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Inlet-interrupted sandy coasts are dynamic and complex coastal systems with
continuously evolving geomorphological behaviors under the influences of both climate
change and human activities. These coastal systems are of great importance to society
(e.g., providing habitats, navigation, and recreational activities) and are affected by both
oceanic and terrestrial processes. Therefore, the evolution of these inlet-interrupted
coasts is better assessed by considering the entirety of the Catchment-Estuary-Coastal
(CEC) systems, under plausible future scenarios for climate change and increasing
pressures due to population growth and human activities. Such a holistic assessment
of the long-term evolution of CEC systems can be achieved via reduced-complexity
modeling techniques, which are also ably quantifying the uncertainties associated
with the projections due to their lower simulation times. Here, we develop a novel
probabilistic modeling framework to quantify the input-driven uncertainties associated
with the evolution of CEC systems over the 21st century. In this new approach,
probabilistic assessment of the evolution of inlet-interrupted coasts is achieved by (1)
probabilistically computing the exchange sediment volume between the inlet-estuary
system and its adjacent coast, and (2) distributing the computed sediment volumes
along the inlet-interrupted coast. The model is applied at three case study sites: Alsea
estuary (United States), Dyfi estuary (United Kingdom), and Kalutara inlet (Sri Lanka).
Model results indicate that there are significant uncertainties in projected volume
exchange at all the CEC systems (min-max range of 2.0 million cubic meters in 2100
for RCP 8.5), and the uncertainties in these projected volumes illustrate the need for
probabilistic modeling approaches to evaluate the long-term evolution of CEC systems.
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A comparison of 50th percentile probabilistic projections with deterministic estimates
shows that the deterministic approach overestimates the sediment volume exchange in
2100 by 15–30% at Alsea and Kalutara estuary systems. Projections of coastline change
obtained for the case study sites show that accounting for all key processes governing
coastline change along inlet-interrupted coasts in computing coastline change results in
projections that are between 20 and 134% greater than the projections that would be
obtained if only the Bruun effect were taken into account, underlining the inaccuracies
associated with using the Bruun rule at inlet-interrupted coasts.

Keywords: catchment-estuary-coastal systems, climate change, inlet-interrupted coasts, input uncertainties,
probabilistic model

INTRODUCTION

The coastal zone is the dynamic link that connects the land
and oceans and has always attracted human settlement because
of its multiple uses, rich bio-diversity and resources. Due to
the many activities that are of great importance to society [e.g.,
navigation and access, defense and military, tourism, use of
various marine/ecosystem resources and services, waste disposal,
development of various coastal infrastructures, research, art, and
recreational activities (McGranahan et al., 2007; Wong et al.,
2014; Neumann et al., 2015)], the Low Elevation Coastal Zone
(LECZ) is heavily urbanized and comprises approximately 10%
of the world’s population (Vafeidis et al., 2011). Due to predicted
population growth, economic development and urbanization,
human pressures on coasts and coastal ecosystems will very likely
increase significantly over the 21st century, with over 1 billion
people expected to live in the coastal zone by 2050 (Hugo, 2011;
Wong et al., 2014; Merkens et al., 2016). Apart from human-
induced pressures, physical (environmental) forcing also places
stresses on this environment, where projected climate-change
driven variations in mean sea level, wave conditions, intensity
and frequency of storm surges, and river flow will affect the
coastal zone in many ways (FitzGerald et al., 2008; Syvitski
and Kettner, 2008; Ranasinghe and Stive, 2009; Syvitski et al.,
2009; Woodruff et al., 2013; Brown et al., 2014; Wong et al.,
2014; Ranasinghe, 2016; Spencer et al., 2016). Rising sea level is
likely to inundate many low-lying communities (Neumann et al.,
2015; Ranasinghe, 2016). In conjunction with rising sea level,
regional changes in wave and storm conditions and increased
river flows will likely result in more frequent and intense episodic
coastal flooding (Ranasinghe, 2016). Future changes in river
flow will also directly control the amount of sediment received
by coasts and subsequently transported onto beaches. Changes
in fluvial sediment supply to the coast will affect flooding and
erosion of low-lying coastal areas as beaches are the first line
of defense for coastal hazards (Syvitski et al., 2009; Dunn et al.,
2018, 2019; Besset et al., 2019). The potential socio-economic
impacts of climate-driven flooding and beach losses are likely
to be enormous. For example, forced migration due to sea-level
rise driven coastline recession over this century is expected to
cost about 1 trillion USD (Hinkel et al., 2013) while the potential
economic losses in coastal cities due to flooding are expected
cost more than 1 trillion USD by 2050 (Hallegatte et al., 2013)

if the appropriate adaptation strategies are not implemented.
Some other studies have shown that, under extreme emission and
sea-level rise scenarios, average annual damage due to coastal
flooding in Europe may also cost about 1.5 billion euros while
affecting millions of people by the end of the 21st century
if no new adaptation measures are taken in future (Bosello
et al., 2012; Prahl et al., 2018; Vousdoukas et al., 2018, 2020a;
Kirezci et al., 2020).

Coasts are highly varied and complex systems, and although
the variety of coastal classifications is large, there is a societal
need to focus on increasing our understanding of systems with
pronounced anthropogenic influences and hazard risk. Here,
we focus on sandy coasts, which comprise about one-third of
the world’s coastlines (Luijendijk et al., 2018). Sandy coasts
are considered to be one of the most complex coastal systems
because the physical forcing acting on them and their geomorphic
response are continually changing due to the influences of both
natural and anthropogenic drivers (Ranasinghe, 2016; Toimil
et al., 2017). The majority of these sandy coasts is interrupted
by inlets (Aubrey and Weishar, 1988; Davis and Fitzgerald, 2003;
Woodruff et al., 2013; FitzGerald et al., 2015; Duong et al., 2016;
McSweeney et al., 2017). It should be noted that all the inlet-
interrupted coasts are not necessarily connected with estuaries.
Here, we focus on inlet-interrupted mainland coasts that are
attached to estuaries receiving non-trivial river flows. These inlet-
interrupted coasts are highly dynamic due to being governed by
the interplay of oceanic and terrestrial processes (Stive, 2004;
Ranasinghe et al., 2013; Anthony et al., 2015; Ranasinghe, 2016;
Besset et al., 2019). Furthermore, as discussed above, climate
change and anthropogenic activities in the coastal zone are
likely to exert substantial changes to the complex and dynamic
behavior of inlet-interrupted coasts. Such changes along inlet-
interrupted coasts could lead even direr socio-economic impacts
on this type of coasts compared to uninterrupted coasts, making
a bad situation worse. Therefore, it is important to understand
the physical responses of inlet-interrupted coasts under the
plausible range of future variations in environmental forcing and
anthropogenic activities.

