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Based on the 2019 assessment of the Global Carbon Project, the ocean took up on

average, 2.5 ± 0.6 PgC yr−1 or 23 ± 5% of the total anthropogenic CO2 emissions

over the decade 2009–2018. This sink estimate is based on simulation results from

global ocean biogeochemical models (GOBMs) and is compared to data-products based

on observations of surface ocean pCO2 (partial pressure of CO2) accounting for the

outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing

the simulated surface ocean pCO2 to observations. Based on this comparison, the

simulations are well-suited for quantifying the global ocean carbon sink on the time-scale

of the annual mean and its multi-decadal trend (RMSE <20 µatm), as well as on the

time-scale of multi-year variability (RMSE <10 µatm), despite the large model-data

mismatch on the seasonal time-scale (RMSE of 20–80 µatm). Biases in GOBMs have a

small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to

improve the regional budgets and model-data comparison. Accounting for non-mapped

areas in the data-products reduces their spread as measured by the standard deviation

by a third. There is growing evidence and consistency among methods with regard to the

patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in

the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products

point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On

average, the GOBMs reveal less variations in the sink than the data-based products.

Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are

discrepancies between the resulting sink estimate from GOBMs and data-products.

These discrepancies are within the uncertainty of the river flux adjustment, increase

over time, and largely stem from the Southern Ocean. Progress in our understanding
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of the global ocean carbon sink necessitates significant advancement in modeling and

observing the Southern Ocean carbon sink including (i) a game-changing increase

in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river

flux adjustment.

Keywords: ocean carbon uptake, anthropogenic CO2, ocean carbon cycle model evaluation, riverine carbon flux,

variability of the ocean carbon sink, seasonal cycle

1. INTRODUCTION

The Global Carbon Project provides annual budgets of the
anthropogenic perturbations to the global carbon cycle. It
assesses CO2 emissions from burning of fossil fuels, cement
production and land-use change as well as the evolution of
the ocean and land carbon sinks, and of the atmospheric
CO2 inventory. The Global Carbon Project has published
annual updates of the Global Carbon Budget (GCB) since 2007
(Canadell et al., 2007; Le Quéré et al., 2009) with more detailed
documentations since 2013 (e.g., Le Quéré et al., 2013, 2014;
Friedlingstein et al., 2019).

Fossil fuel CO2 emissions reached 10.0 PgC yr−1 in 2018, but
the fraction of the CO2 remaining in the atmosphere has been
remarkably stable at 45% on average since 1958. Land and ocean
have sequestered 29 ± 5 and 23 ± 5%, respectively, of total fossil
and land-use change emissions over the last decade, 2009–2018
(Friedlingstein et al., 2019). The ocean figures prominently in the
Global Carbon Budget by having sequestered 25% of cumulative
CO2 emissions since 1850. Over the same period, the land has
sequestered 30% of cumulative emissions, but has also released
a comparable amount of CO2 by land-use change emissions
(Friedlingstein et al., 2019).

The ocean carbon sink (SOCEAN) has been estimated from
global ocean biogeochemical models (GOBMs) since the start of
the GCB activity. Initially, the land sink was calculated from the
balance of the CO2 emissions, the increase in the atmospheric
inventory and the flux into the ocean (Le Quéré et al., 2013). Due
to the decisive role of the ocean sink estimate for the calculated
land sink, the ocean models were scaled to the mean ocean
anthropogenic carbon sink for the 1990s of 2.2 ± 0.4 PgC yr−1

as estimated by the IPCC based on three selected methods after
examination of seven independent observational-based methods
(Denman et al., 2007). Hence, the GOBMs were only used
to estimate the year-to-year change around the mean 1990s
anthropogenic carbon sink. Since 2017, the land sink is estimated
independently, based on Dynamic Global Vegetation Models
(DGVMs), and the GOBMs are not scaled anymore to the 1990s
sink (Le Quéré et al., 2018b). This change in methodology has
reduced the ocean carbon sink estimate in the GCB by roughly
0.2 PgC yr−1 and the independence of land and ocean sink
estimates allowed for the introduction of the budget imbalance
(BIM) in the Global Carbon Budget. The BIM quantifies the gap
between the best estimates of emissions and sinks, and hence
reflects limitations in our understanding of the global carbon
cycle. The BIM is 0.4 PgC yr−1 or 4% of CO2 emissions for
the decade 2009–2018 and could either be due to overestimated

emissions or underestimated sinks. The uncertainties in the sinks
(land and/or ocean) are more likely to play an important role for
the BIM given that it has the same magnitude now as in the 1960s,
when the emissions were a lot smaller.

The estimate of the mean SOCEAN and its year-to-year
variability is discussed in comparison with ocean carbon sink
estimates from data-based pCO2 mapping methods, which
are referred to as pCO2-based data-products in the GCB or
data-products in short. The mapping methods use statistical
interpolation or neural network regression to map the global
sea-surface pCO2 field based on pCO2 measurements from the
Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016) and
other environmental data-sets (Rödenbeck et al., 2015). Despite
SOCATv2019 containingmore than 25million observations, they
cover only a tiny fraction of the spatio-temporal pCO2 field (on
the order of 2% of the monthly 1 × 1◦ pixels in 1982–2018). The
spatial and temporal autocorrelation of the pCO2 field around
the data locations, with a global median spatial autocorrelation
length of 400 ± 250 km (Jones et al., 2012), suggests that the
observations also include information about a larger region than
the actual sampling site and hence the implicitly observed ocean
area is substantially larger than 2%. Nevertheless, the sparsity
of the observations and their highly uneven coverage in space
and time remain a major challenge. In order to upscale these
scarce observations to a globally gridded product, the mapping
methods make use of a range of assumptions and input data sets
(Rödenbeck et al., 2015).

GOBMs andmappingmethods approach the estimation of the
ocean carbon sink from opposite sides. The GOBMs simulate the
carbon transport with large-scale ocean circulation and resolve
carbon source and sink processes on large spatial and temporal
scales. The GOBMs thereby constrain the air-sea CO2 flux by
the transport of carbon into the ocean interior, which is also
the controlling factor of ocean carbon uptake in the real world.
When carbon is transported from the surface mixed layer into
the ocean interior, more CO2 can be taken up at the surface.
The air-sea CO2 flux in GOBMs therefore depends strongly
on the simulated large-scale ocean circulation. In contrast,
the data-products are based on statistical tools to map scarce
pCO2 observations and derive the ocean sink with the use of
gas-exchange parameterizations. They are more closely linked
to observations, but their estimated air-sea CO2 flux depends
strongly on uncertainties in the gas-exchange parameterization
(e.g., Wanninkhof, 2014; Woolf et al., 2019) and gridded wind
products, and there is no constraint from the ocean interior
perspective. Ocean inversion and data-assimilated models that
combine the process understanding of the GOBMs and are tied
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to observations are becoming available, but are so far limited to
estimating the (decadal) mean ocean sink, annual estimates for
the last 10 years, and/or regional estimates (e.g., Mikaloff Fletcher
et al., 2006; Verdy and Mazloff, 2017; DeVries et al., 2019).

As the estimates of SOCEAN are not tied to an observational
estimate any more since the GCB 2017, an accurate simulation
of the mean ocean carbon sink by the models has become more
important. Model evaluation was introduced in 2018 (Le Quéré
et al., 2018a, Figure B1) as a single mismatch metric between
surface ocean pCO2 (partial pressure of CO2) observations from
the Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016).
A thorough documentation of the strengths and weaknesses
of the CO2 source and sink characteristics modeled by the
GOBMs used in the GCB has been lacking thus far. In this
study, we aim to assess the performance and spread of the
GOBMs with respect to simulations of surface pCO2 and air-
sea CO2 exchange, on different time-scales (preindustrial mean;
historical: monthly, annual including the trend, and multi-
year variability), document the effects of recent changes in
methodology in the GCB 2019 ocean carbon sink estimate, and
highlight consistencies and challenges across GOBMs and data-
based pCO2 mapping methods.

2. METHODS

2.1. Definition of Air-Sea CO2 Fluxes
The contemporary air-sea CO2 flux (Fnet) can be decomposed
into multiple terms:

Fnet = Fant,ss + Fant,ns + Fnat,ss + Fnat,ns + Friv,ss + Friv,ns (1)

where the subscript ant denotes anthropogenic, nat natural,
riv rivers, ss steady state, and ns denotes non-steady state.
Anthropogenic refers to the direct effect of atmospheric CO2

increase only. The annotation steady state stands for fluxes in a
constant or preindustrial climate and non-steady state for climate
change and natural climate variability effects on the respective
flux. Based on the assumption that ocean and atmosphere were
in equilibrium in preindustrial times, the global total of Fnat,ss is
supposed to be zero, although regional fluxes are different from
zero. The steady-state preindustrial state, i.e., the sum of Fnat,ss
and Friv,ss, is characterized by net outgassing of CO2.

The ocean sink SOCEAN as defined in the GCB accounts for a
subset of terms in Fnet. This is motivated to capture those terms
directly influenced by anthropogenic perturbations, including
climate change, but also comprises climate variability:

SOCEAN = Fant,ss + Fant,ns + Fnat,ns (2)

with Fant,ss being the flux in response to the atmospheric CO2

increase only, Fant,ns the effect of climate change and variability
on Fant,ss, and Fnat,ns being the effect of climate change and
variability on the natural CO2 flux. Note that this definition
of the ocean carbon sink SOCEAN in the GCB is different from
the definition of the “anthropogenic CO2 sink” referred to as
the change in ocean carbon content only due to the direct
effect of increasing CO2 concentration in the atmosphere (Fant,ss

+ Fant,ns), often used in the observational ocean carbon cycle
community (e.g., Gruber et al., 2019).

