonk et al., 2016; IPCC, 2019), and recovery
windows between stress events are narrowing (Riegl et al., 2013;
Hughes et al., 2018). The productivity and provision of ecosystem
services (e.g., Woodhead et al., 2019) of coral reef benthic
communities differ depending on their composition (Ferrario
et al., 2014; Rogers et al., 2018), underlining the importance of
quantifying how communities are affected by global change. The
widespread negative effects of climate change-related stressors
are relatively well-understood. However, despite more than half
the world’s coral reefs being located within 30 min travel time
from human populations (Maire et al., 2016), the role of local

stressors remains somewhat contested. These local stressors can
range greatly in their intensity depending on inherent factors
such as human population density and the level of exploitation
of, or reliance on, marine resources.

Higher human population densities have been linked to
reductions in reef fish biomass and coral cover, and to increases in
fleshy (turf and macro-) algal cover (Sandin et al., 2008; Williams
I.D. et al., 2015; Heenan et al., 2016; Smith et al., 2016). However,
coarse taxonomic resolution (inherent to large-scale datasets)
can lead to the conclusion that there is no link between local
stressors and reef condition (e.g., Bruno and Valdivia, 2016).
This may be a particular issue in regions such as the tropical
Pacific where species diversity is exceptionally high and fleshy
macroalgae, frequently stated as principal alternative organisms
on degraded reefs, do not play such a dominant role in benthic
dynamics compared, for instance, to the Caribbean region
(Roff and Mumby, 2012). Furthermore, reefs are increasingly
existing in a partially degraded condition between distinct
regimes (Mumby, 2017), likely having undergone ecological
homogenisation resulting from the non-random removal of
species with particular traits in response to environmental factors
(McWilliam et al., 2020). In this case, coral cover can remain
moderate but comprises a less diverse community of stress-
tolerant and opportunistic types (Côté and Darling, 2010; van
Woesik et al., 2011; Riegl et al., 2013). Ecological homogenisation
is visible across reef habitat types, with inshore reefs that are
naturally exposed to a more challenging environment (e.g., in
terms of light, temperature, and sediment input) favouring a
smaller species pool of stress-resistant corals compared to nearby
outer reef habitats (Rogers, 1990; Browne et al., 2013; Williams
et al., 2013; Schoepf et al., 2015; Morgan et al., 2016).

A recent study demonstrated that whilst sea surface
temperature (SST), chlorophyll concentration, and wave
energy have strong power in predicting benthic assemblages at
remote reefs, this predictive power is lost or the relationships
fundamentally altered at reefs closer to human populations
(Williams G.J. et al., 2015). Considering the dominant role of
humans in shaping ecosystems, factors associated with local
anthropogenic impacts may have overtaken biophysical drivers
in structuring these altered reefs. It has also been postulated
that reorganisation toward a stress-tolerant coral community
could increase resilience to climate change, assuming co-
tolerance between local and climate change-related stressors
(Côté and Darling, 2010), in line with the concept of “intrinsic
resistance” (Darling and Côté, 2018). Indeed, coral richness
does not translate into higher resilience to disturbances
(Zhang et al., 2014). Better understanding and accounting for
the role that local human impacts play in shaping benthic
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communities and their relationships with environmental drivers
is important for developing theories, designing experiments,
setting baselines, informing management, as well as optimising
large-scale spatial predictive models for coral reef futures.

Here, we investigate how local human impacts affect coral
reef benthic communities in the tropical Pacific. We start by
classifying 62 island sites into two levels of local human impact
(low versus high) using a set threshold of human population
density informed by previous work (i.e., D’agata et al., 2014).
We then ask whether the level of local human impact influences
benthic community structure or the relationship between benthic
community structure and spatio-physical explanatory drivers.
Lastly, we examine the relative roles of ten biophysical parameters
as drivers of benthic community structure under low versus high
local human impact. We hypothesised that benthic community
structure would be more related to spatio-physical drivers on
reefs exposed to low local human impact compared to those with
high local human impact, where we expect human-associated
factors to have become more dominant. This approach allowed us
to develop on the findings of Williams G.J. et al. (2015) by testing
whether decoupling between reefs and biophysical drivers in the
presence of humans was also detectable between different levels
of local human impact.

