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Changing ecosystem conditions present a challenge for the monitoring and
management of living marine resources, where decisions often require lead-times of
weeks to months. Consistent improvement in the skill of regional ocean models to
predict physical ocean states at seasonal time scales provides opportunities to forecast
biological responses to changing ecosystem conditions that impact fishery management
practices. In this study, we used 8-month lead-time predictions of temperature at
250 m depth from the J-SCOPE regional ocean model, along with stationary habitat
conditions (e.g., distance to shelf break), to forecast Pacific hake (Merluccius productus)
distribution in the northern California Current Ecosystem (CCE). Using retrospective
skill assessments, we found strong agreement between hake distribution forecasts
and historical observations. The top performing models [based on out-of-sample skill
assessments using the area-under-the-curve (AUC) skill metric] were a generalized
additive model (GAM) that included shelf-break distance (i.e., distance to the 200 m
isobath) (AUC = 0.813) and a boosted regression tree (BRT) that included temperature
at 250 m depth and shelf-break distance (AUC = 0.830). An ensemble forecast of the
top performing GAM and BRT models only improved out-of-sample forecast skill slightly
(AUC = 0.838) due to strongly correlated forecast errors between models (r = 0.88).
Collectively, our results demonstrate that seasonal lead-time ocean predictions have
predictive skill for important ecological processes in the northern CCE and can be
used to provide early detection of impending distribution shifts of ecologically and
economically important marine species.
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INTRODUCTION

Anticipating ecological change is an important component
of living marine resource management where decisions often
require lead-times of weeks to months. Yet, the lack of advanced
warnings about the response of marine taxa to ecosystem shifts
limits the ability of management systems to respond to rapidly
changing ecosystem conditions (Clark et al., 2001; Dietze et al.,
2018). Increasingly, seasonal ecological forecasts provide a means
to reduce related uncertainties and play a key role in supporting
management of living marine resources into the future (Hobday
et al., 2016; Payne et al., 2017; Tommasi et al., 2017). Indeed, over
the past decade seasonal ecological forecasts have been developed
for a wide range of marine taxa including American lobster in
the Gulf of Maine (Mills et al., 2017), sardines in the California
Current (Zwolinski et al., 2011; Kaplan et al., 2016), and southern
bluefin tuna in eastern Australia (Hobday et al., 2011a, 2016).

Increases in the predictive skill of physical ocean states has
partially driven the increased availability of seasonal ecological
forecasts and has resulted in the availability of skillful ocean
forecasts with seasonal lead-times for many of the world’s large
marine ecosystems (Stock et al., 2015; Tommasi et al., 2017;
Jacox et al., 2020). In the northern California Current Ecosystem
(CCE), the J-SCOPE (JISAO’s Seasonal Coastal Ocean Prediction
of the Ecosystem) model provides forecasts of physical, chemical,
and biological ocean states with seasonal lead times (e.g.,
6–9 months) (Siedlecki et al., 2016). Skill assessments have shown
the J-SCOPE model has considerable predictive skill at seasonal
lead times for several ecologically relevant variables including
subsurface temperature (Siedlecki et al., 2016). In turn, J-SCOPE
seasonal forecasts of ocean conditions can then be used to drive
ecological forecasts, such as sardine distribution in the CCE
(Kaplan et al., 2016).

Pacific hake (Merluccius productus, hereafter just hake) is an
important mid-trophic-level species in the CCE that supports
one of the largest United States groundfish fisheries outside
of Alaska (Ressler et al., 2007; Berger et al., 2019). Hake are
distributed from about 25◦ to 55◦N and at depths typically
between 100 and 1000 m. The dynamics of the hake stock are
characterized by episodic recruitment events with a few large age-
classes dominating the stock (Hamel et al., 2015; Berger et al.,
2019). Age-structure of the stock, in turn, influences distribution
since older and larger hake tend to be distributed further north
than smaller and younger conspecifics (Berger et al., 2019). Hake
growth is variable across years and is at least partly influenced
by ocean conditions (e.g., El Niño events) and availability of prey
resources (Ressler et al., 2007; Hamel et al., 2015).