Potential climate-change impacts on inlet-interrupted coasts
can vary widely both on spatial and temporal scales. Climate-
change impacts on sandy coasts are generally classified as
short-term (hours to days), medium-term (years to decadal),
and long-term (decades to century) with changes in sea level,
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wave conditions and storm surges, and river flow patterns
being the primary climate-related impact drivers (Ranasinghe,
2016). Owing to the slow nature of rising sea level, coastal
responses driven by sea-level rise will also be relatively slow.
Under the Bruun effect, the coast will retreat as sediment
shifts in the cross-shore direction across the nearshore seabed
(Bruun, 1962) and potentially across subaerial portions of the
coastal landscape [e.g., Wolinsky and Murray (2009), Dean
and Houston (2016), Murray and Moore (2018)]. Additionally,
inlet-interrupted coasts will undergo further coastal recession
due to sea-level rise driven basin infilling as well (Stive et al.,
1990, 1998; Stive, 2004; Ranasinghe et al., 2013). Along with
these influences, future changes in temperature, precipitation
and anthropogenic activities at catchment scale will alter the
fluvial sediment supply received by the coasts (Syvitski and
Milliman, 2007; Overeem and Syvitski, 2009; Syvitski et al.,
2009; Ranasinghe et al., 2019), which in turn would affect
sedimentation patterns, including beach behavior on inlet-
interrupted coasts (Bamunawala et al., 2018a, 2020).

There are significant uncertainties in future climate change
and anthropogenic driven impacts that could affect shoreline
changes along sandy coasts (Ranasinghe, 2016, 2020; Le Cozannet
et al., 2017). As a result, in addition to the uncertainties associated
with the modeling techniques (i.e., model uncertainties),
model-derived projections of future changes along inlet-
interrupted coastlines will inherit the uncertainties related to
the climate-related impact drivers and anthropogenic activities
(i.e., input uncertainties) considered. Therefore, it is necessary to
quantify the uncertainties associated with the shoreline change
projections to better inform adaptation measures to manage the
impacts of future climate change and anthropogenic activities,
including potential socio-economic losses. Such measures will
avoid unnecessary restrictions that are usually associated with
conventional deterministic estimates of future coastline changes,
thus enabling optimum utilization of the highly valuable land
areas along coasts (Jongejan et al., 2016; Dastgheib et al., 2018).
The added value of risk-informed coastal zone planning and
management strategies (e.g., economically optimal setback lines)
is amply illustrated by Jongejan et al. (2016) and Dastgheib et al.
(2018), where the Probabilistic Coastal Recession (PCR) model
(Ranasinghe et al., 2012) was applied to determine economically
optimal coastal setback lines at the Narrabeen Beach, Sydney,
Australia, and along the eastern coast of Sri Lanka, respectively.

Here, we develop a probabilistic modeling framework that
can quantify the input uncertainties in the long-term evolution
of CEC systems. Probabilistic estimates of coastline change
along inlet-interrupted coasts under climate-change impacts
and anthropogenic activities require multiple realizations
using stochastic model inputs (i.e., Monte Carlo simulations).
Hypothetically, if unlimited computational resources were
available, such probabilistic modeling applications could be
undertaken with coupled, highly detailed (i.e., hydrodynamics
resolving) coastal and catchment models for the entire period
considered so that the episodic (e.g., storms, surges, extreme
river flows), medium-term (e.g., changes in river flow/mean
wave conditions) and long-term impacts (e.g., sea-level rise,
changes in fluvial sediment supply and longshore sediment

transport capacity) due to climate change are deterministically
accounted for in assessing the changes along inlet-interrupted
coasts. However, the use of such highly detailed modeling
techniques for ∼100-year simulations is impractical due to
computational restrictions, or necessarily accurate, due to the
potential cascade of model imperfections through temporal and
spatial upscaling (Murray, 2007), as well as the accumulation
of numerical errors within the computational domain during
long-term simulations, which in turn may lead to morphological
instabilities (Duong et al., 2016; Ranasinghe, 2016, 2020). Even
if such a multi-scale highly detailed modeling technique were
developed, the computational demand and the simulation time
per each model realization would likely to make it impractical
to be used in a probabilistic framework to estimate the coastline
changes along inlet-interrupted coasts (Ranasinghe, 2016, 2020).
These drawbacks can be overcome via the use of reduced-
complexity models, which have proven to be very useful in
obtaining insights into long-term coastal zone evolution at
regional scales at low computational cost (Ranasinghe, 2016,
2020; van Maanen et al., 2016; Bamunawala et al., 2020). Due
to their computational efficiency (compared to highly detailed
models), reduced complexity models can be easily applied within
a probabilistic framework to quantify the uncertainties in future
changes along inlet-interrupted coastlines.

Here, a novel probabilistic modeling framework is presented
to quantify the input uncertainties associated with projections
derived from the reduced complexity model developed and
demonstrated (albeit in deterministic mode) by Bamunawala
et al. (2020). To enable a direct comparison of the two modeling
approaches (i.e., deterministic vs. probabilistic), the probabilistic
approach presented here is applied to the same coastal systems
used by Bamunawala et al. (2020).

MATERIALS AND METHODS

The reduced complexity model used here is described in detail
by Bamunawala et al. (2020), and therefore, only a summary is
presented below. In this model (G-SMIC), which is based on the
SMIC model originally presented by Ranasinghe et al. (2013),
the long-term evolution of inlet-interrupted coasts is represented
by combining two major components: (1) coastline change due
to the variation in total sediment volume exchanged (1VT)
between the estuary and the adjacent inlet-interrupted coast, (2)
sea-level rise-driven landward movement of the coastline (i.e.,
the Bruun effect).

Determining Changes in Total Sediment
Volume Exchange Between an Estuary
and the Adjacent Inlet-Interrupted Coast
Assuming that the coastal-estuary system is in dynamic
equilibrium, the variation in total sediment volume exchanged
(1VT) between the estuary system and its adjacent inlet-
interrupted coast is calculated as a summation of three processes
(Ranasinghe et al., 2013), given by the following equation.

1VT = 1VBI +1VBV +1VFS (1)
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where1VT is the cumulative change in the total sediment volume
exchange between the estuary and its adjacent coast, 1VBI is the
sediment demand of the basin due to sea-level rise-driven change
in basin volume (i.e., basin infilling volume),1VBV is the change
in basin volume due to variation in river discharge, and 1VFS is
the change in fluvial sediment supply due to combined effects of
climate change and anthropogenic activities, with all volumes in
m3. A brief description of the three sediment volume components
of equation [1] is given below [for detailed derivations, please see
Ranasinghe et al. (2013) and Bamunawala et al. (2020)].

Basin Infilling Volume Due to Sea-Level Rise-Induced
Increase in Accommodation Space
Rising sea level creates an additional volume within the basin.
This additional volume (i.e., accommodation space) results in an
extra sediment volume demand by the basin (1VBI), which can
be computed as:

1VBI = −fac (Ab1RSL) (2)

where Ab is the basin surface area (m2), “fac” (0 < fac < 1)
accounts for the morphological response lag that exists between
the hydrodynamic forcing (i.e., sea-level rise) and resulting
morphological response of the basin [i.e., basin infilling volume
(1VBI)]. In this study, the value of “fac” is set as 0.5 for all the
simulations [adopted from Ranasinghe et al. (2013)].