MATERIALS AND METHODS

Study Area and Sampling Design
This study intended to build on work from Williams G.J. et al.
(2015) by assessing in more detail how local population density,
rather than human presence/absence, potentially decouples the
relationship between reef benthos and larger-scale environmental
drivers. To do so, we utilised a large-scale dataset that is
unique in having both site-level ecological (fish and benthic)
and socio-economic data (in particular human density per reef
area at the site level), which is missing from other datasets that
rely on global socioeconomic estimates for human population
density, or in some cases district-level surveys. Fish and benthic
communities at 62 reefs within 17 different Pacific Island
countries and territories were surveyed once between 2003 and
2008 (see Supplementary Figure 1 for map) as part of the
Pacific Regional Oceanic and Coastal Fisheries Development
Programme (PROCFish/C/CoFish) under the auspices of the
Pacific Community (SPC). Importantly, all reefs were in close
vicinity to, and used by, coastal human communities across a
large range of intensities (e.g., relative human density ranged
from 1.3 to 1705 humans km−2 reef). For site disturbance history,
sampling dates and detailed sampling methodology, refer to
Supplementary Table 1 and Pinca et al. (2010). Though it is
important to acknowledge that the sampling programme was
not originally designed in a way to address macroecological
questions or aggregate beyond the state/territory level, we did
our best to account for the shortcomings in the design by
including additional information such as observer bias (see
section “Data Analyses” for details on environmental parameters
included). Furthermore, while data may not be representative
of the current-day scenario, it is the trends that are important

for this study. Accordingly, we are confident that despite some
inevitable compromising, this gave us the best possible dataset to
look at the effects of site-specific human density.

Field Surveys
Underwater surveys covered outer (fore-) reefs, with on average
nine (n = 3–47) joint fish-benthic 50 m transects measured
at each site. Transect data were pooled within each site. Reef
fish communities were measured using the variable distance-
sampling underwater visual census method along transects
(described in Labrosse et al., 2002). Data on abundance and
size were recorded to species-level for herbivorous fish. Counts
were converted to biomass (g m−2) from established length-
weight relationships (Kulbicki et al., 2005). Benthic cover data
was obtained using the medium-scale approach described by
Clua et al. (2006). This method is based on a semi-quantitative
description of ten 25 m2 (5 × 5 m) quadrats laid down on
each side of the 50 m transect (i.e., 20 replicate quadrats/500 m2

per transect). Surveyors first recorded abiotic and live coral
substrates, i.e., sand, rubble, rocky slab, boulders, and hard
coral − live, bleached, and long dead, with live coral divided
into broad morphologies (e.g., branching, encrusting, massive).
Each component was quickly estimated using a semi-quantitative
scale ranging from 0 to 100% per quadrat, in units of 5%.
Secondly, benthic groups (e.g., macroalgae–inclusive of calcified
and fleshy types, turf algae, crustose coralline algae [CCA],
sponges, cyanobacteria) growing over abiotic substrate such as
long dead coral were recorded using the same semi-quantitative
scale (Table 1).

Fishing grounds were initially delineated from information
given by local fishers and quantified from satellite interpretations
(similar to methods in Close and Hall, 2006; Léopold et al.,
2014). Total reef area (km2) within each fishing ground was
then derived from reef areas quantified by the Millennium Coral
Reef Mapping Project from satellite images (Andréfouët et al.,
2006). Socioeconomic assessments determined total population
within communities with access to the fishing ground, allowing
subsequent calculation of human population relative to reef
area (referred to as “relative human density”). Finfish landings
for each site, determined from interviews with fishers, were
extrapolated to total finfish catch per year per reef area (“relative
fishing pressure”) (see Pinca et al., 2010).

Data Analyses
Response Variables
As response variables, we selected the main benthic groups (i.e.,
those with a mean composition >10% of benthic community):
dead coral (incorporating long dead coral, rubble, boulders, and
pavement), live hard coral, and algal groups (differentiating turf
algae, macroalgae, and CCA). We also assessed the proportional
representation (within the live hard coral community) of
the three most commonly observed morphological groups:
branching, encrusting and massive morphologies. Pairwise
relationship tests (corvif function–Zuur et al., 2009) established
no collinearity among the response variables (correlation;
R2 < 0.5). Table 1 provides an overview of the benthic variables
and their ranges.
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TABLE 1 | Benthic variables included in the models and their ranges.

Variable Description Range (%)

live hard coral mean cover (%) of live hard coral 6.1–65.1

dead hard coral mean cover (%) of dead hard coral; including rubble, boulders, and pavement. Dead hard coral may also include biotic
groups (i.e., growing over the dead coral), which are further classified as additional categories below*

5.5–61.2

branching morphologies proportion (%) of branching coral morphologies within live hard coral community 0.1–85.6

encrusting morphologies proportion (%) of encrusting coral morphologies within live hard coral community 2.8–72.9

massive morphologies proportion (%) of massive coral morphologies within live hard coral community 0.1–60.6

CCA mean cover (%) of crustose coralline algae 0.2–43.5

macroalgae mean cover (%) of macroalgae; inclusive of calcified and fleshy types 0.0–31.2

turf algae mean cover (%) of turf algae 0.0–45.6

*not all categories are mutually exclusive–abiotic (e.g., dead coral, sand) and live coral substrates were recorded up to 100%, and biotic cover (e.g., algal groups) was
recorded separately up to 100% (i.e., sum of substrate and biotic cover 6=100%).