Pacific hake are seasonally migratory, with a northward spring
migration from southern spawning grounds off the United States
west coast, terminating as far north as southeast Alaska. This
migration pattern results in hake being a trans-boundary resource
fished commercially in the United States and Canada (Bailey
et al., 1982). The fraction of the population that migrates into
Canadian waters, however, can vary greatly across years, creating
challenges for monitoring and management planning (Dorn,
1995). For instance, monitoring of the hake stock is conducted
jointly by a United States/Canada summer acoustic-trawl survey

that provides an index of hake biomass that is used for stock
assessment and management planning (Berger et al., 2019). The
ability of the monitoring survey to sample the full spatial extent
of the stock partially determines the magnitude of uncertainty
associated with the biomass index.

Environmental conditions influence the summer distribution
of hake along the west coast of North America (Benson et al.,
2002; Ressler et al., 2007; Agostini et al., 2008). Thermal
conditions, in particular, have been positively associated with
the fraction of the hake stock in Canadian waters, suggesting
warmer ocean conditions drive a more northern distribution
of hake (Dorn, 1995; Ware and McFarlane, 1995). More
recently, evidence has suggested that thermal conditions have a
spatially variable effect on hake distribution with strong positive
associations with hake biomass north of Vancouver Island, British
Columbia (BC) and strong negative associations offshore of
Vancouver Island, BC and Washington, United States (Malick
et al., 2020). This suggests that ocean temperatures could be a
useful predictor of hake distribution in the northern CCE.

Skillful forecasts of hake distribution could help inform
management and survey planning decisions in three important
aspects. First, early warnings of changes in hake distribution can
inform planning of fisheries independent surveys used to monitor
the hake stock (Payne et al., 2017). For example, survey planning
decisions, such as allocating survey effort between northern and
southern areas, are made several months prior to the start of the
survey. Thus, forecasts could inform decisions about allocating
limited survey effort by predicting areas where hake are unlikely
to be present in a given year. If vessel breakdowns or weather
forced a reduction in survey effort, transect density could be
reduced in regions predicted to have low probability of hake
occurrence. Second, skillful forecasts provide information on the
projected trans-boundary distribution of hake, and thus could
help reduce uncertainties in the availability of the hake stock to
fishers in Canada and the United States (Hobday et al., 2011b;
Mills et al., 2017). Third, skillful forecasts provide early warnings
of potential ecosystem shifts that can inform ecosystem-based
management (Levin et al., 2009; Malick et al., 2017). For instance,
Pacific hake are an important predator of fish and shellfish
populations and are prey for larger fish and marine mammals in
the CCE, thus advanced warnings of shifts in hake distribution
could aid detection of consequential ecological shifts in the CCE
(Bailey et al., 1982; Francis, 1983).

In this study, we examined whether seasonal forecasts of
physical oceanographic conditions can be used to accurately
predict hake distribution in the northern CCE. In particular, we
developed and tested 8-month lead-time forecasts of summer
hake distribution with the goal of providing forecasts to support
management and survey planning decisions. We used 7 years
of acoustic-trawl survey data to characterize hake distribution.
We then used the J-SCOPE regional ocean model to develop 8-
month lead-time forecasts of subsurface temperatures that were
used to force environmentally driven species distribution models
for hake. We further evaluated whether multi-model ensembles
improved forecast skill of hake distribution by comparing
ensemble forecasts to single-model forecasts. This process of
using oceanographic forecasts to predict hake distributional
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shifts in the CCE explicitly addresses fisheries management
ecosystem-linkage goals and provides necessary context for
short-term oceanographic variability within the scope of longer-
term perturbations (e.g., climate change).

MATERIALS AND METHODS

The primary motivation for developing seasonal forecasts of
hake distribution was to provide an early warning of changes
in hake distribution to support management decisions and
Pacific hake acoustic-trawl survey planning. As a result, forecasts
were co-developed with survey planners, while stakeholder
involvement occurred via meetings associated with the Pacific
hake treaty process.