The steady-state river flux, Friv,ss, i.e., the ocean outgassing
due to carbon transport from land to sea, is estimated to be
between 0.45 ± 0.18 PgC yr−1 (Jacobson et al., 2007) and 0.78
± 0.41 PgC yr−1 (Resplandy et al., 2018). The steady-state
outgassing of riverine carbon reflects the balance between the
input into the ocean of inorganic and organic carbon by rivers
and the burial of inorganic and organic carbon in the oceanic
sediments (Sarmiento and Sundquist, 1992). Riverine carbon
is transported to the open ocean in the form of particulate
or dissolved organic carbon and subsequently remineralized to
inorganic carbon, which can be exchanged with the atmosphere.
In the pre-industrial state, the riverine outgassing is considered
to occur in the open ocean with the coastal ocean being neither a
source nor a sink for CO2 (Regnier et al., 2013). We thus consider
that the underrepresentation of coastal data points in SOCAT and
hence in the data-based products does not justify omitting the
river flux adjustment.

The non-steady state river flux component, Friv,ns,
consists of anthropogenic perturbations of river fluxes and
natural variability. These non-steady state components
should conceptually be included in the GCB, but are not
accounted for due to a lack of annually resolved and regularly
updated estimates. The organic carbon export from terrestrial
ecosystems into aquatic systems has increased by 1.0 ±

0.5 PgC yr−1 since pre-industrial times (Regnier et al., 2013).
This exported carbon is partly respired in the land-ocean aquatic
continuum (freshwaters, estuaries, coastal areas), partly buried
in sediments, and to a smaller extent transferred to the open
ocean (Regnier et al., 2013).

2.2. Global Ocean Biogeochemistry Models
Contributing to the Global Carbon Budget
The Global Ocean Biogeochemical Models used in the GCB
are general ocean circulation models with coupled ocean
biogeochemistry. The nine contributing models in GCB2019
are NEMO-PlankTOM5 (Buitenhuis et al., 2013), MICOM-
HAMOCC (NorESM-OC, Schwinger et al., 2016), MPIOM-
HAMOCC6 (Paulsen et al., 2017), NEMO3.6-PISCESv2-gas
(CNRM, Berthet et al., 2019), CSIRO (Law et al., 2017),MITgcm-
REcoM2 (Hauck et al., 2018), MOM6-COBALT (Princeton,
Adcroft et al., 2019), CESM-ETHZ (Doney et al., 2009), and
NEMO-PISCES (IPSL, Aumont et al., 2015). A detailed overview
table of model spin-up, initial conditions and forcing can be
found as Table A2 in Friedlingstein et al. (2019). Here, we only
summarize the main features. The GOBMs use a fixed resolution
in longitude of between 0.5 and 2◦ and eight out of the nine
models use a varying resolution in latitude between 0.17 and
2◦ (see Table A2 in Friedlingstein et al., 2019). The number of
depth levels varies between 30 and 75. The models are spun-
up with varying spin-up procedures for a period ranging from
28 to 1,000 years. All models except for MPI initialize from
alkalinity and pre-industrial dissolved inorganic carbon (DIC)
fields from either GLODAPv1 (Key et al., 2004) or GLODAPv2
(Lauvset et al., 2016). MPI initializes from a uniform distribution
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followed by a long spin-up (several 1,000 years). The time-
step of the models varies between 15 and 96 min and CO2

flux and surface pCO2 are saved with a monthly frequency
(Supplementary Table 2).

Here, we add FESOM-REcoM to this suite of GOBMs, which
will replace MITgcm-REcoM in future releases of the GCB. It
consists of the biogeochemical model REcoM2 (Hauck et al.,
2013, 2018; Schourup-Kristensen et al., 2014) coupled to the finite
element ocean circulation model FESOM-1.4 (Wang et al., 2014).
The model previously described by Schourup-Kristensen et al.
(2014, 2018) has been updated to use the mocsy2.0 routines for
carbonate chemistry including water vapor correction (Orr and
Epitalon, 2015), the photodamage parameterization by Álvarez
et al. (2018), and the dust fields from Albani et al. (2014) as
surface forcing for iron. River fluxes of carbon and nutrients
are switched off to comply with the GCB protocol. The multi-
resolution mesh configuration is based on a coarse mesh with
a global nominal resolution of 1◦, which is increased to about
25 km north of 50◦N and to about 1/3◦ in the equatorial belt,
and is also moderately refined along the coasts (REF mesh in
Sidorenko et al., 2015; Rackow et al., 2018). The simulation
shown here is the second cycle of JRA-55-do forcing 1958–
2017. Alkalinity and preindustrial DIC are initialized from
GLODAPv2 (Lauvset et al., 2016). In the following, we include
FESOM-REcoM in all analyses, and give total budget numbers
with and without FESOM-REcoM to document the effects of
methodological changes on the GCB2019 ocean sink estimate
exactly as in Friedlingstein et al. (2019).

The GOBMs are forced with atmospheric reanalysis data sets
and observed atmospheric CO2 concentration. As the model
simulations are updated once a year for the latest calendar year,
only atmospheric reanalysis data sets that are regularly updated
within few months can be used. Five out of the ten models are
forced with either JRA-55 or JRA55-do (Kobayashi et al., 2015;
Tsujino et al., 2018, CSIRO, MITgcm-REcoM, FESOM-REcoM,
MOM6-COBALT, CESM-ETHZ, IPSL), two models are forced
with NCEP/NCAR-R1 (Kalnay et al., 1996, MPIOM-HAMOCC
and NEMO-PlankTOM5) and two models use NCEP/NCAR-
R1 with CORE-II corrections (CNRM and NorESM). CORE-II
(Yeager and Large, 2008) and ERA-20C (Poli et al., 2013) forcing
data sets are used for the spin-up by single groups.

The monthly atmospheric CO2 mixing ratio (xCO2, in ppm,
including the seasonal cycle) is an average of Mauna Loa and
South Pole stations for the 1958–1979 period and of multiple
stations with well-mixed background air thereafter (Ballantyne
et al., 2012; Dlugokencky and Tans, 2019). Data prior to
March 1958 are estimated with a cubic spline fit to ice core
data from Joos and Spahni (2008). As the seasonality in this
global time-series is dominated by the northern hemisphere
land, some modeling groups (CNRM, IPSL) derive an annual
mean xCO2 from the provided monthly fields to avoid an
out-of phase seasonal cycle in the southern hemisphere.
The provided atmospheric xCO2 is converted to pCO2 by
accounting for atmospheric sea-level pressure patm (CESM-
ETH, NEMO-PlankTOM5, MOM6-COBALT, IPSL, FESOM-
REcoM, CSIRO) or with a constant sea-level pressure (CNRM:
1,000 hPa, NorESM: 1013.25 hPa). Two models use xCO2

TABLE 1 | Specifications of Global Ocean Biogeochemical Models: River carbon

input, net burial and conversion from xCO2 (ppm) to pCO2 (µatm) using

atmospheric sea-level pressure patm and water vapor correction.

Model River C

(PgC yr−1)

Burial

(PgC yr−1)

patm Water vapor

correction

MITgcm-REcoM 0 0 No No

MPI 0 0 No No

CESM-ETH 0.33 0.25 Yes No

CNRM 0.61 0.94 Fixed at

1,000 hPa

Yes

CSIRO 0 0 Yes No

NorESM 0 0 Fixed at

1013.25 hPa

No

PlankTOM 0.72 0.72 Yes Yes

MOM6-COBALT 0.11 0.18 Yes Yes

IPSL 0.61 0.59 Yes Yes

FESOM-REcoM 0 0 Yes Yes

without conversion to pCO2 (MITgcm-REcoM, MPI, Table 1).
Five models (CNRM, NEMO-PlankTOM5, MOM6-COBALT,
IPSL, FESOM-REcoM) further take into account the water vapor
pressure (pH2O) correction as

pCO2 = xCO2 ·
(

patm − pH2O
)

(3)

The GOBMs do not consider river fluxes of carbon, alkalinity
and nutrients into the ocean in the versions used here (MITgcm-
REcoM, FESOM-REcoM, NorESM-OC, MPIOM-HAMOCC6,
CSIRO) or their river fluxes are approximately balanced by burial
in sediments (NEMO-PlankTOM5, IPSL, Princeton, CESM-
ETHZ). In this case, these river fluxes do not induce a river-
driven net sea-to-air CO2 flux. Only in CNRM is the burial
substantially larger than the lateral inflow of carbon into the
ocean (Table 1).

2.2.1. GOBM Simulations and Analysis
Two simulations are performed by each modeling group.
Simulation A is designed to reproduce the interannual variability
and trend in the ocean carbon uptake in response to changes
in both atmospheric CO2 and climate. Simulation A is forced
with interannual varying atmospheric forcing and increasing
atmospheric CO2. This is the contemporary CO2 flux simulation
and it includes the following terms:

FsimA = Fant,ss + Fant,ns + Fnat,ss + Fnat,ns + Fdrift+bias (4)

Simulation B is a control simulation with constant atmospheric
forcing (normal year or repeated year forcing) and constant
preindustrial atmospheric CO2 (modeling groups use either 278
or 284 ppm). It represents the natural steady-state flux plus any
flux due to bias and drift:

FsimB = Fnat,ss + Fdrift+bias (5)

All models except CNRM and IPSL use a climatology or single
year forcing for simulation B. Simulation B of CNRM is forced
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by cycling over the first 10 years of the NCEP/NCAR-R1
forcing. IPSL instead contributed a simulation with constant
atmospheric CO2 and interannual varying atmospheric forcing
that corresponds to Fnat,ss + Fnat,ns + Fdrift+bias.