Model Predictors
We had to make a feasible choice of how to determine low versus
high impact sites. Rather than choosing a completely arbitrary
threshold, we selected one that was informed by previous
findings by D’agata et al. (2014)–using boosted regression trees
for the same dataset, the authors identified 25 people km−2

reef to be the threshold after which taxonomic diversity of
parrotfishes significantly declined. We then ran a sensitivity
analysis to demonstrate how robust our findings were (see section
“Assumptions and Sensitivity Tests”). To compare reefs exposed
to different disturbance regimes, we thus categorised all sites into
those subject to low (i.e., <25 people km−2 reef; n = 29) and high
(i.e., >25 people km−2 reef; n = 33) local human impact. Relative
human density correlates with relative exploitation–i.e., relative
human density was collinear (R2 = 0.8) with fishing pressure
(tonnes fish km−2 reef year−1; Table 2). This threshold was also
a median point and allowed similar sample sizes in each impact
level (see Supplementary Figure 2). Relative human density also
showed weak positive correlation with market gravity–an index
combining the population size of nearby human settlements and
their accessibility to reefs (Cinner and Maire, 2018; Cinner et al.,
2018). However, we decided to base our study on relative human
density as we had unique site-level data and we see this metric
to be more directly linked to benthic communities in terms
of human density-dependent sewage and agricultural run-off in
addition to subsistence and artisanal fishing.

The selected biophysical predictors included a variety of
factors that were either collected during field surveys or extracted
from public data repositories (Table 2). Due to inherent
differences in coral reefs across latitudinal scales (e.g., Hughes
et al., 1999; Harriott and Banks, 2002), latitude was represented by
degree distance from the equator without differentiating between
north and south (0–23.9◦). Degree heating weeks (DHW) data
were extracted from the NOAA Coral Reef Thermal Anomaly
Database (CoRTAD version 4 − Casey et al., 2012). Storm
exposure was quantified from the NOAA IBTrACS-WMO data
(Knapp et al., 2010a,b) within ArcMAP 10.4 (ESRI, 2011), where
the number of storms (categories 1–5 on the Saffir-Simpson
Hurricane Scale) passing within a 50 km radius of each site
(Behrmann projection) was extracted. Storm exposure and DHW
data were confined to 12 years prior to each respective site’s

survey date based on the premise that remote reefs can recover
from acute disturbances within this timeframe (Sheppard et al.,
2008; Gilmour et al., 2013). Reef depth, estimated during field
surveys, was averaged over all transects at each site. Island
relief refers to each site’s geomorphology, and was classified
into three categories: atoll, low-lying island, and high island
based on available information (see Supplementary Table 1 for
references), and authors’ knowledge. Island relief was included
as a predictor due to its known influence on coral reef
benthic and fish communities (Donaldson, 2002; Houk et al.,
2015). Herbivorous fish from selected families (e.g., excluding
herbivorous damselfish) encountered during visual surveys were
classified into functional groups according to Heenan et al.
(2016) (see Supplementary Table 2). Biomasses (g m−2) of
the following functional groups were then incorporated as
predictors: browsers, grazers, detritivores, scrapers and small
excavators, and large excavators and bioeroders. Market gravity
(Cinner and Maire, 2018) was extracted for each site in QGIS
(QGIS Development Team, 2019) and was incorporated as a
continuous predictor.

Prior to model fitting, paired plots were assessed for
collinearity between model terms. Strong collinearity (R2 >−0.9)
between latitude and DHW precluded their joint inclusion
in subsequent models, and consequently latitude was selected
because of its complete reef-specific dataset (DHW data limited
to n = 55 sites). Multi-collinearity was also then tested using
the generalised variance inflation factor (GVIF) function (car
package−Fox and Weisberg, 2019) where values >3 suggest
collinearity; as a result longitude was excluded from all models
and the joint inclusion of browsers and scrapers was prohibited
(i.e., individual best-fit models -see “Statistical Models” section-
were constrained to contain only one or the other).

Statistical Models
All statistical analyses were performed in R version 3.6.1
(R Development Core Team, 2019). Differences in benthic
community structure between reefs exposed to low versus
high local human impact level were tested using t-tests with
appropriate variance structures depending on homogeneity
of variance test outcomes. Due to surveyor discrepancies in
recording turf algal cover, we created a random effect (bias_score)
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TABLE 2 | Predictor descriptions and ranges at outer reefs.