Pacific Hake Data
The hake survey aims to sample the full range of the hake
distribution in summer, and survey extent and the number of
transects are often adjusted in response to the presence or absence
of hake following survey design guidelines. Therefore, we focus
on forecasting the probability of hake occurrence, rather than
density, because the acoustic-trawl survey is better informed
by early warnings in the expansion or contraction of hake
distribution than forecasts of hake density in a given location.

We used 7 years of spatially explicit biennial hake occurrence
data collected via joint United States/Canada acoustic-trawl
surveys from 2009 to 2019, with an additional 2012 survey
(Table 1). Surveys started in southern California and moved
northward along the United States and Canada west coasts until
hake were no longer observed (typically around 54.5◦N). The
spatial extent of data analyzed here, however, was limited to
the region 43–50◦N – the latitudinal domain of the J-SCOPE
model used to generate forecasts of ocean conditions (see below).
The number of annual survey transects within the study domain
ranged from 34 in 2015 to 49 in 2011 (Table 1). Survey timing was
fairly consistent across years, with the southern third of the study
domain typically sampled during the second half of July and the
northern two-thirds typically sampled during August.

Acoustic backscatter measurements attributable to hake were
converted to hake biomass using the procedures outlined in
Fleischer et al. (2008) and Malick et al. (2020). We aggregated the

TABLE 1 | Summary of acoustic-trawl survey data available for analysis.

Year N transects N bins % absent

2009 38 367 73.6

2011 49 427 73.3

2012 38 380 73.7

2013 42 417 76.5

2015 34 340 75.3

2017 39 367 68.7

2019 38 369 63.7

N transects gives the annual number of survey transects. N bins gives the annual
number of 10 km bins across the study region. % absent gives the annual
percentage of 10 km bins with no Pacific hake.

hake data into 10 km bins to reduce spatial autocorrelation in the
data and coded bins with non-zero biomass as hake occurrences.
We also tested smaller (e.g., 5 km) and larger (e.g., 20 km) bin
sizes and found results were robust across different sized bins.

Ocean Forecasts
We used 8-month lead-time forecasts of temperature at
250 m depth from J-SCOPE to forecast hake distribution
(Supplementary Figure S1). J-SCOPE is a Regional Ocean
Modeling System (ROMS) (Haidvogel et al., 2008) simulation
of seasonal ocean conditions spanning 43–50◦N on the outer
coast of Washington, Oregon, and southern BC (Siedlecki et al.,
2016). The J-SCOPE model has a 1.5 km horizontal resolution
with 40 vertical levels and includes both rivers and tides. The
large scale oceanic and atmospheric forcing comes from NOAA’s
global Climate Forecast System (CFS). In this study, we focus
on retrospective ocean forecasts, i.e., reforecasts, which are true
forecasts for a historical period using a free-running model
unconstrained by observations after initialization. The aim in
using these reforecasts was to test the models skill for jointly
predicting future ocean conditions and hake distribution 8-
months ahead.

We chose temperature at 250 m depth as our primary
ocean variable because (1) previous research has shown strong
correlations between temperature at depth and hake distribution
(Malick et al., 2020), and (2) 250 m represents depths commonly
occupied by hake (Ressler et al., 2007). In areas where bottom
depth was less than 250 m, we used bottom temperature
instead. July and August temperature forecasts were generated
for each survey year using a January initialization period. For
2019, three model runs from CFS were used to quantify the
uncertainty related to those forcing variables. The model runs
were chosen from the beginning (January 5), middle (January
15), and end (January 25) of the forecast initialization month.
The initial conditions for J-SCOPE ROMS consist of the average
conditions from CFS-reanalysis for the initialization month of
the forecast. As is typical in the oceanographic literature, we
focus on anomalies – i.e., differences from the climatology or
time-averaged field detailing the seasonal cycle. In this case,
the J-SCOPE reforecast climatology was based on 2009–2017,
building on Siedlecki et al. (2016).

In addition to the dynamic temperature variable, we also
explored a static index of cross-shelf location as a predictor of
hake distribution. In particular, we used the distance to the 200 m
shelf break, where the distance was defined as the minimum
euclidean distance between a hake observation and the 200 m
isobath. Positive values of the shelf distance variable indicated the
hake observation was offshore of the 200 m isobath and negative
values indicated the observation was inshore.