In order to derive SOCEAN from the model simulations, we
subtract the annual time-series of simulation B from the annual
time-series of simulation A for all models that used single year
or climatological forcing for their simulation B. Assuming that
Fdrift+bias is the same in simulations A and B, we thereby correct
for any model drift. Further, this difference also removes the
Fnat,ss, which is often a major source of biases. Simulations B
of IPSL and CNRM have to be treated differently due to their
different protocols. For these models, we fit a linear trend to
the simulation B and subtract this linear trend from simulation
A. This approach assures that the interannual variability is not
removed from IPSL simulation A. It will also remove a potential
trend in Fnat,ns, which tends to be substantially smaller than the
trend in Fant,ss, but is still of potential interest in the context of
decadal variability in the ocean carbon sink.

Modeling groups submit global and regional annual time-
series of the ocean carbon sink integrated from their nativemodel
grids. This procedure avoids errors in the integrated carbon
sink due to interpolation. These data are used for all time-series
figures. Three regions are considered: north (>30◦N), tropics
(30◦S-30◦N) and south (<30◦S). Further, gridded fields of pCO2

and air-sea CO2 flux on a 1x1 degree grid are used for model
evaluation. The regional CO2 fluxes are not corrected for bias
and drift of the control simulation, as the assumption of zero
Fnat,ss only holds on the global level. The submitted time-series
and gridded fields for simulation A and B are published in the
data repository Pangaea (Hauck et al., 2020).

2.3. Data-Based pCO2 Mapping Methods
Three mapping methods are used here: the MPI-SOMFFN
(Landschützer et al., 2016), the Jena-MLS (Rödenbeck et al.,
2014), and the CMEMS (Denvil-Sommer et al., 2019) methods.
The products are regularly updated, now covering the period
1982–2018 (Jena-MLS, MPI-SOMFFN) or 1985-2018 (CMEMS).
All methods are based on SOCATv2019 surface ocean fugacity
of CO2 (pCO2 corrected for the non-ideal behavior of the
gas) as input data set, which is an update of SOCAT version
3 (Bakker et al., 2016). CMEMS used only two thirds of the
SOCATv2019 data for training the method and the rest for
validation.We refer to the resulting data sets as pCO2-based data-
products. From these gridded pCO2 products, the contributing
groups calculated the air-sea CO2 flux using their own methods,
and integrated their global and regional ocean carbon sink
estimates over their native grids to provide the resulting air-
sea CO2 flux time-series. MPI-SOMFFN and CMEMS use
the global monthly atmospheric xCO2 time-series. Jena-MLS
uses the spatially and temporally explicit xCO2 boundary
conditions from the Jena Carbo Scope atmospheric inversion
(Rödenbeck et al., 2018). All methods convert xCO2 to pCO2

using sea-level pressure and the water vapor correction. All three
mapping methods use a quadratic gas-exchange formulation
(k · U2 · (Sc/660)−0.5) with the transfer coefficient k scaled to
match a global mean transfer rate of 16 cm/h (Wanninkhof,

1992; Naegler, 2009) and the Schmidt number Sc estimated with
a third-order polynomial fit of sea surface temperature. The
mapping methods use different wind speed products [Jena-MLS:
NCEP/NCAR-R1 (Kalnay et al., 1996), MPI-SOMFFN: ERA-
INTERIM (Dee et al., 2011), CMEMS: ERA5 (Hersbach et al.,
2020; Simmons et al., 2020)] for the calculation of the CO2

flux (Supplementary Table 1). Gridded fields of pCO2 and air-
sea CO2 flux were submitted for the evaluation, where MPI-
SOMFFN and CMEMS submitted monthly 1 × 1◦ fields. The
daily 4 × 5◦ Jena-MLS fields were regridded to monthly 1 ×

1◦ fields using nearest neighbor interpolation with the griddata
function from the python SciPy module. The submitted time-
series and gridded fields are published in the data repository
Pangaea (Hauck et al., 2020).

The data-products are based on contemporary sea surface
pCO2 observations and thus estimate Fnet (see Equation 1). In
order to compare them with the SOCEAN estimate, they have to be
adjusted for the riverine flux Friv,ss (using 0.78 ± 0.41 PgC yr−1,
Resplandy et al., 2018). The riverine adjustment is attributed to
three latitudinal bands using the spatial distribution of Aumont
et al. (2001) with the caveat that the regional boundaries are
defined at 20◦Nand 20◦S as opposed to the latitudinal boundaries
of 30◦N/S used in the GCB otherwise. This results in additive
river flux adjustment terms of Friv,ss of 0.20 PgC yr−1 (north),
0.19 PgC yr−1 (tropics), and 0.38 PgC yr−1 (south).

2.4. Area Weighting
GOBMs and mapping methods all cover different amounts of
ocean surface area. To close the Global Carbon Budget with CO2

sources and sinks, the total ocean area has to be considered.
Hence, the total ocean area covered by each GOBM andmapping
method on their native grids was requested and compared to the
global ocean area of 361,900,000 km2 from ETOPO1 (Amante
and Eakins, 2009; Eakins and Sharman, 2010).

The ocean area covered by the ocean models range between
352,050,000 km2 for MITgcm-REcoM which excludes the Arctic
north of 80◦N to 365,980,000 km2 for MPI. The ocean
models hence cover 97.3–101.1% of the global ocean area.
These differences in ocean coverage originate from the grid
specifications in coastal regions, besides the missing Arctic
and Mediterranean Sea in MITgcm-REcoM. As none of the
models resolves coastal processes explicitly, we scale the annual
time-series of the total ocean carbon sink by the ratio of the
ETOPO1 global ocean area (Amante and Eakins, 2009; Eakins
and Sharman, 2010) to the modeled ocean area.

The covered ocean area ranges from 88.9% of the global
ETOPO1 ocean area in two data-products (MPI-SOMFFN and
CMEMS) to 101.4% in the Jena-MLS. The non-mapped ocean
area in MPI-SOMFFN and CMEMS are located all along the
coasts and in marginal seas, including the Mediterranean Sea and
the Arctic Ocean. We apply the same area-scaling procedure to
the data-products as to the models to yield a consistent estimate
of the global ocean carbon sink.

The areal correction is not applied to the regional fluxes due to
the lack of information on area coverage per region. The effects
of this area-correction or its omission are described and discussed
in sections 3.2 and 4.5.
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Global and regional time-series of GOBMs and data-products
after area weighting but without river flux adjustment are
archived in ICOS (Global Carbon Project, 2019).

2.5. Quantification of Temporal Variability
To quantify agreement of GOBMs and mapping methods on
the multi-year variability of the GCB ocean sink estimate, we
define four distinct periods. We chose the years 1992, 2001, and
2011 as boundaries for the four phases following Landschützer
et al. (2015). These years also mark cusps in the ensemble mean
of data-products, most pronounced in the Southern Ocean. We
tested the trend significance within these multi-year periods from
start year to end year with a Mann-Kendall test using the python
module pyMannKendall (Hussain and Mahmud, 2019).

Furthermore, we calculate the amplitude of interannual
variability (AIAV, Rödenbeck et al., 2015) as the temporal
standard deviation of the air-sea CO2 exchange derived from
the gridded fields as follows: (1) air-sea CO2 exchange filtered
for water depth exceeding 400 m (not subsampled for SOCAT
sampling sites), (2) spatially-integrated, (3) 12-months running
mean filter applied, and (4) detrended. Our AIAV calculation
differs from Rödenbeck et al. (2015) only by the detrending
which is used to separate out the variability from the trend. It
differs from the AIAV shown in Friedlingstein et al. (2019) by the
detrending and also by the time period considered (1992–2018),
which is shorter but has a larger data density.

2.6. Evaluation Metrics
We use the gridded pCO2 fields for model evaluation on which
we apply two filters. First, we follow Rödenbeck et al. (2015) by
using only open ocean data points where water depth exceeds
400 m (thereby excluding 8% of the ocean area). Second, we
subsample data-points from models and mapping methods for
which there is a matching fCO2 (fugacity of CO2) value from
the binned SOCATv2019 product (gridded, on a monthly 1
× 1◦ resolution; Bakker et al., 2016), which we refer to as
pCO2 in the following. The fugacity of CO2 is 3–4‰ smaller
than the partial pressure of CO2 (Zeebe and Wolf-Gladrow,
2001). We acknowledge the importance of this distinction in
the observational community, but consider it negligible for the
model evaluation.

We generate global and regional monthly mean pCO2 time-
series by averaging over all subsampled pCO2 data points in
a given region. All data points are weighted equally. Monthly
correlation coefficient and root mean squared error (RMSE)
between simulated and observed pCO2 are calculated from
the subsampled data sets before calculating the spatial average.
Statistics are calculated for the period 1992–2018, due to the
limited data availability of surface pCO2 observations prior to
1992 (Bakker et al., 2016).