Predictor Description Range

reef deptha,b mean depth (m) of transects 3.9–10.5

degree heating weeks
(DHW)

measure of cumulative thermal stress–sum of previous 12 weeks where thermal stress anomaly ≥1◦C; value
averaged over 12 years preceding survey; negatively collinear (R2 = −0.9) with latitude;
only available for n = 55 sites

0.6–3.5

latitudea,b degrees (◦) distance from equator (absolute value). Negatively collinear (R2 = −0.9) with DHW 0.0–23.9

longitude degrees (◦) longitude on continuous scale (i.e., −175 counted as 185), included to account for distance from the
Coral Triangle biodiversity hotspot

134.3–214.2
(i.e., −145.8)

storm exposurea,b total number of storms (cat. 1 to 5 on the Saffir-Simpson Hurricane Scale) passing within 50 km of site within
previous 12 years

0–14

reliefa,b 3 classifications: 1 = atoll; 2 = low-lying island; 3 = high island

browser biomassb biomass (g m−2) of browsers 0.1–58.5

detritivore biomassb biomass (g m−2) of detritivores 0.5–62.8

excavator biomassb biomass (g m−2) of large excavators and bioeroders 0.0–369.1

grazer biomassb biomass (g m−2) of grazers 1.1–161.0

scraper biomassb biomass (g m−2) of scrapers and small excavators 1.9–134.3

relative human density number of people within communities of the primary/customary resource users (living adjacent to/accessing
fishing grounds within the reef area) related to total reef area (people km−2 reef), positively collinear (R2 = 0.7) with
relative fishing pressure. Used to determine local human impact level

1.3–1705

relative fishing pressure annual reef finfish catch (tonnes) km−2 reef year−1; positively collinear (R2 = 0.8) with relative human density 0.1–78.2

market gravityb index that combines human population size and reef accessibility 0–1140

apredictor incorporated in spatio-physical models. bpredictor used in model selection procedures. For sources of data, see main text.

to be incorporated within turf algae models (see Supplementary
Figure 3 for details). No surveyor-related discrepancies were
evident for other benthic groups (see Supplementary Figure 3).
To test how turf algal cover differed across the two local
human impact levels we thus used a linear mixed effects model
incorporating bias_score as a random effect. All hereon described
models were run separately for sites predetermined to be exposed
to either low or high local human impacts to explicitly test
for decoupling of abiotic and biotic predictors under different
disturbance regimes.

To test whether the level of local human impact influenced
the relationship between benthic community structure and
spatio-physical explanatory drivers, we developed a spatio-
physical model (i.e., focussing on spatial and physical predictors
only) that included storm exposure, reef depth, latitude, and
island relief. To account for non-linear relationships between
response variables and predictors, we applied generalised additive
mixed effects models (GAMM) using the gamm4 (Wood and
Scheipl, 2014) and lme4 packages. To account for possible
spatial autocorrelation, ten unique island clusters (cluster) were
identified and incorporated into models as a random effect (for
details see Supplementary Figure 4). For turf algae models,
bias_score was additionally included as a random effect. To avoid
overfitting, the number of knots within models was limited to
four. We retained the adjusted-R2 (Adj-R2) values from the
model output to quantify each model’s explanatory power. Adj-
R2 values for each response variable were then compared (by
paired t-tests) to test overall differences in model performance
in explaining benthic community structure under the two local
human impact levels.

Lastly, to examine the relative roles of ten biophysical
parameters as predictors of benthic community structure under

low versus high local human impacts, we applied model selection
techniques using the MuMIn package (Barton, 2016). From
an initial model containing ten biophysical predictors (i.e.,
those included in the spatio-physical model as well as biomass
of herbivorous fish functional groups, and market gravity–see
Table 2), the dredge function was used to run all possible
predictor combinations and rank models from best to worst
based on Akaike weight. The function also returns a value
between 0 and 1 for each predictor that reflects its relative
importance (RI), representing the total Akaike weight of all
models containing that predictor (i.e., higher values correspond
to greater RI). Output models were restricted to comprising a
maximum of four predictors. One sample (Niue) was removed
from the model selection procedure due to a lack of data for
market gravity (i.e., n = 61). Model selection was run separately
for sites with low and high levels of local human impact, and
all models incorporated the uGamm wrapper function to allow
the inclusion of random effects consistent with spatio-physical
model constructions. To assess incongruities between benthic
communities exposed to different local human impact levels, we
retained the best-fit model structures (i.e., all predictors included
in models with Akaike weight >0.05) for each benthic response
variable, as well as the RI of individual predictors.

Assumptions and Sensitivity Tests
All response variables were logit-transformed (appropriate for
percentage data−Warton and Hui, 2011) using the car package,
following adjustment using each respective variable’s minimum
value >0. All model predictors were standardised (z-scores) to
allow comparisons between predictors with largely varying effect
sizes and numeric values (Zuur et al., 2009). Model residuals
were checked for the violation of model assumptions using the
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gam.check function (see Supplementary Figure 5). As part of
a sensitivity analysis, spatio-physical models were additionally
run using ±5 and ±10 humans km−2 reef as a threshold
from which to categorise “low” and “high” impact sites, with
consistent outcomes observed (see Supplementary Table 3).
Furthermore, we repeated the same for a range of thresholds
based on human density relative to outer reef area (as opposed
to full reef area), again with consistent outcomes observed (see
Supplementary Table 4).