Statistical Forecasting Models
We used both generalized additive models (GAM) and boosted
regression trees (BRT) to model species distribution, because
previous studies have shown the potential for differences in
explanatory power and predictive skill across model types
(Abrahms et al., 2019; Brodie et al., 2019).
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We used binomial GAMs with a logit link to predict the
probability of hake occurrence,

yt,i = α+ s
(
St,i

)
+ f

(
Tt,i

)
+ εt,i

where y is the logit transformed probability of occurrence for
year t at location i, α is the intercept, s is a univariate smooth
function of shelf break distance (S), f is a smooth function
that describes the effect of temperature anomaly at 250 m
depth (T; i.e., deviations from the long-term mean), and εt,i are
model residuals.

We considered two alternative formulations for the f
temperature term (Table 2). The first formulation assumed a
spatially stationary temperature effect modeled as a univariate
smooth function of temperature, s

(
Tt,i

)
. The second formulation

allowed for a spatially variable temperature effect by modeling the
temperature effect as the product of Tt,i and a bivariate smooth
function of longitude (lon) and latitude (lat), i.e., g

(
lon, lat

)
· Tt,i.

Non-parametric thin plate regression splines were used for the
univariate (s) and bivariate (g) smooth functions in the GAMs
(Wood, 2003).

Two simpler GAMs that included static covariates were
considered as alternative null forecast models (Table 2). The
first simpler model included a univariate smooth of shelf break
distance. The second simpler model included a bivariate smooth
of longitude and latitude. In total, we evaluated four alternative
GAM forecast models (Table 2).

The BRT used a Bernoulli distribution. Since BRT models can
handle colinearity among predictors, we included four covariates:
temperature anomaly at 250 m depth, distance to the shelf
break, longitude, and latitude (Elith et al., 2008). BRT models
are composed of a large number of decision trees constructed
via recursive binary splits of the data with non-linear responses
produced by evaluating these splits across many trees (Elith
et al., 2008). The BRT was estimated using a maximum of three
interactions among covariates, a learning rate of 0.02, and bag
fraction of 0.6, which resulted in models with at least 1000
trees (Elith et al., 2008). Standard errors of predicted species
distribution were calculated across 100 BRT fits to provide model
error estimates (Hazen et al., 2018; Brodie et al., 2019).

Four ensemble model forecasts were generated by averaging
each of the GAMs and the BRT, where each model in the
ensemble was given equal weight (Clemen, 1989; Araujo and
New, 2007). We also tested the sensitivity of our results to
the inclusion of temperature in the BRT by re-running the
analysis with temperature anomaly at 250 m excluded from the
BRT model. All analyses were conducted using R v3.6.0 and
the mgcv and dismo packages (Elith et al., 2008; Wood, 2017;
R Core Team, 2019).

Forecast Evaluation
Previous work has shown considerable skill for the J-SCOPE
temperature forecast model. Siedlecki et al. (2016) evaluated
J-SCOPE’s predictability for temperature, and found that
predictive skill increased with depth. In addition, annual
evaluation of J-SCOPE forecasts against observations are
available on the NANOOS IOOS portal1. Supplementing earlier
evaluations of J-SCOPE performance and skill, we further
quantified performance of J-SCOPE predictions of bottom
temperature by comparing against temperature data from the
Northwest Fisheries Science Center’s West Coast Groundfish
Bottom Trawl Survey (Keller et al., 2017). That survey samples
the United States West Coast slope and shelf (55–1280 m)
annually from May-October, targeting bottom-dwelling species
of commercial importance.

We evaluated the GAM and BRT model performance using a
combination of in-sample and out-of-sample metrics including
the area-under-the-curve (AUC) and mean squared error (MSE)
(Fielding and Bell, 1997). The AUC measures how well a model
can discriminate a presence from an absence. The AUC ranges
between 0 and 1 where a value of 0.5 indicates a random classifier
and values closer to 1 indicate higher forecast skill. The MSE
measures the accuracy of the forecast model where lower values
indicate a more accurate forecast.