Basin Volume Change Due to Variation in River Flow
The ebb-tidal flow volume of estuaries may change due to
variations in future river flow. Such a change in the ebb-flow
volume induces variations in estuarine and inlet flow velocities.
In the process of striving to achieve its initial equilibrium flow
velocity, an inlet-estuary system will therefore undergo changes
in its channel cross-section and bed level. Such variations in
the inlet-estuary system are associated with a specific volume of
sediment (1VBV) exchanged between the inlet-estuary system
and the adjacent inlet-interrupted coast, which can be calculated
as:

1VBV =
1QRVB

(P + QR)
(3)

where QR is the present river flow into the basin during ebb,1QR
is the climate change-driven variation in river flow during ebb,
VB is the present basin volume, and P is the mean equilibrium
ebb-tidal prism, all volumes in m3.

Change in Fluvial Sediment Supply
Future changes in climate and anthropogenic activities at the
catchment scale will result in changing the annual fluvial
sediment supply received by an inlet-estuary system (Vörösmarty
et al., 2003; Syvitski, 2005; Palmer et al., 2008; Ranasinghe et al.,
2019). This change in fluvial sediment supply [1VFS (m3)] over
the t (years) period considered can be calculated as:

1VFS =
t
∫
0
1QS (t) dt (4)

where1QS is the change in annual fluvial sediment supply (m3).

Bamunawala et al. (2018a) and Bamunawala et al. (2020) have
demonstrated that the empirical model presented by Syvitski
and Milliman (2007) can be used to calculate the annual fluvial
sediment throughput at the catchment scale.

QS = ωBQ0.31A0.5RT (5)

where ω is a coefficient equal to 0.02 or 0.0006 for the annual
fluvial sediment supply (QS) expressed in kg/s or MT/year at
catchments, in which mean annual temperature is greater than
2◦C, Q is the annual cumulative river discharge (km3), A is the
river catchment area (km2), R is the catchment relief (km), and T
is the catchment-wide mean annual temperature (◦C). Note that
equation [5] does not automatically account for any limitation
in catchment-wide sediment volume generation. Therefore,
in catchments with known limits to sediment generation,
an appropriate threshold should be considered to limit the
catchment-wide sediment production.

The catchment sediment production capacity is represented
by the term “B” of the above equation, which is expressed as the
following equation.

B = IL (1− TE)Eh (6)

where L is the lithology factor that represents the catchment’s
soil type and erodibility, 1VT is the catchment-wide reservoir
trapping efficiency factor, and Eh is catchment’s human-
induced erosion factor.

The term I of the above equation [6] is the glacial erosion
factor, which can be calculated according to the following
equation.

I = 1+
(
0.09Ag

)
(7)

where Ag is the ice cover percentage within the catchment area.
Syvitski and Milliman (2007) have suggested a range of factors

for the human-induced erosion factor (0.2 ≤ Eh ≤ 2.0) by
considering the population density of the country and its Gross
National Production (per capita). However, this human-induced
erosion factor (Eh) can be better approximated by the use of high-
resolution Human FootPrint Index (HFPI) spatial data (Balthazar
et al., 2013; Bamunawala et al., 2018a, 2020).

G-SMIC utilizes four main drivers to compute the change in
total sediment volume exchange (1VT) between the estuary and
the adjacent inlet-interrupted coast: annual mean temperature
(T), annual cumulative river discharge (Q), change in regional
relative sea-level (1RSL), and human-induced erosion factor
(Eh). The climatic inputs (i.e., T and Q) are obtained from
the Coupled Model Intercomparison Project Phase 5 (i.e.,
CMIP5) General Circulation Models (i.e., GCMs) (Taylor et al.,
2011). There are unavoidable uncertainties associated with GCM
projections. Similarly, the values obtained from different GCMs
for the same Representative Concentration Pathway (RCP) also
vary. Despite the inherent uncertainties among different GCM
projections, many climate-change impact assessment studies use
GCM outputs to drive future impact models. Projections of sea-
level change also contain uncertainties. Human activities that
may exert changes to the natural environment also vary along
various dimensions (e.g., population growth, urbanization, and
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economic development). The probabilistic approach developed
in this study quantifies the uncertainty in 1VT arising from
these input-uncertainties through stochastic treatment of the
input variables.

In this study, the modeling period is defined as 2020–2100.
Similar to the method adopted in Bamunawala et al. (2020),
catchment-estuary-coastal (CEC) system conditions in 2019 were
used as the reference condition in all the simulations. The climatic
conditions over the last decade (i.e., 2010–2019) were used to
determine the baseline values of T and Q (from CMIP5 GCMs)
in all the model applications, to avoid the potentially biased
representation of reference climatic conditions that would arise
if only 2019 T and Q values were used.

Probabilistic Assessment of Change in
Total Sediment Volume Exchange at an
Estuary-Inlet System
The logical sequence of the probabilistic modeling approach
adopted here is presented in Figure 1, followed by a description
of the different computational steps involved.

Input Data
Temperature and runoff data for the 2009–2100 period
(including the 2010–2019 reference period) were obtained from
the General Circulation Models (GCMs) from the Coupled
Model Intercomparison Project Phase 5 (CMIP5 data portal;
Earth System Grid-Centre for Enabling Technologies (ESG-
CET); available at http://pcmdi9.llnl.gov/). Projected values of
temperature and surface runoff were obtained for all four RCPs of
selected GCMs based on parameter output availability. Initially,
GCMs with both temperature and surface runoff projections for
four RCPs over the 2020–2100 period were considered as data
sources. Out of these, GCMs with spatial resolution finer than
2.5◦ were selected to obtain the necessary climate inputs (T and
Q). Further, where possible, the suitability of the above-selected
data sources was assessed regionally, by considering published
regional guidelines on model selection [e.g., CSIRO, and Bureau
of Meteorology (2015) for Australia]. Based on these criteria, four
GCMs (i.e., GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M
from NOAA, United States, IPSL-CM5A-MR from IPSL) were
selected to obtain the required T and Q values. These four GCMs
were also the source of T and Q values used for deterministic
G-SMIC projections presented in Bamunawala et al. (2020).

The regional relative sea-level change (1RSL) values at the
respective case study locations were calculated according to the
following equation (Nicholls et al., 2011):

1RSL = 1SLG +1SLRM +1SLRG +1SLVLM (8)

where1RSL is the change in relative sea level,1SLG is the change
in global mean sea level, 1SLRM is the regional variation in sea
level from the global mean due to meteo-oceanographic factors,
1SLRG is the regional variation in sea level due to changes in the
earth’s gravitational field, and 1SLVLM is the change in sea level
due to vertical land movement, all values are in m.