RESULTS

Benthic Assemblages Under Contrasting
Local Human Impacts
Benthic communities subject to high local human impact were
associated with lower live hard coral cover (−9.2% mean absolute
coverage; t-test: p = 0.002; Figure 1A). However, the relative
contribution of different coral morphologies within the live hard
coral community did not differ significantly with local human
impact level (Figure 1B). The only algal group that differed
significantly depending on the local impact level was turf algae,
which was higher under high local human impact (+10.7%
mean absolute coverage; linear mixed effects model: p = 0.015;
Figure 1C).

Predictive Strength of Spatio-Physical
Model
The pre-defined spatio-physical model exhibited relatively high
power in explaining benthic assemblage variance at sites with
low local human impacts (mean Adj-R2

± SE; 0.35 ± 0.09;
Figure 2), but model performance was severely compromised
when local human impacts were high (0.10 ± 0.04; paired
t-test: p = 0.01). When considering only the substrate types and
dominant morphological groups (i.e., without the algal groups)
the mean adjusted-R2 for sites with low local human impacts
increases to 0.44 ± 0.06 but stays unchanged at sites with high
local human impacts. When local human impacts were low,
spatio-physical predictors explained a high proportion of the
variance of live hard coral (Adj-R2 = 0.52) and macroalgae (Adj-
R2 = 0.59) cover, and the relative contribution of branching
(Adj-R2 = 0.64) and massive (Adj-R2 = 0.50) coral morphologies.
Conversely, these variables were consistently poorly explained
when local human impacts were high (Adj-R2 = 0.00, 0.26,
0.17, 0.10, respectively). No variance in turf algae was explained
by this model for reefs at either local human impact level.
Significant differences in the power of the spatio-physical model
in explaining benthic assemblage variance between “low” and
“high” impact sites held constant when the threshold was moved
±5 and 10 humans km−2 reef (i.e., paired t-test: p < 0.05;
Supplementary Table 3).

Relative Importance of Predictors
Best-fit models tailored for each individual benthic variable
comprised distinctly different predictors depending on the level
of local human impact (Figure 3A). Two of the predictors

where discrepancies were most apparent were storm exposure
and grazer biomass, which were only selected for best-fit
models at sites with low and high local human impacts,
respectively. Similarly, reef depth was selected as part of best-fit
models for more response variables (live hard coral, branching
morphologies, and macroalgae) at sites with low local human
impacts. Further discrepancies under the two levels of local
human impact were revealed by comparing the mean RI of each
predictor (Figures 3B,C), as the RI trends for predictors almost
reversed between low versus high local human impact sites. At
sites with low local human impacts, the individual predictors with
the highest RI in explaining benthic communities were storm
exposure, scraper biomass, and island relief, followed by reef
depth (Figure 3B). Contrastingly, apart from island relief which
was on average the most important predictor, storm exposure,
scraper biomass, and reef depth were among the least important
predictors when local human impact was high (Figure 3C).
For benthic communities exposed to high local human impact,
biomass of grazers, detritivores, and browsers, as well as market
gravity, ranked as the most important predictors of benthic
community structure.

Individual relationships of best-fit predictors for each
response variable further emphasised discrepancies between
benthic communities and environmental predictors driven by
local human impacts (for all plots see Supplementary Figure 6).
A clear example of this discrepancy can be seen in coral
compositional changes with increasing storm exposure. Whilst
live hard coral cover remained unrelated to storm exposure under
both local human impact levels (Figure 4A), the morphological
composition was closely correlated with storm exposure at
sites where local human impacts were low (Figures 4B–
D). Specifically, with increasing storm exposure, the relative
proportion of branching morphologies decreased significantly
(Figure 4B), whereas encrusting (Figure 4C) and massive
(Figure 4D) morphologies increased. No morphological changes
with storm exposure were observed at sites with high local human
impacts. Though these relationships appear primarily driven by
few points at the higher end of storm exposure, they remained
consistent when all reefs exposed to >10 storms were removed
from the analysis–i.e., significant at “low” impact sites (branching
coral p = 0.02; encrusting coral p = 0.02; massive coral p = 0.03),
insignificant at “high” impact sites (all morphological growth
forms p > 0.05), and no relationship for either impact level for
total live hard coral cover (p > 0.05).