We used leave-one-year-out cross validation to evaluate how
the models performed at forecasting hake distribution for un-
observed years (Fielding and Bell, 1997). In this procedure, a
single year was left-out of the data, each model was re-fit using
the remaining years of data, and forecasts were produced for the

1http://www.nanoos.org/products/j-scope/home.php

TABLE 2 | Summary of forecast model performance.

Model Description MSEI AUCI MSEO AUCO MSE2019 AUC2019

GAM1 y = α+g1 (Lon, Lat) 0.142 0.841 0.156 0.800 0.170 0.834

GAM2 y = α+s1 (Shelf) 0.147 0.824 0.150 0.813 0.178 0.809

GAM3 y = α+s1 (Shelf)+s2 (Temp) 0.145 0.830 0.164 0.792 0.281 0.712

GAM4 y = α+ s1 (Shelf)+g1 (Lon, Lat) · Temp 0.144 0.833 0.154 0.805 0.210 0.725

BRT y = Lon+Lat+Shelf+Temp 0.091 0.938 0.148 0.828 0.200 0.836

ENS1 Ensemble 1: GAM1 + BRT 0.109 0.914 0.142 0.833 0.157 0.847

ENS2 Ensemble 2: GAM2 + BRT 0.111 0.909 0.140 0.838 0.163 0.834

ENS3 Ensemble 3: GAM3 + BRT 0.111 0.909 0.148 0.825 0.221 0.812

ENS4 Ensemble 4: GAM4 + BRT 0.110 0.910 0.142 0.834 0.182 0.800

MSEI, MSEO, and MSE2019 give the mean squared errors for the in-sample, out-of-sample, and 2019 forecast, respectively. AUCI, AUCO, and AUC2019 give the area-
under-the-curve estimates for the in-sample, out-of-sample, and 2019 forecast, respectively. Bold values indicate the lowest MSE and highest AUC values for a column.
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left-out year. This cross-validation was repeated for each year,
providing 7 years of out-of-sample forecasts. We then compared
the forecasted values for the left-out years to the observed values
using the MSE and AUC metrics.

To further test the performance of the forecast models, we
generated “true” out-of-sample forecasts for 2019 prior to the
hake acoustic-trawl survey. We fit the hake forecast models using
data through 2017 and then tested those models using true
forecasts of the physical environment from the J-SCOPE January
initialized temperature forecasts. True forecasts are produced
every January and released on the web in February prior to the
conditions being observed, thus referred to as a “true” forecast. In
this case, J-SCOPE ocean forecasts were used to generate forecasts
of hake distribution for August 2019. To better characterize
uncertainty in the ocean forecasts, we generated three forecasts
from the J-SCOPE model for 2019 using different initialization
dates in January (January 5, January 15, January 25). The spread
across the three forecasts was used as a measure of uncertainty
in the J-SCOPE temperature forecasts. For each hake forecasting
model, we generated separate forecasts for each of the three

temperature forecasts and used an average across the three
forecasts as our ensemble mean 2019 hake forecast for each
model. Performance of the 2019 hake forecasts was evaluated
using the AUC and MSE metrics.

RESULTS

J-SCOPE performed well when bottom temperatures observed
in situ were compared with the simulated bottom temperatures
from the same locations (R2 = 0.88; Supplementary Figure S2).
The predicted bottom temperatures were biased warm
(RMSE = 0.48), which is not uncommon in ROMS applications
and is addressed here by focusing on anomalies rather than raw
temperature values (Giddings et al., 2014). This strong agreement
between observed and predicted temperatures supports the use
of numerical ocean model forecasts of sub-surface temperatures
to predict suitable hake habitat.