Annual time-series are calculated from the monthly mean
subsampled time-series after integration over regions. Annual
RMSE and correlation coefficient are calculated from these time-
series, contrary to the monthly statistics. We consider this to
be more robust than to calculate the annual mean at each pixel
given the data sparsity. Hence, the annual metrics are to be
interpreted as a measure of the misfit on the large regional

TABLE 2 | Global bias and drift of annual air-sea CO2 flux in control simulation of

individual Global Ocean Biogeochemical Models. The drift is calculated as a linear

fit to the full annual time-series 1959–2018.

Model Bias (PgC yr−1) Drift (PgC yr−2)

MITgcm-REcoM −0.07 −0.0015

MPI 0.09 0.00022

CESM-ETH 0.14 −0.0012

CNRM 0.31* −0.0017*

CSIRO −0.21 0.0034

NorESM −0.01 0.00049

PlankTOM −0.05 −0.0026

MOM6-COBALT 0.37 −0.0020

IPSL 0.19 −0.0024

FESOM-REcoM 0.19 0.0026

*An updated simulation with CNRM with repeated 1948 forcing yields slightly lower bias

(0.26) and drift (−0.0003).

or global spatial scale and on the multi-year time-scale (mean
and trend). RMSE and correlation coefficient were additionally
calculated from detrended annual mean time-series to separate
out the mismatch of interannual variability on large spatial scales.
For the GOBMs and data-products, a second annual time-series
is calculated from the full data set to distinguish “true” variability
from a potentially biased variability stemming from the sparse
and inhomogeneous sampling.

The pCO2 mismatch is calculated as simulated or mapped
pCO2 minus SOCAT pCO2 at each data-point of the subsampled
data set. It is then spatially averaged into a monthly time-series
and temporally averaged into an annual time-series. The mean
bias is calculated as the average of the annual mean mismatch.

3. RESULTS

3.1. Control Simulation—Global and
Regional CO2 Flux
The tenGOBMs simulate a preindustrial ocean carbon sink Fnat,ss
+ Fdrift+bias (simulation B) between −0.21 to 0.37 PgC yr−1 with
a mean of 0.1 PgC yr−1 (0.08 PgC yr−1 without FESOM as in
Friedlingstein et al., 2019, a positive number indicates a flux into
the ocean; Table 2, Figure 1). It follows from the definition of
Fnat,ss = 0, that any deviation of CO2 flux in simulation B from
zero is considered a model bias. The drift of CO2 flux in the
control simulations varies between−0.0026 and 0.0034 PgC yr−2

and is thus small compared to the trend of CO2 flux in the
historical simulation. The smallest drifts are found in two models
with long spin-up (1,000 years, NorESM and MPI). CNRM and
IPSL show more variability due to their forcing choices. FESOM-
REcoM falls within the range of the other GOBMs with a positive
bias and drift (Table 2).

The strong positive bias in CNRM can be explained by the
burial flux which is larger than the river carbon input and leads
to a CO2 flux into the ocean in the preindustrial state. The burial
is also larger than the river input in MOM6-COBALT, but not
large enough to explain the bias of 0.37 PgC yr−1. Other positive
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FIGURE 1 | Annual air-sea CO2 flux in control simulation (simulation B) of individual Global Ocean Biogeochemical Models. This is equivalent to

FsimB = Fnat,ss + Fdrift+bias (Equation 5), where any flux different from zero is considered a bias and any temporal change in the control simulation is considered a drift.

Positive: CO2 flux into the ocean.

or negative biases cannot be explained by an imbalance of burial
and river fluxes.

There are substantial natural CO2 fluxes into and out of the
ocean on a regional level that have previously been assessed
using ocean inversions and ocean models (Mikaloff Fletcher
et al., 2007). All GOBMs reproduce the natural CO2 outgassing
flux in the tropics, particularly the large flux to the atmosphere
in the equatorial Pacific (Figure 2). There is less agreement
on the relative contributions to natural CO2 outgassing in the
tropical Indian Ocean vs. the tropical Atlantic with a slightly
larger contribution from the tropical Atlantic in MPI, NorESM,
CSIRO, CESM-ETH, MOM6-COBALT, and FESOM-REcoM as
in Mikaloff Fletcher et al. (2007). NEMO-PlankTOM simulates
a much larger outgassing in the tropical Indian Ocean, whereas
MITgcm-REcoM has close to zero flux and CNRM even a slight
CO2 uptake in the tropical Indian Ocean.

There are differences between the models on the relative
contributions of certain regions also in the northern extra-
tropics, where the inversion showed the strongest CO2 uptake
in the low- and mid-latitude North Pacific, followed by the low-
and mid-latitude North Atlantic and then high-latitudes (north
of 49◦N). This pattern is only reproduced by NorESM. Other
models (MPI, CSIRO, CNRM, CESM-ETH, MOM6-COBALT,
FESOM-REcoM) simulate a larger uptake in the high-latitudes
than in the low- and mid-latitude North Atlantic. NEMO-
PlankTOM5 and MITgcm-REcoM exhibit a small net outgassing
signal in the low- and mid-latitude North Pacific or the low- and
mid-latitude North Atlantic, respectively.

In the southern extra-tropics, the inversion exhibited CO2

uptake with the strongest signal in the South Pacific, followed by
the Southern Indian Ocean and the South Atlantic. This pattern
is reproduced by NEMO-PlankTOM, CSIRO and CESM-ETH.
Other models found a stronger CO2 sink in the Southern Indian
Ocean than in the Southern Pacific Ocean (NorESM, CNRM,
MOM6-COBALT). In contrast, MPI and MITgcm-REcoM show
weak outgassing signals in the South Pacific or South Atlantic,
respectively. FESOM-REcoM produces a net zero flux in the
South Pacific.

Previously identified discrepancies between ocean models
and the ocean inversion estimates on the natural CO2 flux
prevail in the Southern Ocean (Mikaloff Fletcher et al., 2007,
models: roughly zero flux, ocean inversion: outgassing). MPI and
MITgcm-REcoM models have no net natural CO2 outgassing in
the regions 44–58◦S or south of 58◦S, all other models have net
outgassing in at least one of these regions. The total natural CO2

outgassing signal in the Southern Ocean is smaller in all models
than in the ocean inversion.

3.2. Historical Simulation—Global CO2 Flux
Since models are not scaled to the observational constraint
of the 1990s anymore, their bias and drift as determined
with the control simulation has to be subtracted to satisfy
our definition of SOCEAN . The mean correction applied in the
GCB2019 (Friedlingstein et al., 2019) varies between −0.36 and
+0.16 PgC yr−1 when averaged over the 1990s and the multi-
model mean CO2 flux is thereby reduced by 0.07 PgC yr−1.
The correction leads to a larger model spread with a standard
deviation of 0.27 PgC yr−1. Similar reductions and larger spreads
of the ensemble mean CO2 flux result for other time periods,
e.g., a reduction of 0.06 and 0.05 PgC yr−1 for the 2000s and the
period 2009–2018, respectively (Table 3).

To close the Global Carbon Budget, the total ocean area has
to be considered, and we scale all GOBMs to the same global
ocean area. This has a small effect on the ocean carbon sink
estimate with corrections of −0.02 PgC yr−1 for the MPI model
to +0.05 PgC yr−1 for MITgcm-REcoM, when averaged over
the 1990s. The multi-model mean increases by 0.01, 0.01, and
0.02 PgC yr−1 when averaged over the 1990s, 2000s, and 2009–
2018, respectively (Table 3). Themodel spread is further enlarged
as the CO2 flux in the MPI model which has already the lowest
ocean carbon sink, is further reduced and the CO2 flux in the two
models with the largest ocean carbon sink (CSIRO, NorESM) is
further increased.

Taken together, the bias-correction and area-weighting reduce
the multi-model mean ocean carbon sink estimate slightly and
increase the model spread (Table 3). All models are within the
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FIGURE 2 | Natural air-sea CO2 flux in individual Global Ocean Biogeochemical Models as derived from control simulation B. The air-sea CO2 flux is averaged over

the last 10 years of the control simulation. The bar plots exhibit integrated air-sea CO2 fluxes over the regions used in Mikaloff Fletcher et al. (2007). The lower right bar

plot shows the ocean inversion results from Mikaloff Fletcher et al. (2007, MF07). Positive numbers indicate a flux into the ocean.

observational constraint of anthropogenic ocean CO2 uptake
for the 1990s of 2.2 ± 0.6 PgC yr−1 before and after applying
these corrections. This observational constraint is based on an

assessment taking into account indirect observations with seven
different methodologies (Denman et al., 2007). These methods
include the observed atmospheric O2/N2 concentration trends
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TABLE 3 | Ensemble mean and standard deviation of air-sea CO2 flux before and after applying corrections.

Method Ensemble mean ± std (PgC yr−1)

1990s 2000s 2009–2018

GLOBAL OCEAN BIOGEOCHEMISTRY MODELS

Simulation A 2.03 ± 0.20 2.21 ± 0.21 2.55 ± 0.24

Sim A, bias-corrected 1.96 ± 0.27 2.15 ± 0.28 2.50 ± 0.31

Sim A, bias-corrected and area-weighted 1.97 ± 0.30 2.17 ± 0.31 2.52 ± 0.34

Sim A, bias-corrected and area-weighted (incl FESOM-REcoM) 1.99 ± 0.25 2.17 ± 0.26 2.52 ± 0.29

DATA-PRODUCTS

Raw (Fnet) 1.44 ± 0.26 1.55 ± 0.20 2.15 ± 0.16

Area-weighted Fnet 1.54 ± 0.18 1.66 ± 0.14 2.31 ± 0.10

Area-weighted and river adjustment applied (SOCEAN ) 2.32 ± 0.18 2.44 ± 0.14 3.09 ± 0.10

Note that the first three rows are for nine models as in Friedlingstein et al. (2019) and the fourth row is for 10 models including FESOM-REcoM. The river adjustment is 0.78 PgC yr−1

(Resplandy et al., 2018).