IPCC projections of 1RSL at a given location by 2100 can be
determined from Figure TS. 23 of Stocker et al. (2013a) and the

corresponding 1SLG values were obtained from Table SPM. 2 of
Stocker et al. (2013b). The difference between these two sets of
values provides the cumulative contribution of 1SLRM, 1SLRG,
and 1SLVLM for 2100. The temporal variation of the above three
components was assumed to vary linearly from 2000 to 2100
(Mehvar et al., 2016) to enable the computation of these SLR
components at yearly time steps as required by G-SMIC.

Yearly minimum, mean, and maximum values of global sea-
level change (1SLG) were calculated according to the following
equation (Nicholls et al., 2011).

1SLG = a1t + a2t2 (9)

where1SLG is the change in global sea level (m) since 2000, “t” is
the number of years since 2000, a1 is the trend in sea level change
(m/yr), and a2 is the change in the rate of sea-level change trend
(m/yr2). The a1 and a2 coefficient values were obtained from
published literature (Mehvar et al., 2016).

The human-induced erosion factor (Eh), which contributes
to catchment scale sediment generation is here represented via
the Human FootPrint Index (HFPI). HFPI values within the
catchment were rescaled linearly to fit the optimum scale of Eh
suggested in the literature (Syvitski and Milliman, 2007). These
rescaled HFPI values were then averaged over the catchment
to determine a representative factor for human-induced erosion
(Eh). Given the contemporary rate of population growth and
urbanization, it is safe to assume that Eh will have increased
by 2100. Owing to numerous uncertainties associated in such
projections [e.g., Veerbeek (2017)], the increment of Eh by 2100
was assumed to follow a triangular distribution with a mean,
minimum and maximum of respectively 15, 10, and 20 percent
of its present-day value.

Data Processing
The next step of the proposed modeling framework involves data
preparation (green box in Figure 1). Here, annual cumulative
distribution functions (CDFs) of the four model input parameters
[viz., mean annual temperature (T), annual cumulative river
discharge (Q), regional relative sea-level change (1RSL), and
human-induced erosion factor (Eh)] were developed, so that the
required stochastic model inputs could be generated.

Precipitation, evapotranspiration, runoff, and groundwater
flow are the main components of the total water budget at
catchment scales, with temperature, evapotranspiration, and
precipitation being closely correlated parameters (Trenberth
et al., 2007; Hegerl et al., 2015). Since T and Q values are
inter-related, it is necessary to consider their dependencies when
generating the stochastic model inputs. In order to capture the
correlation between T and Q, joint probability distributions were
generated for every year between 2020 and 2100 to determine
the annual mean temperature and cumulative river discharge
values at the catchment scale. Joint probability distributions for
the 2020–2100 period were created by using ensembles of T and
Q values obtained from the selected GCMs. A joint probability
distribution of T and Q for the reference conditions was also
generated by the use of annual mean temperature and cumulative
river discharge values for the 2010–2019 period, using the output
of the selected GCMs for this period.
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FIGURE 1 | Flowchart of the modeling approach adopted to probabilistically determine the change in total sediment volume exchange between an estuary system
and its adjacent inlet-interrupted coast.
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The yearly values of1RSL (obtained as described above) were
used to fit triangular distributions to represent 1RSL for each
year (2020–2100). For the human-induced erosion factor (Eh),
the above-adopted minimum, mean, and maximum increments
by 2100 were assumed to be reached via a linear increase from
2020, and triangular distributions were fitted to represent yearly
Eh values for the 2020–2100 period.

Generating Stochastic Model Inputs
The third stage of the proposed probabilistic modeling
framework is devoted to generating the stochastic model input for
temperature, river discharge, regional relative sea-level change,
and the human-induced erosion factor (i.e., randomization; red
box in Figure 1). The fitted joint probability distributions for
temperature and river discharge were here used to generate
stochastic model inputs for T and Q for each year (100,000
randomly pairs of T and Q per year) for the future period (2020–
2100) and the reference period (2010–2019). For all the future T
and Q between 2020 and 2100, reference values with the same
probability of occurrences were selected (i.e., reference T and Q
with the same percentiles as the future values).

The two main causes of global sea-level rise are thermal
expansion (i.e., steric effect) caused by warming of the oceans
and increased melting of land-based ice, such as glaciers and
ice sheets (Stocker et al., 2013b). Both of these factors are
directly related to increasing temperature. Therefore, in all the
model applications, a direct relationship was assumed between
annual mean temperatures (T) and change in regional relative
sea-level (1RSL) (Rahmstorf, 2007). In order to achieve this
direct relationship, percentiles of each annual mean temperature
(T) value obtained through the fitted joint probability models
(as described above) were calculated. The 1RSL values with
the same percentiles as T were selected from the fitted
triangular distributions that represent the regional relative sea-
level change (1RSL) for each year between 2020 and 2100
(100,000 values per year).

Fitted triangular distributions that represent the
human-induced erosion factor (Eh) were used to generate
stochastic variables of Eh for 2020–2100 (100,000 random
values per each year).

Computing Sediment Exchange Volumes
All the above computed stochastic model inputs were then
used in the final phase of the probabilistic modeling framework
to determine the change in total sediment volume exchange
(1VT) between a given estuary system and the adjacent inlet-
interrupted coast (i.e., sediment volume computation; purple
box in Figure 1). The above-computed Q values were used
together with estuarine and tidal information to calculate
the variations in sediment volume due to changes in basin
volume (1VBV) during 2020–2100. Generated 1RSL values
were used together with estuarine information to determine
the sediment volume demands due to basin infilling (1VBI)
for 2020–2100. Changes in fluvial sediment supply (1VFS)
were computed using the stochastically generated future and
reference T and Q values, human-induced erosion factor values,
and other required river catchment information. These three

sediment volume components were then used to compute the
total change in sediment volume exchange (1VT) (100,000
values per year), and empirical cumulative distributions of
1VT were developed for each year over the 2020–2100
projection period.

Simplified One-Line Coastline Change
Model
The simplified one-line coastline change model used here is
also described in detail by Bamunawala et al. (2020), and hence
only a summary of that modeling approach is presented below.
This simplified approach assumes uniform coastline orientation
and lack of any coastal structures along up- and down-drift
coasts. It also adopts time-invariant longshore sediment transport
rate and depth of closure value for all future coastline change
projections. The maximum extent of inlet-affected coastline
length is considered to be ∼25 km from an inlet. Otherwise,
this distance from an inlet is constrained by the presence of
rock outcrops, headlands, noticeable change in mean shoreline
orientation or inlets. If there are no gradients in annual longshore
sediment transport rates along up- and down-drift coasts, the
coastal cell considered is assumed to be in equilibrium at
annual time scales.

A selected percentile value of the above computed 1VT can
be used to determine the subsequent changes along the adjacent
inlet-interrupted coast. Here, the 50th percentile values of 1VT
were used to determine the changes along the inlet-interrupted
coasts. Since the1VT is computed annually, it is first divided into
a number of equal fragments (nv). This volume fragment (Vfr) is
then distributed along the adjacent coastline. Volume fragment
(Vfr) is calculated using the following equation.