Hake occurred across the latitudinal extent of the study region
with the exception of 2011, when no fish were observed off

FIGURE 1 | Pacific hake summer distribution as determined by acoustic-trawl surveys. (A) Annual occurrences and absences of Pacific hake across the study
region. Solid red circles indicate hake occurrences and open blue circles indicate hake absences. Solid gray lines show the 200 m isobath. (B) Histograms of
distance to the 200 m isobath for Pacific hake occurrences (red) and absences (blue). Darker red bars indicate overlap between the occurrences and absences.
(C) Histograms of temperature anomaly at 250 m depth for Pacific hake occurrences (red) and absences (blue). Temperature anomalies are reforecasts from the
J-SCOPE model.
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the west coast of Vancouver Island (Figure 1). Across all years,
the cross-shelf distribution of hake was concentrated around
the 200 m isobath with the majority of hake occurrences (62%)
occurring within 10 km of the shelf break (Figure 1). The
percentage of hake absences across years was consistent ranging
from 64% in 2019 to 77% in 2013, although the latitudinal
distribution of absences varied across years (Table 1). For
example, in 2015 hake were absent from most locations off-shore
of Washington and Oregon, whereas in 2011 hake occurrences
tended to be concentrated in this region (Figure 1).

The shelf-break term in the GAM and BRT models confirmed
the strong preference of hake to be present slightly offshore
of the 200 m shelf-break (Figures 2A, 3A–C). The shelf-
break preference was also the dominant pattern in the bivariate
smooth of longitude and latitude in model GAM1 (Figure 2B).

The stationary temperature terms in the GAM3 and BRT
models indicated that hake occurrence tended to have a positive
association with temperature anomaly (Figures 2C, 3D). In
contrast, the non-stationary temperature term in model GAM4
showed negative associations between temperature and hake
occurrence off the Washington and Oregon coasts, but positive
associations in more northern and southern areas (Figure 2D).

All forecasting models had considerable forecast skill (both in-
sample and out-of-sample) with AUC values greater than 0.79
and MSE values lower than 0.17 (Table 2). The BRT tended to
fit the data the best with the highest in-sample AUC (0.93) and
lowest in-sample MSE (0.09). For out-of-sample, however, an
ensemble model (ENS2) performed best with an overall AUC
of 0.84 and MSE of 0.14 (Table 2). Among the four GAMs, the
longitude-latitude model (GAM1) tended to fit the data the best

FIGURE 2 | Marginal effects of covariate smooths from the GAMs. (A) Marginal effect of shelf break term in model GAM2. (B) Marginal effect of bivariate
longitude–latitude term in model GAM1. (C) Marginal effect of stationary temperature anomaly term in model GAM3. (D) Marginal effect of spatially non-stationary
temperature anomaly term in model GAM4. In panels (A,C), gray shaded regions show 95% confidence intervals. In panels (B,D), stippling indicates location where
the 95% confidence interval for the covariate effect does not include zero.
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FIGURE 3 | Marginal effects of covariate smooths from the BRT. Each panel shows a single covariate: (A) longitude, (B) latitude, (C) distance to 200 m isobath, and
(D) temperature anomaly. Gray lines show the marginal effects and red lines show smoothed marginal effects. Percentages give relative influence (i.e., percentage
contribution) of each variable in explaining model deviance.

(i.e., had the highest AUC and lowest MSE), whereas the shelf-
only model (GAM2) had the best out-of-sample forecast skill
(Table 2). Between the two GAMs that included a temperature
effect (GAM3 and GAM4), there was support for a spatially
varying temperature effect with the GAM4 model having better
in-sample and out-of-sample performance than GAM2.

The 2019 temperature anomaly forecasts from the J-SCOPE
model indicated above average temperatures at depth across the
study region (Figure 4A) with the warmest forecast (Figure 4C)
having an average temperature anomaly of 0.78◦C and the coolest
forecast (Figure 4B) having an average anomaly of 0.36◦C.
The three individual temperature forecasts displayed moderate
variability in temperature anomalies with grid cell specific
standard deviations across the three temperature forecasts
ranging from 0.03 to 1.36 (Supplementary Figure S3).