(Manning and Keeling, 2006; Keeling and Manning, 2014), an
ocean inversion method constrained by ocean biogeochemistry
data (Mikaloff Fletcher et al., 2006), and a method based on
chlorofluorocarbons (McNeil et al., 2003). In the GCB, the
confidence interval was adjusted to 90% to avoid rejectingmodels
that may be outliers but are still plausible (2.2 ± 0.6 PgC yr−1,
Friedlingstein et al., 2019).

The spread in the covered ocean area is larger in the data-
products than in the GOBMs and area-scaling has a pronounced
effect on their ocean carbon sink estimate. The area-scaling
changes the 1990s ocean carbon sink by +0.15, −0.02, and
+0.18 PgC yr−1 in MPI-SOMFFN, Jena-MLS, and CMEMS,
respectively. The ensemble mean increases by 0.10 PgC yr−1

and the standard deviation is substantially reduced from 0.26
to 0.18 PgC yr−1 (Table 3). The area-weighting effect increases
over time to 0.16 PgC yr−1 over the period 2009–2018. The
standard deviation of the data-products decreases over time,
but is still reduced by a third through area-weighting in the
decade 2009–18.

The ocean carbon sink estimate from data-products is
the contemporary CO2 flux, hence an adjustment for the
preindustrial CO2 outgassing due to river carbon flux has to
be applied to comply with SOCEAN . The river flux adjustment
of 0.78 ± 0.41 PgC yr−1 (Resplandy et al., 2018) to the data-
products results in a larger ocean carbon uptake compared to the
GOBMs. The data-products mean of 2.32 ± 0.18 PgC yr−1 (±1
standard deviation) of the 1990s falls within the observational
constraint for the 1990s. The discrepancy between model and
data-based estimates varies between 0.35 PgC yr−1 in the 1990s
and 0.27 PgC yr−1 in the 2000s, to 0.57 PgC yr−1 in 2009–2018,
and 0.82 PgC yr−1 in the last year 2018. The uncertainty in
the river flux adjustment of ±0.41 PgC yr−1 (Resplandy et al.,
2018) can explain a large part of the mean discrepancy. Due
to a backlog in submissions to the SOCAT database, the total
amount of observations used to constrain the last year has a third
less observations (1.3 million observations in 2019 and 2 million
observations in 2018) than in previous years. Therefore, 2018 also
shows quite a remarkable spread between the mapping methods.

The models generally simulate an enhanced CO2 uptake
during El Niño events, though not all models show a response
to all strong and very strong El Niño events (e.g., NorESM
and MPI El Niño 1997/98, Figure 3 lower panel). Models
and data-products show the same patterns of variability, but
differences exist in the mean SOCEAN and in the decadal trends.
This is particularly pronounced since 2005, but also applies to
earlier decades 1980–2000 (Figure 3). While the uncertainty in
the river flux adjustment can account for a large part of the
mean discrepancy, it cannot explain the difference in trends
since 2005. The discrepancy in trends could only be explained
through the riverine term by a reduced riverine outgassing over
time, which would mean a reduced river carbon inflow into
the ocean under the assumption of a constant ratio of river
carbon inflow to riverine outgassing. There is, however, no
indication of a decreased river transport of carbon into the ocean
(Regnier et al., 2013).

3.3. Historical Simulation: Regional CO2

Flux
Separating the global SOCEAN into large-scale regional bands
reveals substantial differences in our understanding of the
mean ocean carbon sink and its variability. In the tropics,
GOBMs and data-products agree well on the mean of SOCEAN
and its variability (Figure 4). Models simulate a mean uptake
of 0.01 PgC yr−1 in 2018 with a spread from outgassing
of 0.16 PgC yr−1 in NEMO-PlankTOM to an uptake of
0.32 PgC yr−1 in CNRM. The data-products agree on a small
tropical CO2 sink of 0.04–0.19 PgC yr−1. The ensemble of data-
products and GOBMs agree that the tropics are in the process of
turning from a CO2 source to a CO2 sink. The first occurrence of
the tropical CO2 sink was in 2015 in the data-product ensemble
and in 2014 in the GOBM ensemble.

In the north, GOBMs simulate a CO2 sink of 0.85–
1.45 PgC yr−1 in 2018. Seven models and all data-products fall
within an envelope of 1.15–1.45 PgC yr−1. The CO2 sink in
the MITgcm-REcoM set-up without the Arctic and CESM are
lower with 0.89 and 0.85 PgC yr−1, respectively, and stagnate
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FIGURE 3 | Annual air-sea CO2 flux from Global Ocean Biogeochemistry Models (GOBMs) and data-products used in the Global Carbon Budget 2019, after applying

bias and area-corrections and river flux adjustment of 0.78 PgC yr−1 (Resplandy et al., 2018). (A) Mean of model ensemble and data-product ensemble as thick lines,

individual models and data-products as thin dashed lines. (B) Individual models and data-products in color. Gray bars indicate strong and very strong El Niño events

with the extended Multivariate ENSO index (MEI) being above 1.5 for at least 3 months in a row (Wolter and Timlin, 2011). Positive numbers indicate a flux into

the ocean.

since 2000. The data-product ensemble mean yields a CO2 sink
lower than the model ensemble mean by 0.1–0.2 PgC yr−1

between 1985 and 2001 and good agreement since 2005.
The largest model spread occurs in the Southern Ocean

with the models simulating a CO2 sink between 1.11 PgC yr−1

(CNRM) and 1.84 PgC yr−1 (CSIRO) in 2018. Six models fall
in an envelope of 1.16–1.50 PgC yr−1. One model (CNRM)
is lower than the multi-model mean by about 0.3 PgC yr−1

throughout the entire period, although it comes closer in 2018
with a simulated sink of 1.11 PgC yr−1. Two models are
higher with NorESM simulating higher CO2 uptake by about
0.3 PgC yr−1 throughout the entire period with 1.78 PgC yr−1

in 2018 and CSIRO branching off the other models in 1980
to reach 1.84 PgC yr−1 in 2018. The data-products have the
largest temporal variability and different patterns of interannual
variability in the south and result in CO2 uptake estimated
between 1.67 and 2.09 PgC yr−1 in 2018, after river flux
adjustments. The data-product mean is higher by 0.3 PgC yr−1

than the model ensemble mean. The only exception is the
early 2000s where the data-product mean comes close to the
model ensemble mean due to the low CO2 sink in the MPI-
SOMFFN product in the late 1990s and early 2000s. The Jena-
MLS exhibits similar variability but on a higher mean level and

the CMEMS and the GOBMs show weaker internannual and
multi-year variability.

The ocean carbon sink in FESOM-REcoM is close to the
multi model mean globally and in the tropics. The simulated
ocean carbon uptake in the north is at the high end of the
simulated range, clustering with the CNRM, NorESM, MOM6-
COBALT, and IPSL models. In the south, FESOM-REcoM is in
the lower range of simulated carbon uptake, but still on average
0.24 PgC yr−1 above CNRM.

3.4. Historical Simulation: Multi-Year
Variability of CO2 Flux
Allmodels and data-products show a slower growth or stagnation
of the ocean sink in the 1990s and a reinforcement in the 2000s
(Figure 3). Here, we test the consistency of multi-year variability
of the ocean carbon sink among the GOBMs and the data-
products in the three regions (Figure 5). We use the term multi-
year variability to describe variability on a time-scale longer than
interannual variability (1–3 years), but not strictly restricted to a
decade (decadal variability, DeVries et al., 2019).

In the data-products, phase I (1985–1992) is characterized by
a positive trend in the south (p = 0.013) and no significant trends
in the tropics and the north. The significant trend for the south
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FIGURE 4 | Annual air-sea CO2 flux integrated over the regions North (north of 30◦N, top), Tropics (30◦S-30◦N, center), South (south of 30◦S, bottom). These

time-series are taken from the historical simulation A and are not corrected for biases or covered area. Note the different scales for different regions. Horizontal lines

have the same distance in all subfigures (0.2 PgC yr−1). Positive: CO2 flux into the ocean. Left: Ensemble mean of Global Ocean Biogeochemical Models and

data-products. Individual models in gray. Right: Individual models and data-products color coded.

in the data-products does not coincide with a significant trend in
the models. The model ensemble mean also suggests a positive
trend in the tropics, although with less certainty (p = 0.036). It
is noteworthy that there is least confidence in data-products in
phase I due to lower data availability, and the highest confidence
in phases III and IV.

In phase II (1992–2001), the trend in the south is reversed (p =
0.001) in the data-product ensemble, and is zero in the north and
in the tropics. The model ensemble mean also suggests a negative
trend in the tropics, although with less certainty (p = 0.032).
The significant trend for the south in the data-products does not
coincide with a significant trend in the models. Although there
are discrepancies on whether or not the ocean carbon sink was
decreasing, GOBMs and data-products agree remarkably well
on the slow-down or stagnation of the ocean carbon sink in
phase II (1992–2001) with no GOBM or data-product exhibiting

a significantly increasing trend. All GOBMs and data-products
agree on the absence of a significant trend in the north.