Vfr =
1VT

nv
(10)

All or a part of this sediment volume fragment will be transported
along the coast. This is closely related to the equivalent longshore
sediment transport capacity at the vicinity (1QLST =

QLST
nv

).
Based on the assumption of a balanced sediment budget within
the coastal cell, sediment volume that gets transported to the
farthermost section of the down-drift coast will contribute to
progradate that coastline. For eroding coastlines, computation
is started from the section nearest to the inlet. If Vfr is larger
than1QLST, the surplus sediment volume (1V = Vfr −1QLST)
will result in prograding the shoreline (1y) within the longshore
distance considered (1x) (Please refer to Supplementary
Figure 1 for a schematic illustration of a hypothetical equilibrium
cross-shore profile).

The magnitude of seaward translation (1y) of the longshore
distance (1x) can be computed using the following equation
when the shoreline is assumed to move cross-shore parallel to
itself while maintaining the initial equilibrium profile.

min(1V,Vfr) = 1x(D1y) (11)

where D is the depth of closure.
The above procedure is repeated within subsequent longshore

distances (1x) until a sediment volume fragment (Vfr) is
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distributed. Then the procedure is repeated nv times, so that
the 1VT is fully distributed within the coastal cell. These
computations are closely related with an expression for longshore
sediment transport rate (QLST), which can be expressed as the
following equation.

QLST = Q0 sin(2αb) (12)

where Q0 is the amplitude of the longshore sediment transport
rate (m3/yr), and αb is the breaking wave angle, measured
between the wave crest lines and coastline. This angle can be
calculated using the following equation.

αb = α0 −
1y
1x

(13)

where α0 is the angle of breaking wave crests, measured relative
to the coastline.

The coastline position (1y) would be updated locally with the
longshore distribution of every volume fragment (Vfr). Hence,
the breaking wave angle (αb) and longshore sediment transport
rate (QLST) are also update accordingly after the distribution of
Vfr. Once the1VT is fully distributed, the final coastline position
can be obtained by superimposing the coastline recession due to
the Bruun effect (Bruun, 1962).

Case Study Sites and Stochastic Model
Inputs
The above-presented modeling technique was applied to the
case study locations considered in Bamunawala et al. (2020)
(i.e., Alsea estuary, Oregon, United States, Dyfi estuary,
Wales, United Kingdom, and Kalutara inlet, Sri Lanka;
Supplementary Figure 2). Table 1 summarizes the key
properties of the selected three systems [for more details, please
see Bamunawala et al. (2020)].

Figures 2–4 show the GCM derived projected variations of
annual mean temperature (T) and the annual cumulative river
discharge (Q) of the Alsea, Dyfi, and Kalu River catchments,
respectively over the three decadal periods considered (2021–
2030, 2056–2065, and 2091–2100). Figure 5 shows the projected
variations in the mean, minimum, and maximum regional

TABLE 1 | Properties of the selected case study CEC systems [after Bamunawala
et al. (2020)].

Parameter Alsea Dyfi Kalutara

Mean ebb-tidal prism
(
P in 106 m3)

9.0 71.1 6.2

Basin surface area
(
Ab in 106 km2

)
9.1 17.3 1.75

Basin volume
(
VB in 106 m3)

20.0 44.98 5.25

Catchment area
(
A in km2

)
1,225 670 2,778

Catchment relief (R in km) 1.25 0.66 2.25

Lithology factor (L) 1.0 0.75 0.5

Anthropogenic factor (Eh) 0.67 0.93 0.93

Beach profile slope (tan β) 0.02 0.02 0.02

Depth of closure D in m 15 15 15

Reservoir trapping efficiency (TE) 0 0 0

relative sea-level changes (1VT) in the vicinity of the Alsea, Dyfi,
and Kalutara inlets over the 21st century.

Similar to the globally averaged temperature variation
published by Stocker et al. (2013b), the 50th percentile T values
in Alsea river catchment show hardly any change during mid-
and end-century periods for RCP 2.6 [Figure 2, Panel I, subplot
(a)]. The projected maximum and minimum increments of
the 50th percentile T values by 2100 are 3.0◦C and 0.5◦C
for RCP 8.5 and 2.6, respectively. The projected variations in
Q values of the Alsea River catchment indicate only minor
variations over the 21st century for all RCPs (Figure 2, Panel
II). Except for RCP 8.5, projected Q values are slightly increased
by 2100 [relative to the early-century (2021–2030) period],
where the maximum and minimum increments in the 50th

percentile magnitudes are 0.2 km3/yr and <0.1 km3/yr for
RCP 2.6 and 4.5, respectively. The projected 50th percentile
Q value by 2100 is marginally decreased (<0.1 km3/yr)
for RCP 8.5.

Unlike the globally averaged temperature variation published
by Stocker et al. (2013b), the 50th percentile T values in the
Dyfi River catchment show differences during mid- and end-
century periods for RCP 2.6, in which the projections for the latter
period (i.e., 2091–2100) are approximately 0.5◦C warmer than the
former duration [Figure 3, Panel I, subplot (a)]. The projected
maximum and minimum increments of the 50th percentile T
values by 2100 are 2.5◦C and 0.5◦C for RCP 8.5 and 2.6,
respectively. The projected variations inQ values of the Dyfi River
catchment indicate minor variations over the 21st century for
all RCPs (Figure 3, Panel II). Except for RCP 6.0, the projected
Q values are slightly increased by 2100 (relative to the early-
century period). However, all these projected variations (i.e.,
both reductions and increments) are quite trivial, and thus only
result in minor variations of Q (<0.05 km3/yr) in the Dyfi River
catchment over the 21st century.

The 50th percentile T values in the Kalu River catchment
also show differences during mid- and end-century periods for
RCP 2.6, in which the latter period (i.e., 2091–2100) projection
is approximately 0.25◦C warmer than the former [Figure 4,
Panel I, subplot (a)]. The projected maximum and minimum
increments of the 50th percentile T values by 2100 are 2.5◦C
and <0.5◦C for RCP 8.5 and 2.6, respectively. The projected
variations in Q values in the Kalu River catchment indicate
increased river discharge over the 21st century for all RCPs
(Figure 4, Panel II). Except for RCP 2.6, the projected Q values
are increased by 2050 as well (relative to early-century period).
The projected maximum and minimum increments in the 50th

percentile Q values by 2100 are 0.75 km3/yr and 0.25 km3/yr
for RCP 8.5 and 2.6, respectively. The projections for RCP 8.5
indicated a small likelihood (∼1% probability of exceedance) of
extreme discharges (about 3.0 km3/yr) over the latter part of the
21st century [Figure 4, Panel II, subplot (d)], which is about
twice the magnitude of the 50th percentile Q values over the
same period.