All models had considerable skill in forecasting 2019 hake
occurrence with the ENS1 model having the best 2019 forecast
skill with an AUC of 0.85 and MSE of 0.16 (Table 2 and
Figure 5). The 2019 forecasts showed higher probabilities of hake
occurrence near the 200 m isobath, which is consistent with their
historical distribution within the study region. The three models
that included temperature anomaly (GAM3, GAM4, and BRT)
showed more spatial variability in predicted hake occurrence
and also tended to have higher standard errors of prediction
compared to models that lacked temperature (Figures 5, 6).

When temperature was removed from the BRT, model
fit declined compared to the original BRT model that

included temperature (i.e., lower in-sample skill; Table 2
and Supplementary Table S1). In addition, the model with
the highest out-of-sample skill changed to an ensemble of
the BRT without temperature and GAM4, which includes a
non-stationary temperature effect, suggesting temperature
contributes to out-of-sample forecast skill.

DISCUSSION

Our objective was to develop and test environmentally driven
seasonal forecasts of hake distribution to support management
and survey planning decisions. The forecast models we tested
showed appreciable out-of-sample forecast skill at 8-month time
horizons. In addition, we found that: (1) the J-SCOPE model
had considerable predictive skill of subsurface temperatures
throughout the study domain, (2) distance to the 200 m shelf
break was a strong predictor of historical hake occurrence
and temperature at depth had a spatially varying effect
on the probability of occurrence; and (3) the BRT model
had moderately higher forecast skill than the GAMs and
a multi-model ensemble forecast had slightly better out-of-
sample forecast skill compared to the individual GAM and
BRT models. Together, our results suggest that comparatively
simple models can forecast hake distribution using seasonal
projections of subsurface ocean temperature and distance to the
200 m shelf break.
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FIGURE 4 | January initialized August 2019 forecasts of temperature anomaly at 250 m depth from the J-SCOPE model. Each panel shows an alternative
temperature forecast initialized on different days; (A) January 5, (B) January 15, (C) January 25.

Most of the forecast skill was derived from the 200 m shelf-
break covariate. The strong affinity for hake occurrences to be
concentrated in areas just-offshore of the 200 m shelf break
is consistent with several previous studies that have shown
areas near the 200 m isobath and areas with steeply sloping
bathymetry provide good hake habitat (Dorn, 1995; Mackas
et al., 1997; Swartzman, 1997, 2001). One possible explanation
for this is that food availability may be high in these areas. In
particular, euphausiids – an important prey item for hake –
tend to concentrate in areas of steeply sloping bathymetry and
submarine canyons (Buckley and Livingston, 1997; Mackas et al.,
1997; Santora et al., 2018). In addition, areas just offshore of the
200 m isobath may also provide good physical ocean conditions.
For instance, the California Undercurrent is strongest offshore of
the 200 m isobath; the northward flowing undercurrent may act
as a migration corridor for hake that could facilitate northward
migration of Pacific hake and aggregate prey resources (Bakun,
1996; Agostini et al., 2006).

Our results indicated a moderate subsurface temperature
effect on hake occurrence. The best GAMs included a
spatially variable temperature effect and the BRT indicated the
temperature term accounted for ∼17% of the variability in the
response. This result broadly agrees with several previous papers
that have shown associations between hake and temperature at
depth (Ressler et al., 2007; Hamel et al., 2015; Malick et al.,
2020). Temperature most likely acts as a proxy for other processes
that have a more direct impact on hake distribution because the

temperature ranges analyzed here are comparable to previously
observed in situ temperature preferences of hake (Bailey et al.,
1982; Ressler et al., 2007). Although using variables that have
a more direct impact on hake habitat preferences (e.g., food
availability) may provide better forecasts, skillful forecast of
lower-trophic-level processes relevant for hake (e.g., euphausiid
distribution) are currently not available. In contrast, temperature
provides an ecologically relevant variable for which there is
forecast skill at the lead-times important for decision makers
(Kaplan et al., 2016; Siedlecki et al., 2016; Jacox et al., 2017).