Phase III (2001–2011) is again characterized by a sign reversal
and strong positive trend in the south (p = 0.006) in the data-
product ensemble mean, accompanied by a positive trend in the
north (p = 0.006) and no trend in the tropics with a remarkable
agreement of all data-products. Themodel ensemble mean agrees
with positive trends of CO2 flux in the north (p= 0.008) and south
(p = 0.020).

Finally, in phase IV (2011–2018) the data-product ensemble
mean exhibits a positive trend in the tropics (p = 0.004), which is
however only matched by one GOBM out of the full ensemble.
The ensemble means of data-products or GOBMs indicate no
significant trend in the north and south, although few individual
GOBMs and data-products do so. Phase IV is shorter than the
other phases and therefore potentially less conclusive.
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FIGURE 5 | Multi-year variability of regional air-sea CO2 flux with agreement

among methods on no significant or a decreasing trend in phase II and an

increasing trend in the extratropics in phase III. Shown are the average and

standard deviation of annual CO2 flux for the ensemble of data-products and

the ensemble of Global Ocean Biogeochemical Models (GOBMs) in the north

(top), tropics (center) and south (bottom). Broken lines represent significant

trend over that time-period. Numbers indicate the number of individual

data-products and GOBMs that agree on the significant trend and are only

given if the trend of the ensemble average is also significant. Note the different

scales for different regions. Horizontal lines have the same distance in all

subfigures (0.2 PgC yr−1). Positive: CO2 flux into the ocean.

While models and data-products agree on the large-scale
(quasi-)decadal variability (Figure 5), the strength of the
interannual variability and its hot spots differ largely (Figures 6, 7
y-axis). Among the data-products, MPI-SOMFFN and CMEMS
show similar patterns of variability with the largest amplitude of
interannual variability per pixel in the subpolar regions of all
basins and the equatorial Pacific (Figure 6). The same spatial
pattern although generally higher variability is visible in the

Jena-MLS product. The data-products generally distribute the
variability roughly equally between these regions. In the model
suite, only MOM6-COBALT and MITgcm-REcoM distribute the
variability similarly among these regions, although in MITgcm-
REcoM the variability is not limited to these regions. Some
models place most of the variability in the tropical Pacific
(CSIRO, PlankTOM, CESM-ETH, NorESM), in other models
the northern subpolar regions and the equatorial Pacific are
dominant regions of variability (FESOM-REcoM, IPSL and
CNRM). MPI exhibits strong variability in the Southern Ocean
and the North Atlantic.

The amplitude of interannual variability (AIAV) of the global
and regional CO2 flux time-series of GOBMs and data-products
is summarized in Figure 7 (y-axis). The interannual variability
as reproduced by GOBMs and data-products fall into similar
ranges in the north (0.02–0.08 PgC yr−1) and in the tropics
(0.05–0.16 PgC yr−1). There is disagreement among GOBMs and
data-products on the AIAV in the south with the data-products
varying between 0.08 and 0.18 PgC yr−1 while all GOBMs are
below 0.1 PgC yr−1.

3.5. Historical Simulation: Model and Data
Comparison
Model evaluation was introduced as a single mismatch metric
usingmonthly surface ocean pCO2 observations from the Surface
Ocean CO2 Atlas (SOCAT, Bakker et al., 2016) in Le Quéré et al.
(2018a, their Figure B1). Here, we show a detailed model-data
comparison formodels and data-products with the SOCAT pCO2

data set on three time-scales: (i) monthly, (ii) annual + trend, and
(iii) multi-year variability. The latter is the approach most closely
quantifying interannual to multi-year variability, and therefore,
we argue, the most appropriate metric for the Global Carbon
Budget, with the aim to quantify the mean SOCEAN and the
deviation from previous years (i.e., multi-year variability).

Annual time-series of subsampled pCO2 from GOBMs and
data-products are compared to SOCATv2019 for the ensemble
mean of the GOBMs and data-products (Figure 8 with statistics
on annual + trend time-scale), and for all individual models and
data-products in the Appendix (Supplementary Figures 3–15).
The data-products follow the SOCAT pCO2 closely, with the
best agreement in the tropics (RMSE = 2.0 µatm, r = 0.991,
Figure 8), followed by the north (RMSE = 4.0 µatm, r = 0.985),
and slightly lower agreement in the south (RMSE = 5.5 µatm,
r = 0.968). As expected, the average of the subsampled pCO2 of
the data-products deviates from the average of the fully gridded
product. It is, however, remarkable, that this difference is smallest
in the north and largest in the south, confirming that data
coverage is best in the north and sampled pCO2 can represent
the entire area reasonably well. In the tropics and the south,
larger differences between subsampled mean pCO2 and average
over the full domain suggest that data coverage is insufficient to
adequately represent these large areas.

The subsampled GOBM pCO2 captures the variability of
SOCAT pCO2 remarkably well (Figure 8), given that SOCAT
pCO2 is an independent data set for the models. The model
ensemble mean shows the highest correlation in the tropics
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FIGURE 6 | Spatially resolved amplitude of interannual variability (AIAV) of annual air-sea CO2 flux calculated as the standard deviation of the detrended annual CO2

flux for all GOBMs and data-products.

(r = 0.963), but the lowest RMSE in the north (5.1 µatm).
While the high correlation in the tropics indicates that the
variability is well-captured, the RMSE is higher here as the
water vapor correction, which is not included in some models,
has a stronger effect at higher temperatures (see discussion
on mean bias below). It is noteworthy that the mismatch
between modeled and observed pCO2 in the south is lower
since 1999. Similar to the data-products, the difference between
subsampled and full domain average pCO2 is largest in
the south.

In the following, we will show that the RMSE in comparison
with SOCAT pCO2 time-series is smaller on the relevant
time-scale of multi-year variability (GOBMs: <10 µatm, data-
products: <5 µatm, Figure 9) than on the time-scale annual
+ trend (GOBMs: <20 µatm, data-products: <7 µatm) and
substantially smaller than on the monthly time-scale (GOBMs:
20–80 µatm, data-products: <20 µatm).

The monthly means of modeled surface ocean pCO2 cover
a large range of simulated realizations, from smaller (e.g.,
PlankTOM, north, Supplementary Figure 6) to larger seasonal
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FIGURE 7 | Summary figure of temporal variability (y-axis) and model-data mismatch (x-axis). Mismatch of simulated or mapped pCO2 and observed sea surface

pCO2 for the period 1992–2018 on the time-scale of multi-year variability and amplitude of interannual variability (AIAV) of CO2 flux. x-axis: RMSE of spatially-averaged

detrended annual time-series. y-axis: amplitude of interannual variability, defined as the standard deviation of the detrended annual time-series of air-sea CO2 flux.

These statistics are shown globally, and regionally for north, tropics, and south as indicated in the figure panels.

cycles (e.g., MPI, south, Supplementary Figure 4) compared to
the observations, pointing to model deficiencies in representing
the seasonal cycle correctly, especially in the Southern Ocean
(Kessler and Tjiputra, 2016; Mongwe et al., 2016, 2018). Most
models exhibit larger variability than in the observations on a
monthly basis. This is mirrored in correlations of modeled and
observed monthly pCO2 ranging from 0.2 to 0.8 and the RMSE
from 20 to 80 µatm (Figure 9A and Supplementary Figure 1).
The data-products are inter- and extrapolations of SOCAT data,
and hence have higher correlation coefficients and lower RMSEs
than the GOBMs. However, they also have RMSEs of 15–20µatm
(see also Gregor et al., 2019) and correlation coefficients of 0.8–
1.0 with lower correlation values in the southern and northern
extratropics (Figure 9A, Supplementary Figures 1, 3–15 for
individual models and data-products). Comparison on monthly
time-scales is a common approach to measure misfit between
estimated and observed pCO2 (e.g., Le Quéré et al., 2018a;
Friedlingstein et al., 2019; Gregor et al., 2019).

On the time-scale annual + trend, correlations for annual
time-series are between 0.8 and 1 for all models, except in
the Southern Ocean with values down to 0.6 (Figure 9B and

Supplementary Figure 1). Despite all models having similarly
high correlation values, the RMSEs range between 4 and 20µatm.
Data-products have correlation coefficients close to 1 and RMSE
lower than 4 µatm. As the pCO2 signal on the annual + trend
time-scale is dominated by the continuous atmospheric CO2

increase, we conclude that models and data-products capture the
climate trend of increasing surface pCO2 reasonably well.

Finally, on the time-scale of interannual and multi-year
variability (statistics of detrended annual time-series, Figures 7,
9C, and Supplementary Figure 2), RMSEs between GOBMs
and SOCAT are small (globally: 3.5–7 µatm); with the lowest
mismatch in the tropics (2–4 µatm), and the largest mismatch
in the south (6.5–9.5 µatm). On this time-scale, correlation
coefficients are generally higher for GOBMs with lower RMSE,
with highest correlation coefficients in the tropics (0.5–0.9) and
lower in the extratropics (0.2–0.9 in the north and 0.2–0.8
in the south). The data-products are by design closer to the
observations and have RMSEs below 2 µatm, except in the
Southern Ocean with RMSEs up to 5 µatm, and correlation
coefficients of above 0.8 in the south and above 0.9 elsewhere. The
data-products cluster closely together in the north, with a wider
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FIGURE 8 | Comparison between annual sea-surface pCO2 from SOCATv2019 (Bakker et al., 2016) and the model ensemble mean (left) or data-product ensemble

mean (right) globally (top), and in the different regions North, Tropics, South as indicated in the figures. Red solid line shows model or data-product mean from

subsampled models/data-products at SOCAT sampling sites. Broken lines indicate the area-weighted average from the full models (not subsampled). Correlation

coefficient r and Root Mean Squared Error RMSE are calculated from the annual time-series 1992–2018, i.e., the white area in the figures. These figures are shown for

all models and data-products separately in the Supplementary Material.

range in the tropics and the south; again suggesting that data-
availability can constrain the data-products better in the north
than elsewhere.