DISCUSSION

Under increasing climate change-associated stressors and local
anthropogenic influence (Burke et al., 2011; Gattuso et al.,
2015; IPCC, 2019), it is particularly important for researchers
and planners to maximise the ability of models to predict
ecosystem futures to allow appropriate mitigation strategies to be
implemented. This study indicates that the role of local human
impacts in changing coral reef ecological communities and
their responses to environmental drivers should be accounted
for. The results revealed that local human impacts influenced
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FIGURE 1 | Boxplots detailing (A) benthic cover (%) of substrate types (from left to right; live hard coral, dead hard coral), (B) the relative proportion (%) of the three
most dominant morphologies in the live hard coral community (branching, encrusting, massive), and (C) benthic cover (%) of different algal groups (CCA,
macroalgae, turf algae), at sites determined to have low or high local impacts. *Indicate significant differences (p < 0.05) in cover of the respective benthic variable
between local impact levels according to two-sample t-tests, or for turf algae according to linear mixed effect models incorporating bias_score as a random effect
(see section “Model Predictors”).

both benthic community structure and relationships with
biophysical predictors. Specifically, models based on spatio-
physical predictors (i.e., reef depth, latitude, storm exposure, and
relief) exhibited high power at explaining benthic assemblages
under low local human impacts but were strongly compromised
where local human impacts were high. Importantly, these
outcomes remained similar when our threshold for human
impacts, informed by previous work, was reduced or increased
in the frame of a sensitivity analysis. Increasing sewage
input, agricultural run-off, and sedimentation are potential
changes associated with increasing human densities that reduce
water quality and affect benthic communities (Fabricius, 2005;
Fabricius et al., 2005; Ford et al., 2017). Furthermore, as
fishing removes biomass of functionally important fish species,

important top-down control of some benthic organisms is
lost (Bellwood et al., 2004). These localised human impacts
may homogenise benthic communities by driving ecological
reorganisation that favours tolerant taxa (Darling et al., 2019).
Our results indicate that this homogenisation may be occurring
at Pacific Island reefs that are exposed to local human impacts,
leading to novel systems that react fundamentally differently and
unpredictably to environmental predictors compared to reefs
less influenced by humans (Williams G.J. et al., 2015). In turn,
we expect that local human impacts will influence responses of
coral reefs to climate change-related stressors, and that reefs close
to human populations will require context-specific management
approaches to maximise their future sustainability and associated
critical ecosystem services (Moberg and Folke, 1999).
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FIGURE 2 | Explanatory power (Adj-R2) of the spatio-physical model
(including the predictors storm exposure, reef depth, latitude, and island relief)
in predicting individual benthic responses (live hard coral, dead hard coral, the
proportion of branching, encrusting, and massive morphologies, and cover of
algal groups CCA, macroalgae, and turf algae). Bars are absent where the
Adj-R2 value = 0.

The results emphasise the variation in benthic assemblages
that exists among Pacific Island reefs exposed to different levels of
local human impact. Benthic communities were not restricted to
distinct regimes dominated by either hard corals or macroalgae,
supporting previous studies from the Pacific (Bruno et al., 2009;
Albert et al., 2012; Jouffray et al., 2015, 2019; Smith et al.,
2016). In fact, macroalgae was the least common of all the
algal groups, with turf algae and CCA more prominent on
these outer reefs. Reefs at sites with higher local human impacts
comprised significantly more turf algae and less live hard coral.
Abundant and diverse outer reef coral communities (e.g., Ellis
et al., 2017) have likely retained sensitive species, facilitating
measurable differences (i.e., reductions in live hard coral cover)
under higher local human impacts. Higher turf algae coverage at
sites with more local human impacts provides further evidence
that turf algae may become the dominant benthic group on
degraded Pacific Island reefs (Jouffray et al., 2015; Smith et al.,

2016; Tebbett and Bellwood, 2019). This may contrast with coral
reef systems in the Caribbean, where macroalgae naturally play
a more dominant role (Roff and Mumby, 2012). Furthermore, a
signal of local human impact may have been detected if the data
had distinguished macroalgae into fleshy/frondose and calcified
types (e.g., Smith et al., 2016; Cannon et al., 2019). A similar link
between human population size, hard coral cover, and turf algae
has also recently been reported from sites in the Indian Ocean
(Brown et al., 2017).