Figure 5 indicates that the projected mean change of 1RSL
by 2100 is largest in the vicinity of the Kalutara inlet system
(Sri Lanka), whereas the minimum change by 2100 is projected
for the Alsea estuary (Oregon, United States). However, the
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FIGURE 2 | Empirical cumulative distributions of averaged annual mean temperature (Panel I) and the annual cumulative river discharge (Panel II) in the Alsea River
catchment, Oregon, the United States over the three decadal periods considered. Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

FIGURE 3 | Empirical cumulative distributions of averaged annual mean temperature (Panel I) and the annual cumulative river discharge (Panel II) in the Dyfi River
catchment, Wales, the United Kingdom over the three decadal periods considered. Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5,
respectively.

largest range (min-max) of projected 1VBV by 2100 is projected
in the vicinity of the Dyfi estuary (Wales, United Kingdom).

It should be noted that river sand mining activities are carried
out along the Kalu River (Bamunawala et al., 2018b). The annual
volume of this sand extraction is about 423,060 m3/yr, which
is assumed to be linearly increased by 20% over the 2020–2100
simulation period.

RESULTS

The results obtained by applying the above-described modeling
approach to the three case study sites are presented in two
steps: (1) probabilistic estimates of projected variations in the
total sediment volume exchange (1VT) between the inlet-estuary
systems and their adjacent coasts and (2) projected evolution of
the inlet-interrupted coasts at the study sites.

Projected Variations of Total Sediment
Volume Exchange (1VT) (2020–2100)
Alsea Estuary System
Figure 6 shows that, at Alsea estuary, both RCP 2.6 and
8.5 result in similar ranges of uncertainty and 50th percentile
values of 1VT during 2020–2050 [−0.5 Million Cubic Meters
(MCM) by 2050]. From that point onward, the projected
uncertainty ranges and the 50th percentile values of 1VT
under RCP 8.5 tend to deviate from those under RCP 2.6 and
result in a much greater 50th percentile value by 2100 (−1.7
MCM). The projected uncertainties of 1VT in 2100 are quite
similar for all but RCP 8.5. The results also highlight that
the deterministic projections of 1VT for RCP 8.5 presented in
Bamunawala et al. (2020) are consistently greater than the 50th

percentile values of the probabilistic projections, by as much as
0.5 MCM (∼30%) by 2100.
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FIGURE 4 | Empirical cumulative distributions of averaged annual mean temperature (Panel I) and the annual cumulative river discharge (Panel II) in the Kalu River
catchment, Sri Lanka over the three decadal periods considered. Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

FIGURE 5 | Projected changes in regional relative sea level in the vicinities of the three case study CEC systems. The solid line indicates the mean change, while the
two dashed lines indicate the computed maximum and minimum values of 1RSL. Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

The empirical CDF plots in Figure 7-Panel I indicate the
total uncertainties associated with the projected 1VT at the
Alsea estuary system (in contrast to the selected range between

10th and 90th percentiles presented in Figure 6). During the
first decadal period, there is very little uncertainty in the
1VT projections under all four RCPs, as evidenced by almost
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FIGURE 6 | Projected variation of change in total sediment volume exchange (1VT) between the Alsea estuary and the adjacent coast over the 21st century. The
projected ranges between 10th and 90th percentile are shown as shaded bands with the variation of the 50th percentile values indicated by the solid lines for RCP
2.6 (blue) and RCP 8.5 (red). The negative volumes indicate that the estuary traps more sediment at the expense of the open coast. Deterministic projections of 1VT

presented in Bamunawala et al. (2020) for RCP 2.6 (blue) and RCP 8.5 (red) are indicated by the dashed lines. Vertical bars indicate the projected ranges between
the 10th and 90th percentiles in 2100 for all RCPs with the 50th percentile values indicated as horizontal lines.

FIGURE 7 | Empirical cumulative distributions of the projected change in total sediment volume exchange (1VT) between the Alsea estuary and the adjacent coast
over the three decadal periods considered (Panel I). The empirical cumulative distributions were developed by averaging the projected 1VT values over the three
decadal periods considered. (Panel II) shows the computed variations of the projected 50th percentile values of change in total sediment volume exchange (1VT)
and contributions from different processes to 1VT at the Alsea estuary over the 21st century. Negative volumes indicate that the estuary traps more sediment at the
expense of the open coast (i.e., sediment importing estuary). Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

vertical CDFs. These uncertainties increase slightly over the
mid-century period for all RCPs (<0.25 MCM), increasing to
considerable uncertainties by the end-century period, in which
the least (0.75 MCM) and the most (1.0 MCM) variations
by 2100 are projected for RCP 4.5 and 8.5, respectively. The
results presented in Figure 7-Panel II indicate that the future
evolution of 1VT at Alsea estuary system will be governed by

the basin infilling volume (1VBI). The results also indicate that
the projected variations of 1VBV have negligible impacts on
1VT for all RCPs, because of the trivial changes in the projected
annual cumulative river discharge values of this river catchment
(Figure 2-Panel II).

The sediment demand due to basin infilling (1VBI) is
projected to increase rapidly during the late 21st century
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under RCP 8.5 [due to projected acceleration in 1RSL
under this scenario as shown in Figure 5-Alsea estuary
(Oregon, United States)], thus resulting in the largest 50th

percentile cumulative estuary sediment volume demand by 2100
(3.0 MCM). Projected changes in mean annual temperature
(Figure 2-Panel I), and the human-induced erosion factor (Eh)
contribute positively to the sediment balance by leading to
increases in fluvial sediment supply (1VFS) toward the latter part
of 2100 (i.e., after 2080) for all RCPs. The increase in fluvial
sediment supply offsets the sea-level-rise-driven basin infilling
volume demand. Therefore, the largest projected 50th percentile
value of 1VT in the Alsea estuary system by 2100 is −1.5
MCM under RCP 8.5.

Dyfi Estuary System
Figure 8 shows that, both RCP 2.6 and 8.5 result in similar ranges
of uncertainties of 1VT at the Dyfi estuary system during the
2020–2050 period. However, the magnitude of the 50th percentile
value of 1VT for RCP 8.5 (−1.5 MCM) is 50% larger than that
for RCP 2.6 (−1.0 MCM) by 2050. From that point onward,
projected uncertainty ranges and the 50th percentile values of
1VT under RCP 8.5 tend to deviate from those under RCP
2.6 and result in 100% larger median value by 2100 (−5.0
MCM under RCP 8.5 compared to −2.5 MCM under RCP 2.6).
The deterministic model results presented in Bamunawala et al.
(2020) are similar to the 50th percentile values of 1VT of the
probabilistic projections.

The empirical CDFs presented in Figure 9-Panel I indicate
that the projections of 1VT at the Dyfi estuary system show
very little uncertainty under all four RCPs during the first
decadal period (i.e., 2021–2030). These uncertainties increase
slightly over the mid-century period (i.e., 2056–2065) for all
RCPs (0.5 MCM), increasing to considerable uncertainties by the
end-century period (i.e., 2091–2100), in which the largest (1.5
MCM) variations by 2100 are projected for RCP 8.5. The results
presented in Figure 9-Panel II indicate that 1VT at Dyfi estuary
system is governed by basin infilling volume (1VBI) for all RCPs,
and 1VBV and 1VFS have trivial impacts on projected 1VT
regardless of the RCP.