The mean bias (Figure 9D, x-axis) is a measure of how well
the models capture the mean pCO2. It ranges between −1 and
+15µatm globally and up to 20µatm in the tropics. Somemodels
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FIGURE 9 | Mismatch of simulated or mapped pCO2 and observed sea surface pCO2 for the period 1992–2018 on different time-scales: (A) monthly, (B) annual +

trend as derived from annual statistics, (C) multi-year variability as derived from detrended annual statistics, (D) long term mean. (A–C) Display the mismatch as

RMSE and correlation coefficient. In (D) the mean bias is plotted against the correlation coefficient. Global figures are shown here, regional figures (north, tropics,

south) are displayed in the Supplementary Material. Note the different scales on the x-axis.

show a consistent positive bias as expected from the missing
water vapor correction. The water vapor correction would reduce
the modeled pCO2 by 2 µatm at 0◦C and by 15 µatm at
30◦C. Including the water vapor correction in all models would
substantially reduce the bias and would therefore allow for more
detailed interpretation of model biases, e.g., in comparison to the
regional CO2 flux in the preindustrial control simulation. The
mean bias of the data-products is always positive and small by
design with a maximum of 5 µatm in the south.

4. DISCUSSION

The ocean mitigates climate change by sequestering
anthropogenic CO2. A high-quality assessment of the ocean
carbon sink is critical for assessing changes in the contemporary
carbon cycle and to robustly project its evolution into the future.
Sudden changes in the ocean carbon sink would immediately
affect the allowable emissions for limiting global warming to
well below 2◦C. Furthermore, reliable quantification of the
ocean carbon sink is also an important constraint on the land
carbon sink estimate when combined with accurately reported

emissions. The latter contributes 60–90% of the observed decadal
variability in the natural carbon sinks (DeVries et al., 2019), but
cannot be directly observed.

The ocean carbon cycle community is blessed with an
annually-updated global compilation of quality-controlled
surface ocean pCO2 observations (the Surface Ocean CO2

Atlas, SOCAT, Bakker et al., 2016), which can be used to
derive the ocean carbon sink and to evaluate global ocean
biogeochemical models (GOBMs). The ocean carbon sink can
be assessed currently within <2 years delay through ocean
surface pCO2 observations combined with mapping methods
and additional data sets and parameterizations, and by global
ocean biogeochemical models. We demonstrated that these
different tools agree reasonably well when enough high-quality
observations are available. It has to be noted though, that the
discrepancy between GOBMs and data-products is increasing
over time, being larger in 2018 than in any year before.

The biggest discrepancies exist in the Southern Ocean,
where model biases are largest and high-quality ship-board
measurements are scarce and biased toward summer. Novel
autonomous methods are starting to fill data gaps, e.g., pH
sensors on biogeochemical Argo floats in the Southern Ocean
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(Bushinsky et al., 2019), but the uncertainty of calculated
pCO2 from pH sensors is higher than from direct pCO2

observations (Williams et al., 2017). A global-scale high-quality
ocean pCO2 observation network combining traditional and
novel observation systems is needed to improve the accuracy of
the ocean carbon sink from observations.

4.1. The Mean Ocean Carbon Sink
The GOBMs best estimate for the mean ocean carbon sink is 2.1
± 0.5 PgC yr−1 between 1994 and 2007, which is 0.5 PgC yr−1

lower than a recent anthropogenic carbon estimate of 2.6 ±

0.3 PgC yr−1 based on ocean interior observations (Gruber et al.,
2019). The two estimates overlap within the given uncertainties.
More importantly, the 2.6± 0.3 PgC yr−1 in Gruber et al. (2019)
is equivalent to the geochemical increase in ocean inorganic
carbon or Fant,ss + Fant,ns (Clement and Gruber, 2018). Gruber
et al. (2019), however, also estimate outgassing of natural carbon,
Fnat,ns, to be −0.4 ± 0.24 PgC yr−1 over the same period. This
is based on the difference of the net flux from a data-product
(Landschützer et al., 2016) adjusted for riverine outgassing (i.e.,
Fant + Fnat = Fnet − Friv) and two estimates of temporally-
resolved Fant [transient steady state scaled Landschützer et al.
(2016) and ocean inversionMikaloff Fletcher et al., 2006]. Hence,
in order to compare the same conceptual SOCEAN flux (Fant,ss +
Fant,ns +Fnat,ns, Equation 2), the GOBM’s SOCEAN estimate has to
be compared with the sum of Gruber’s Fant and Fnat,ns fluxes; and
the resulting 2.2 ± 0.4 PgC yr−1 are in good agreement with the
numbers presented here and in the GCB releases (Friedlingstein
et al., 2019). It is not a circular argument to use Gruber’s Fant plus
Fnat,ns to compare to the GOBMs which are independent of both
the Fant and Fnat,ss estimates in Gruber et al. (2019). There would
be some circularity when comparing to the data-based products,
which is not done here.

On a regional level, global ocean biogeochemical models
and data-products agree reasonably well on the mean ocean
carbon sink in the tropics and in the northern exratropics. An
exception to that is the offset between 1985 and 2003 in the
northern extratropics. The better agreement since the early 2000s
coincides with a large increase in number of (global) observations
from 400,000 to 1,300,000 observations between 2003 and 2006
(Bakker et al., 2016), and a jump from a few hundred to a few
thousand observations in the North Atlantic in 2002 (Lebehot
et al., 2019). There is substantial disagreement on the mean ocean
carbon sink in the Southern Ocean between GOBMs and data-
products. This offset might be related to the high uncertainty
of the river-flux adjustment, to an overestimate of the ocean
carbon sink based on SOCAT observations due to a sampling
bias or to model biases. Bushinsky et al. (2019) demonstrated
that adding biogeochemical Argo floats to the input data set
for two of the three mapping methods used here, reduces the
Southern Ocean carbon sink by 0.39–0.75 PgC yr−1 south of 35◦S
due to added winter-time data with previously underrepresented
outgassing of CO2. However, a systematic bias of 4 µatm well
within the float pCO2 uncertainty of around 11 µatm (Williams
et al., 2017) would half the impact of the additional data from
floats (Bushinsky et al., 2019). The global river flux adjustment
(Resplandy et al., 2018) is distributed across the ocean based on

one ocean circulation model study (Aumont et al., 2001). How
much CO2 outgasses in which ocean region depends on model
assumptions, such as the remineralization time-scale of organic
carbon and the burial. Further sensitivity studies on the effect of
model assumptions are needed to constrain the regional river flux
adjustments better.

4.2. Multi-Year Variability of the Ocean
Carbon Sink
There is growing evidence for a multi-year variability of the
ocean carbon sink with remarkable consistency among data-
products and GOBMs on a global stagnation of the ocean
carbon sink in the period 1992–2001 and an extra-tropical
strengthening between 2001 and 2011 (Figure 5, Rödenbeck
et al., 2015; Landschützer et al., 2016; DeVries et al., 2019;
McKinley et al., 2020). Explanations for this multi-year variability
range from the ocean’s response to changes in atmospheric
circulation (Le Quéré et al., 2007; Landschützer et al., 2015;
Keppler and Landschützer, 2019), especially the variations in the
upper ocean overturning (DeVries et al., 2017) to external forcing
through surface cooling associated with volcanic eruptions and
variations in atmospheric CO2 growth rate (McKinley et al.,
2020). Themappingmethods and an ocean inversemodel suggest
that the GOBMs underestimate the magnitude of the multi-
year variability (DeVries et al., 2019). Cooling due to volcanic
eruptions and variations in atmospheric growth rate are included
in the model forcing and the ocean circulation’s response to
climate variability is part of the model dynamics. Which of the
two is the dominant factor is not distinguished in our analysis.

In the most recent period since 2011, all data-products yield
a strong increasing trend of SOCEAN in the tropics. This is not
reproduced by the GOBMs, even though they generally represent
the same amplitude of interannual variability (AIAV) as the data-
products (Figure 7). In the northern extra-tropics, the AIAV of
the data-products is smallest of all regions (<0.08 PgC yr−1),
but nevertheless varies by a factor of two between the data-
products. The GOBMs fall within the same range. In the southern
extratropics, the magnitude of the variability is by no means
understood, with a large range of AIAV among data-products
and GOBMs.