The spatio-physical models were weak in explaining the
variance of benthic communities exposed to relatively more
local human impacts. At these sites, model selection identified
mostly local biotic controls or ecological features such as fish
biomass and market gravity to be of highest RI. These results
suggest that reefs altered by chronic local human impacts become
decoupled from spatio-physical factors (Williams G.J. et al., 2015)
and become more related to factors associated with human
activities (e.g., market gravity) or local ecological features (e.g.,
biomass of functional groups of fish). Interestingly, this outcome
contrasts to recent findings by Robinson et al. (2018) who did
not detect decoupling at inhabited versus uninhabited reefs. Our
different outcomes for decoupling could in part be explained
by Robinson et al. (2018) combining (i) hard corals and CCA,
and (ii) fleshy macroalgae and turf algae, each of which we
found to exhibit different responses to local impacts (i.e., with
higher local impacts hard coral cover decreased whereas CCA
remained unchanged, turf algae increased whereas macroalgae
remained unchanged). Model selection indicated that the specific
spatio-physical predictors whose influence was most disrupted
by local human impacts were storm exposure and reef depth.
Storms can have mixed effects, benefitting reefs by alleviating
thermal stress during warmer summer months but also causing
physical destruction, particularly to delicate branching coral
morphologies, leading to a higher proportion of more robust
massive morphologies (Heron et al., 2005; Manzello et al.,
2007). Accordingly, when local human impacts were low, coral
communities comprised relatively less branching and more
encrusting and massive morphologies at sites subject to more
frequent storms. However, relationships between storm exposure
and benthic assemblages were only observed at sites classified as
having low local human impacts. Returning to the concept that
local human impacts drive ecological reorganisation, we would
expect reefs with less local human impacts to harbour a great
diversity of species and morphologies, thus allowing for greater
levels of ecological reorganisation in response to a stormier
environment (i.e., favouring more robust morphologies). We
anticipate that Pacific reefs would more likely display this
phenomenon than Caribbean reefs due to a significantly larger
initial species pool, with greater response diversity and functional
redundancy affording a higher level of ecological insurance
(Elmqvist et al., 2003; Bellwood et al., 2004; Nyström, 2006), and
a loss of structurally complex coral species throughout most of
the Caribbean over past decades (Alvarez-Filip et al., 2009). It
would be interesting to test whether storm exposure results in
more conspicuous negative impacts on coral cover (e.g., Gardner
et al., 2005) in less diverse regions due to the limited capacity
for ecological reorganisation to a tolerant community, even in
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FIGURE 3 | (A) Outcome of model selection procedures: coloured boxes indicate that the predictor was selected for best-fit models (i.e., those with Akaike weight
>0.05) at sites subject to low and/or high levels of local impacts. The overall mean relative importance of each predictor (RI–based on total Akaike weight of all
models including that predictor) in explaining the benthic response variables is shown separately for sites subject to (B) low and (C) high local impacts. Note: though
model selection was limited to four predictors per model, all predictors included in models with Akaike weight >0.05 are shown meaning there may be more than
four predictors shown within one impact level for a response variable. Model outputs for best-fit models are available in Supplementary Table 5.

sites with minimal local human impact. In terms of reef depth,
benthic communities at sites with low local human impacts
also exhibited a higher level of depth-structuring (particularly in
terms of coral cover and composition, consistent with Huston,
1985) compared to those with high local human impacts. Island
relief was also identified as being a strong predictor of benthic
community structure (despite being found to be a weak predictor
on central-western Pacific reefs − Robinson et al., 2018), and
interestingly this role was maintained regardless of local human
impact level. Importantly, when considering latitude–collinear
with DHW/cumulative thermal stress–as an individual predictor,
our results neither contradict nor confirm previous observations
that local impacts exacerbate the sensitivity of coral communities
to thermal stress (Wiedenmann et al., 2013; Ellis et al., 2019),
instead highlighting a large variance among sites.

Thermal stress and the intensity of storms are projected to
increase under future climate change scenarios (IPCC, 2019),
with profound implications for coral reefs and adjacent
ecosystems. Our findings suggest that while the effects of
factors associated with climate change (e.g., storm exposure)
on Pacific reef benthic assemblages may be reasonably well-
predicted where local impacts are low, system responses become
less predictable as local human impacts increase. In both marine
and terrestrial systems, structural changes caused by local impacts

have profoundly changed how ecosystems respond to natural
stressors: for example, local stressors have affected how parts
of Australia’s Great Barrier Reef have recovered from recent
climate change impacts (MacNeil et al., 2019; Mellin et al., 2019)
and habitat fragmentation and modification have exacerbated
recent impacts of tropical and temperate forest fires (Brando
et al., 2014; Alencar et al., 2015; Taylor et al., 2016). Because
the effects of storms are strongly dependent not only on their
intensity, but also the extent of the fetch, their frequency, and
intrinsic reef properties such as topography (Lugo et al., 2000;
Heron et al., 2005), this study incorporated all recorded storms
(category 1–5 on the Saffir-Simpson Hurricane Scale) passing
within 50 km of each site. We thus cannot deduce benthic
community responses to increasing storm intensity, which is
projected to occur (IPCC, 2019).