The relative contribution from 1VBV is negligible because
the projected changes in the annual cumulative river discharge
values of the river catchment are trivial (Figure 3-Panel II).
Despite the projected increments in mean annual temperature
(Figure 3-Panel I) and the human-induced erosion (Eh), the
projected increases in fluvial sediment throughput of the small
Dyfi River catchment is not sufficient to noticeably offset
the estuarine sediment demand due to the basin infilling
process. The sediment demand due to basin infilling (1VBI)
is projected to increase rapidly under RCP 8.5, especially
during the late 21st century [due to the projected acceleration
in 1RSL under RCP 8.5; Figure 5-Dyfi estuary (Wales,
United Kingdom)], thus resulting in the largest 50th percentile
cumulative sediment volume demand by the estuary (5.5
MCM by 2100). The projected maximum and minimum
50th percentile values of 1VT at Dyfi estuary system by
2100 are −2.5 MCM and −5.0 MCM for RCP 2.6 and
8.5, respectively.

Kalutara Inlet System
Figure 10 indicates that the 50th percentile value and the
uncertainty in projected 1VT at the Kalutara estuary system will
increase gradually over the 21st century. Interestingly, however,
the 50th percentile 1VT under RCP 8.5 decreases until the
mid-century and then increases toward the end-century period.
The largest and the smallest magnitudes of the projected 50th

percentile value of 1VT by 2100 are 7.5 MCM and 3.5 MCM for
RCP 2.6 and 8.5, respectively. The deterministic projections of
1VT for RCP 2.6 presented in Bamunawala et al. (2020) is about
15% larger than the 50th percentile values of the probabilistic
projections by the end of the 21st century.

During the first decadal period (i.e., 2021–2030), 1VT at the
Kalutara inlet-estuary system shows very little uncertainty under
all four RCPs (Figure 11-Panel I). These uncertainties increase
slightly over the mid-century period (i.e., 2056–2065) for all
RCPs (1.0 MCM), increasing to considerable uncertainties by
the end-century period (i.e., 2091–2100), with the largest (5.0
MCM) uncertainty under RCP 8.5. Figure 11-Panel II indicate
that 1VT at the Kalutara estuary system is governed by the
fluvial sediment supply (1VFS) under all RCPs and the projected
variations of 1VBV and 1VBI have trivial impact on 1VT
regardless of the RCP.

The largest projected 50th percentile cumulative sediment
volume demand by the Kalutara estuary in 2100 is 7.0 MCM
for RCP 2.6. This is due to the reduction in fluvial sediment
supply as a result of river sand mining in this system. In this
case, the projected increases in fluvial sediment supply due to
increased T (Figure 4, Panel I), and Q (Figure 4, Panel II) under
RCP 2.6 are unable to compensate for river sand mining at any
time in the 21st century. Despite the same reduction in fluvial
sediment due to river sand mining, fluvial sediment supply under
RCP 8.5 is projected to increase rapidly toward the end of this
century, resulting in a 1VT of −3.5 MCM by 2100 (relative to
2020), which is about 12% less than the largest estuarine sediment
demand of 4.0 MCM reached in 2075.

Projections of Coastline Change
The above-computed variation in total sediment volume
exchange (1VT) were used to determine the future evolution
of inlet-interrupted coasts at the case study sites. Here,
the simplified one-line coastline change model (see section
“Simplified One-Line Coastline Change Model”) presented
in Bamunawala et al. (2020) is used to obtain first-order
approximations of the evolution of the selected inlet-interrupted
coasts. In this study, the 50th percentile values of the above
projected1VT values were used to obtain projections of coastline
change. The coastline recession due to the Bruun effect was
calculated for the same percentile of 1RSL at the respective
locations. Figure 12 shows thus obtained projected variations of
the inlet-interrupted coasts at the three case study CEC systems.

At the Alsea estuary system, the sediment demand of the
basin (1VT) acts as a sediment sink. Therefore, the estuary
imports sediment from the adjacent coast. The magnitude of
the sediment demand of the estuary (1VT) is smaller than
that of the ambient longshore sediment transport capacity at
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FIGURE 8 | Projected variation of change in total sediment volume exchange (1VT) between the Dyfi estuary and the adjacent coast over the 21st century. The
projected ranges between 10th and 90th percentile are shown as shaded bands with the variation of the 50th percentile values indicated by the solid lines for RCP
2.6 (blue) and RCP 8.5 (red). The negative volumes indicate that the estuary traps more sediment at the expense of the open coast. Deterministic projections of 1VT

presented in Bamunawala et al. (2020) for RCP 2.6 (blue) and RCP 8.5 (red) are indicated by the dashed lines. Vertical bars indicate the projected ranges between
the 10th and 90th percentiles in 2100 for all RCPs with the 50th percentile values indicated as horizontal lines.

FIGURE 9 | Empirical cumulative distributions of the projected change in total sediment volume exchange (1VT) between the Dyfi estuary and the adjacent coast
over the three decadal periods considered (Panel I). The empirical cumulative distributions were developed by averaging the projected 1VT values over the three
decadal periods considered. (Panel II) shows the computed variations of the projected 50th percentile values of change in total sediment volume exchange (1VT)
and contributions from different processes to 1VT at the Dyfi estuary over the 21st century. Negative volumes indicate that the estuary traps more sediment at the
expense of the open coast (i.e., sediment importing estuary). Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

the Alsea estuary system. Therefore, the down-drift coast at the
Alsea estuary system will be subjected to an additional coastline
recession due to the variation in 1VT, on top of recession due to
the Bruun effect. Figure 12 (top) shows that the coastal recession
along the down-drift coast of the Alsea estuary may vary between
67 m (RCP 2.6) and 86 m (RCP 8.5) by 2100. The up-drift coast
is only affected by the coastal recession due to Bruun effect and

hence projected to be move landward by between 54 m (RCP 2.6)
and 72 m (RCP 8.5) by 2100.

At the Dyfi estuary system also, 1VT acts as a sediment
sink, and hence sediment will be imported into the estuary from
the adjacent coast. The magnitude of the sediment demand of
the estuary (1VT) is larger than that of the ambient longshore
sediment transport capacity at the Dyfi estuary system. Therefore,
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FIGURE 10 | Projected variation of change in total sediment volume exchange (1VT) between the Kalutara estuary and the adjacent coast over the 21st century. The
projected ranges between 10th and 90th percentile are shown as shaded bands with the variation of the 50th percentile values indicated by the solid lines for RCP
2.6 (blue) and RCP 8.5 (red). The negative volumes indicate that the estuary traps more sediment at the expense of the open coast. Deterministic projections of 1VT

presented in Bamunawala et al. (2020) for RCP 2.6 (blue) and RCP 8.5 (red) are indicated by the dashed lines. Vertical bars indicate the projected ranges between
the 10th and 90th percentiles in 2100 for all RCPs with the 50th percentile values indicated as horizontal lines.