The nine forecasting models evaluated here (five individual
models + four ensemble models) performed similarly across
years when forecasting out-of-sample hake distribution, e.g.,
most forecasts for 2011 and 2017 had relatively low skill,
whereas forecasts for 2009 and 2012 had relatively high skill
(Supplementary Figures S4, S5). Two factors likely contributed
to lower forecast skill in some years. First, gaps in the
latitudinal distribution of hake reduced skill, which occurred
in 2011 when hake stock size was lower and few were present
off the west coast of Vancouver Island. Second, variability
in the cross-shelf distribution also appears to reduce skill;
in 2017, hake occurrences were concentrated just inshore
of the 200 m isobath, but just offshore in all other years
(Figure 1 and Supplementary Figure S6). This suggests that
the consistency in which hake are present just offshore of
the 200 m isobath across the latitudinal range of the study
area drives differences in forecast skill among years. A priority
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FIGURE 5 | August 2019 forecasts of hake occurrence from ensemble forecast models. Top row (A–D) shows the probability of hake occurrence where red
indicates probabilities greater than 0.5 and blue indicates probabilities less than 0.5. Bottom row (E–H) shows the associated standard errors for each model where
brighter colors indicate higher forecast uncertainty.

for future research would be to examine additional covariates
to better capture inter-annual deviations in distribution from
the shelf-break, e.g., the California Undercurrent or subsurface
oxygen concentrations.

Combining multiple forecasts into an ensemble forecast has
been widely shown to produce increased forecast precision
compared to individual model forecasts, given that the individual

forecasts provide some independent information (Bates and
Granger, 1969; Clemen, 1989; Abrahms et al., 2019). We found
that the ensemble hake forecasts had only slightly better out-of-
sample skill compared to the individual model forecasts (Table 2).
The weak increase in predictive performance for the ensemble
models compared to the individual GAM and BRT models is
likely due to high correlations among model prediction errors.
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FIGURE 6 | August 2019 forecasts of hake occurrence from individual forecast models. Top row (A–E) shows the probability of hake occurrence where red indicates
probabilities greater than 0.5 and blue indicates probabilities less than 0.5. Bottom row (F–J) shows the associated standard errors for each model where brighter
colors indicate higher forecast uncertainty.

Multi-model ensemble models tend to outperform individual
model predictions when weakly or negatively correlated model
predictions are combined due to cancelation of random errors
(Clemen, 1989). In this study, however, the individual model
forecast error (i.e., observed hake occurrence - forecasted
probability of occurrence), were strongly correlated, e.g., the
average pairwise correlation of forecast errors from the GAMs
and BRT was 0.91 (Supplementary Figure S7). This indicates
that the individual forecast models produce similar forecast
errors, which reduces the effectiveness of multi-model averaging
(Araujo and New, 2007).

The results presented here provide a critical first step in
developing an early warning of hake distributional shifts. Yet,
we believe future work on three areas could further improve
the usefulness of hake forecasts for management and survey

planning. First, extending the northern range of this work to
include waters through SE Alaska could help inform survey
planning by providing additional information on the projected
northern extent of Pacific hake, which is a critical uncertainty
during survey planning. Second, developing a forecast of hake
density could improve how the forecasts inform management
decisions by helping to reduce uncertainties regarding the
proportion of the population expected to migrate into Canadian
waters. Third, if the spatial extent of the study area is extended
northward beyond 50◦N, the maximum latitudinal domain of
this study, accounting for impacts of age-structure on Pacific
hake distribution may be important. Exploratory analysis did not
identify strong age-based differences in Pacific hake occurrences
within the current spatial extent; however, evidence suggests that
older and larger hake tend to migrate further north than smaller
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hake with few age-2 hake observed north of Vancouver Island
(Ressler et al., 2007; Malick et al., 2020).

Collectively, our results provide evidence that hake
distribution can be skillfully forecast at lead-times of 8-months in
the northern CCE. Our results also illustrate the broader utility
of using seasonal lead-time ocean predictions in an ecological
context to provide early warnings of distribution shifts of
ecologically and economically important marine species. Marine
ecosystems are changing rapidly and experiencing extreme
events more frequently. Thus, skillful ecological forecasts provide
new tools to inform the management process by reducing
uncertainties regarding future states of nature that management
decisions are often dependent upon (Dietze et al., 2018).
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