Functional groups of herbivorous fishes also emerged to be
of contrasting RI depending on the level of local human impact,
shifting from scrapers and small excavators at less impacted reefs
to grazers at more impacted reefs. Browsers were of similar
importance at reefs exposed to both local human impact levels,
perhaps linked to the fact that their food source (macroalgae)
remained constant regardless of local human impact level.
Additional reasons for this could be that browsers have remained
more resilient to fishing pressure than other herbivores, or
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FIGURE 4 | Smoother plots of normalised residuals from generalised additive models with 95% confidence intervals (shaded areas) to exemplify discrepancies in
response-predictor relationships between local impact levels, using storm exposure as an example. The plots represent the explanatory power of storm exposure in
predicting (A) live hard coral cover, and the proportion of (B) branching, (C) encrusting, and (D) massive morphologies, separated for sites with low versus high local
impacts. Refer to Supplementary Figure 6 for all predictor-response plots from best-fit models.

that visual survey data does not accurately represent browser
populations (for example some browser species are known to
be particularly wary of divers–Kulbicki, 1998). Fish that act on
turf algae and/or on surfaces available for coral settlement seem
to be more sensitive to local human impacts, likely in response
to benthic community shifts. Scrapers and small excavators
clear substrate for calcifiers, justifying their higher RI in models
focussed on less locally impacted reefs where live hard coral
cover was higher and conditions for settlement and growth

of juvenile corals were likely better (e.g., less nutrients, lower
sedimentation). Contrastingly, grazers crop and maintain algal
turfs, explaining their importance under higher local human
impacts where turf algae were more dominant. These results
align with findings in the Hawaiian Archipelago, where biomass
of grazers and scrapers were the most important predictors
of turf/macroalgal, and calcified regimes, respectively (Jouffray
et al., 2015; see also Robinson et al., 2018). Though collinearity
tests ruled out significant, potentially confounding relationships
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between biomass of different functional groups with individual
abiotic predictors, it is important to acknowledge that fish
communities themselves can be affected by various physical
predictors (Williams I.D. et al., 2015; Samoilys et al., 2019), which
could in turn influence benthic structure.

Other factors not included in these analyses are known
to structure benthic assemblages, including chlorophyll, SSTs,
and wave exposure (Gove et al., 2013, 2015; Williams et al.,
2013; Robinson et al., 2018; Darling et al., 2019). Remotely
sensed chlorophyll data captures offshore productivity, but we
expected land-based input to dominate many of these reefs
which are close to land, while the survey design (sometimes
around the periphery of small islands/atolls) made wave exposure
challenging to quantify. Additionally, wave exposure, mean
SSTs, and climatological ranges can be relatively well-captured
by latitude in the Pacific (Gove et al., 2013). Also, although
this study goes into more detail than many similar large-scale
analyses by evaluating coral growth forms, it is still limited in its
ability to quantify ecological reorganisation, which would require
higher resolution data (at least family or genus). This limitation
can be overcome by broad-scale surveys refining the level at
which hard coral communities are recorded, which will become
easier with improvements in automated software tools. These
results do however emphasise that even broad morphological
groupings (i.e., branching, massive, encrusting morphologies)
provide pertinent information on ecological changes and can
improve model performance compared to when overall hard
coral cover is considered (Gove et al., 2015).

Importantly, the threshold used in this study for determining
low and high human impact, while informed by a previous
study, was set a priori and thus does not allow defining a
“carrying capacity” of human density–this would require a
different survey design and analytical approach, and should
be pursued in future studies. We would however suggest
that although this metric is most applicable to areas where
customary resource use is common practice, we anticipate that
this threshold (25 humans km−2 reef) is highly relevant across
the tropical Pacific (i.e., given that it is a median point in this
dataset for which sites were selected due to being regionally
representative of fished areas). Furthermore, the study design
was not originally meant to address macroecological questions
but was nonetheless the best available to study the questions we
were interested in (with incorporation of appropriate secondary
data on local environmental context). Again, future studies
should address this by appropriate designs that allow for
large-scale comparability and collect both ecological and socio-
economic local data. Our findings indicate that island relief is a
factor that should be considered in designing regional sampling
programmes with comparable sites. Finally, we should aim to
obtain context-specific information on factors associated with
human population density (e.g., sewage treatment presence,
farming and associated fertiliser-usage) that strengthens our
ability to predict benthic communities under various levels of
human population density and improve its use as a proxy of
local human impact.

Our findings contribute to a better understanding of the
role of local human impacts on highly diverse ecosystems such

as tropical coral reefs. The results provide empirical evidence
that local human impacts drive conspicuous changes in benthic
community relationships with environmental predictors, with
indications of ecological reorganisation. Even if decisive steps
are taken to reduce fossil fuel emissions, most reefs will suffer
long-term degradation from the effects of climate change by
2050, and >75% of reefs will experience annual severe bleaching
(Frieler et al., 2013; van Hooidonk et al., 2016). Our results show
that local human impacts can lead to increasingly unpredictable
relationships between benthic communities and their physical
environment, and that overlooking their role could pave the
way to significant errors in future projections, potentially
compromising mitigation efforts.
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