4.3. Lessons Learned From pCO2 Data
Mismatch
The pCO2 data mismatch has to be interpreted in the context
of high spatial and temporal ocean pCO2 variability. The 1998–
2011 mean pCO2 varies spatially between 280 µatm in the high-
latitude North Atlantic and North Pacific to over 440 µatm in
the equatorial Pacific (Landschützer et al., 2014). Seasonal and
interannual variability of surface pCO2 can be 100 µatm or more
(Wanninkhof et al., 2013). The zonal mean 1pCO2, i.e., the
difference between surface ocean pCO2 and atmospheric pCO2

ranges from 40 µatm just south of the equator (outgassing) to
−20 µatm at 40◦ of both hemispheres and −60 µatm (uptake)
in the northern high latitudes (Wanninkhof et al., 2013). The
global mean1pCO2 varied only between−2 to +1µatm between
1990 to 2009 according to Wanninkhof et al. (2013) and between
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−3 to 1 µatm from 1982 to 2000 and have since then increased
to −6 µatm in the MPI-SOMFFN data-product used here (not
shown). Over the same period, the global mean CO2 flux has
always been into the ocean and has not changed sign in the
same product. This illustrates that the global mean 1pCO2 is
dominated by the large areas in the tropics whereas the CO2

flux is dominated by the subpolar regions with the highest wind
speeds. We conclude from this context, that it is difficult to
quantify an uncertainty of the CO2 flux based on the pCO2 bias
or RMSE, but that it is encouraging that the GOBMs show only
slightly weaker correlation with the SOCAT pCO2 (0.94 globally)
than the data-products (0.98) indicating that interannual and
multi-year changes are captured reasonably well (Figure 8).

The detailed comparison of mapped and simulated pCO2 with
SOCAT data at sampling locations reveals that there is no relation
between the RMSE or bias of the GOBM or data-product with the
magnitude of temporal variability (Figure 7). We can therefore
not constrain the “true”multi-year variability by choosingmodels
with lower pCO2 biases. Our analysis further assesses the fidelity
of the GOBMs and data-products on different time-scales.
While GOBMs have clear weaknesses on resolving the seasonal
cycle (Figure 7A, Supplementary Figures 1, 3–15, Kessler and
Tjiputra, 2016; Mongwe et al., 2016, 2018), they capture the
pCO2 on annual + trend time-scale reasonably well, and even
better on the time-scale of multi-year variability (Figures 7,
9, and Supplementary Figure 2). We argue that the detrended
annual statistic is more informative for the evaluation of annual
estimates of SOCEAN with the aim to robustly estimate the mean
SOCEAN and multi-year variability. The monthly statistics, which
are most commonly used to evaluate GOBMs and data-products
(Rödenbeck et al., 2015; Friedlingstein et al., 2019; Gregor
et al., 2019) quantify to a large extent the representation of the
seasonal cycle. Based on our analysis of model-data mismatch,
we conclude that misrepresentations of the seasonal cycle in
GOBMs have little effect on the global annual estimate of SOCEAN .
Yet, they illustrate the weaknesses of GOBMs to represent the
underlying mechanisms correctly, which questions their ability
to produce robust projections into the future.

4.4. Constraints on the Regional CO2 Flux
Some models are clear outliers in the regional SOCEAN time-
series, e.g., CESM and MITgcm show the lowest SOCEAN in
the north, CNRM shows the highest flux in the tropics, and
CNRM and NorESM exhibit a very low and very high SOCEAN
in the south, respectively. These models simulate very similar
RMSEs and correlation coefficients in comparison to SOCAT
pCO2 as the other GOBMs and hence the regional fluxes cannot
be constrained by the pCO2 mismatch. In fact, CNRM shows the
lowest RMSE in the south and in the tropics, but this assessment
is hampered by the large global SOCEAN bias in CNRM.

Similarly, the regionally resolved comparison of the
preindustrial control air-sea CO2 flux with ocean inversion
estimates (Mikaloff Fletcher et al., 2007) is not conclusive on
which models are more realistic than others, e.g., there is no
obvious explanation for the low SOCEAN in CESM in the north
to be found in the preindustrial air-sea CO2 flux in CESM in
this region. However, a few impressions can be noted. MITgcm

and MPI have clear issues with no net CO2 outgassing in the
preindustrial Southern Ocean. Models with a high CO2 uptake
in the north show this also in the preindustrial simulation
(NorESM, CNRM, MOM6-COBALT, FESOM-REcoM),
indicating that the model set-up and parameter choices lead to a
vigorous overturning in the north. CNRM and FESOM-REcoM,
which simulate the lowest historical SOCEAN in the south, are the
models with the strongest preindustrial outgassing south of 58◦S,
but still lower than in Mikaloff Fletcher et al. (2007).

4.5. Changes in Methodology in GCB2019
GOBMs have biases and they drift, which can be quantified
with a control simulation that is required for the GCB since
2019 (Friedlingstein et al., 2019). The global ocean carbon sink
estimate for the GCB can be corrected for model bias and
drift and the effect of this correction is small on the ensemble
global mean sink as some GOBMs have positive and others
negative biases. Regional and subregional biases are, however,
not quantified and cannot be corrected for as the assumption of
net zero steady state natural flux only holds globally. Therefore,
regional estimates of SOCEAN are associated with a higher
uncertainty and uncorrected gridded fields from historical model
simulation A are used for model evaluation. This introduces an
inconsistency between adjusted global estimates for SOCEAN on
the one hand and unadjusted regional SOCEAN estimates and
model evaluation on the other hand. Model simulations with
reduced global biases are desirable for a more robust model-data
comparison and reduced uncertainty of regional ocean carbon
sink estimates.

Two of the mapping methods represent <90% of the global
ocean area. This results from unmapped areas all along the
coast lines, the Mediterranean and other marginal seas, including
the Arctic Ocean. This mirrors the poor data coverage in
some marginal seas (Mediterranean Sea, Canadian archipelago,
Chinese Sea, Malaysian Archipelago) and in the Arctic Ocean.
Thus, ideally, these gaps would be closed by data collection
or data sharing for these regions, as well as mapping. This
correction is on the order of 0.1–0.15 PgC yr−1 and is considered
conservative as it is smaller than the estimate for the Arctic
Ocean of 0.12 ± 0.06 PgC yr−1 (Schuster et al., 2013) and the
global coastal ocean carbon sink of 0.2 PgC yr−1 (Roobaert
et al., 2019), which, however, overlaps partly with the area
covered by the global data-products (37% of the area in the
coastal product is already represented in the global product of
Landschützer et al., 2016) and by the Arctic Ocean. This simple
approach uses the maximally covered area of the data-products,
i.e., regions which are mapped in some months of the year are
not filled (e.g., parts of the Southern Ocean which are mapped
in summer but not in winter). While this approach might tend
to overestimate the flux in the permanently ice-covered parts
of the Arctic Ocean, the region north of 80◦N covers only
1% of the global ocean area. The area correction is dominated
by the coastal ocean, which has a similar flux density as the
open ocean (0.39 mol C m−2yr−1 coastal south of 60◦N vs.
0.35 mol C mr−2yr−1 globally Wanninkhof et al., 2013; Roobaert
et al., 2019). The simplistic area-scaling approach to fill data
gaps is hence considered conservative, also in comparison to the
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60% higher area correction from a time-resolved gap-filling using
ocean models (McKinley et al., 2020).

While the effect of the area correction on the mean
ocean carbon sink is small (0.1–0.15 PgC yr−1) compared
to the uncertainties, e.g., from the river flux adjustment
(±0.41 PgC yr−1; Resplandy et al., 2018) or the gas-exchange
calculation (±0.6 PgC yr−1; Woolf et al., 2019), the spread
between data-products can be reduced by a third when taking
the area-correction into account and is thus considered an
important correction.

4.6. Strengths, Weaknesses, and Ways
Forward
Both approaches have uncertainties, and both have strengths
and weaknesses. An ensemble of GOBMs is a robust tool to
estimate the global ocean mean carbon sink and anthropogenic
trends, with their spread likely being driven by differences
in the strength of the simulated overturning circulation (e.g.,
Doney et al., 2004; Goris et al., 2018). Large-scale multi-year
variability is driven by the interplay of external forcing and ocean
circulation (McKinley et al., 2020). The smaller the spatial and
temporal scale of interest, the more important it becomes that
the GOBMs simulate the delicate interplay between physical
and biological processes appropriately. The seasonal cycle is a
testbed for how well GOBMs reproduce these interactions, and
most GOBMs fail to reproduce the seasonal cycle of air-sea
CO2 flux satisfyingly, especially in the Southern Ocean (Figure 9,
Supplementary Figure 1, Kessler and Tjiputra, 2016; Mongwe
et al., 2016, 2018). Data-products, in turn, are closely tied to
surface ocean observations, which carry imprints of temporal and
spatial variability. Their key strength is therefore the assessment
of interannual and multi-year variability, particularly in regions
with high data densities.

We see potential for improvement in all contributions to
the ocean carbon sink estimate: (1) Extending and sustaining
the high-quality surface ocean observing network is pivotal to
reduce uncertainty in the data products obtained with mapping
methods from surface pCO2 observations, especially in data-poor
regions; (2) mapping methods should represent the full global
ocean including coastal areas, marginal seas and the Arctic and
work toward including data from novel observation platforms,
such as biogeochemical Argo floats and saildrones, which is to
date still hampered by lower accuracy for pCO2 data from novel
platforms; (3) a robust understanding of river carbon, alkalinity
and nutrient input into the ocean and of the partitioning of river
carbon fluxes in burial and carbon outgassing and its regional
distribution is critically needed. A spatially-resolved field of river-
induced effects on surface pCO2 by current generation ocean
biogeochemical models along with sensitivities to assumptions,
e.g., on remineralization time-scale would be highly desirable to
take riverine fluxes into account for the assessment of model-data
mismatch; (4) GOBMs are to reduce bias and drift for a more
robust regional assessment and model evaluation. Further model
improvement is needed to reduce the model-data mismatch,
particularly in the high latitudes; including the water vapor
correction in all models is a simple but crucial step to allow for
interpretation of other model biases; (5) and finally, remaining

discrepancies in multi-year variability from data-products and
GOBMs remain to be resolved.
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