FIGURE 11 | Empirical cumulative distributions of the projected change in total sediment volume exchange (1VT) between the Kalutara estuary and the adjacent
coast over the three decadal periods considered (Panel I). The empirical cumulative distributions were developed by averaging the projected 1VT values over the
three decadal periods considered. (Panel II) shows the computed variations of the projected 50th percentile values of change in total sediment volume exchange
(1VT) and contributions from different processes to 1VT at the Kalutara estuary over the 21st century. Negative volumes indicate that the estuary traps more
sediment at the expense of the open coast (i.e., sediment importing estuary). Subplots (A), (B), (C), and (D) are for the RCPs 2.6, 4.5, 6.0, and 8.5, respectively.

both the up- and down-drift coasts at the Dyfi estuary system
will be subjected to additional coastline recessions (on top of
that due to the Bruun effect) to satisfy the estuarine sediment
demand. The extent of the additional down-drift coastal recession
is constrained by the magnitude of LST. The additional up-drift
coastal recession is equivalent to the magnitudinal difference
between the estuarine sediment demand (i.e., 1VT) and the LST

capacity. The model results shown in Figure 12 (middle) indicate
that the down-drift coast at the Dyfi estuary may move landward
by between 75 m (RCP 2.6) and 92 m (RCP 8.5) by 2100. The
recession along the up-drift coast is larger and projected to be
between 95 m (RCP 2.6) and 152 m (RCP 8.5) by 2100.

The Kalutara estuary system is also projected to import
sediment from its adjacent coast and hence acts as a sediment
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FIGURE 12 | Projected changes of the inlet-affected coastline at the Alsea
estuary (top), Dyfi estuary (middle), and Kalutara estuary (bottom). The two
solid lines in each subplot represent the final coastline position by 2060 and
2100 (in the same order, moving landward from the most seaward line). The
dotted line in each subplot represents the initial (reference) coastline position.

sink for all but the end-century period under RCP 8.5. The
magnitude of the sediment demand from the estuary is less
than the current longshore sediment transport capacity at the
inlet. Therefore, the down-drift coast will experience additional
coastal recession driven by 1VT, on top of that due to the

Bruun effect. Under RCP 8.5, the fluvial sediment supply to the
estuary increases during the 2080−2100 period, which results
in a net positive 1VT during this period. Thus, the Kalutara
estuary system acts as a sediment source during this period under
RCP 8.5. Therefore, the down-drift coast at Kalutara estuary is
projected to prograde after 2080 under RCP 8.5 as sediment
is exported by the estuary to the coast. However, this coastline
progradation is less than the projected coastline recession due
to the Bruun effect over the same period. Consequently, the
cumulative effect of these two opposing contributions results in
a net coastline recession along the down-drift coast. The up-
drift coast is only affected by the coastline recession due to the
Bruun effect. The model results [Figure 12 (bottom)] indicate
that the down-drift coast at the Kalutara inlet may erode by
between 92 m (RCP 2.6) to 105 m (RCP 8.5) by 2100. The up-
drift coast is projected to erode by between 50 m (RCP 2.6) to
67 m (RCP 8.5) by 2100.

To scrutinize the contribution of river catchments and
estuarine processes to the projected coastline changes along the
inlet-interrupted coasts, the maximum and minimum shoreline
change projections obtained from G-SMIC is compared with
the coastline recessions due to the Bruun rule only. This
comparison (Table 2) illustrates that the Bruun rule only is
always underestimating the potential shoreline recessions at the
three case study locations. The minimum projections of G-SMIC
at Alsea estuary system is about 24% larger than projections
obtained from the Bruun rule only. The same comparison at
Dyfi and Kalutara estuary shows that G-SMIC projections area
84% larger than coastal recession due to the Bruun rule only.
The maximum shoreline change projections obtained by G-SMIC
at the Alsea and Kalutara estuary systems are respectively 20
and 57% larger than the Bruun rule only projections. The
maximum shoreline change projection obtained by G-SMIC at
the Dyfi estuary systems is 134% larger than the Bruun rule only
projections of shoreline change. These numbers illustrates the
significance of incorporating catchment and estuarine processes
when simulating the evolution of inlet-interrupted coasts.

TABLE 2 | Comparison of maximum and minimum coastline changes by 2100,
obtained from G-SMIC applications and the Bruun rule only.

CEC system Projected coastline change (m) by 2100

Minimum value (RCP 2.6) Maximum value (RCP 8.5)

G-SIMC
application

The Bruun
rule only

G-SIMC
application

The Bruun
rule only

Alsea estuary −67 −54 −86 −72

Dyfi estuary −92 −50 −152 −65

Kalutara estuary −92 −50 −105 −67

Minimum and maximum coastline change projections of G-SMIC applications are
related to RCP 2.6 and 8.5, respectively (across both up-and down-drift coasts).
G-SMIC projections were obtained for the 50th percentile total sediment volume
exchange between inlet-estuary systems and the adjacent coast (1VT). Coastline
changes due to the Bruun effect were also computed for the 50th percentile
regional relative sea-level changes (1RSL). Negative values of coastline change
indicate coast recession.
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DISCUSSION

The results of this study indicate that the variability in model
inputs result in substantial uncertainties of the projected 1VT
by 2100. Results also show that future variation in total sediment
volume exchange at tidal inlets (i.e., 1VT) would be governed by
one or two of its contributing components [i.e., basin infilling
(1VBI), basin volume (1VBV), and fluvial sediment supply
(1VFS)]. In this study, the focus was limited to quantifying
the uncertainties associated with model inputs (i.e., only input
uncertainties not model uncertainties). Specifically, this study
takes into account the uncertainties in projections of temperature
(T), river discharge (Q), regional relative sea-level change
(1RSL), and human-induced erosion factor (Eh). Given that all
GCM projections ofT,Q and SLR are based on the Representative
Concentration Pathways (RCPs) adopted by the IPCC, this study
quantifies the differences in model projections obtained for
the four IPCC RCPs.

However, it should be noted that the uncertainties quantified
here are those associated with the single reduced-complexity
model used. To quantify “model uncertainty” it would be
necessary to derive projections from several different coastline
change models (i.e., a multi-model ensemble). The result of such
a multi-model ensemble is required to determine the likelihood
ranges as adopted by the IPCC, which, as a precursor needs
a high level of confidence (Cubasch et al., 2013). Therefore,
the 10–90% ranges presented in the results only correspond
to the output variability due to the model input uncertainties,
and cannot be taken as an indication of likelihoods of the
projections. As the results of the model are probabilistic, another
interesting analysis that would be possible is the evaluation of
the contribution of each input variable to the total variance
of the projected coastline change. This could be achieved via
the global sensitivity analysis approach (Sobol’, 2001). One
application of this method with respect to coastline projection is
presented by Le Cozannet et al. (2019).

Scrutinizing the projected model inputs indicate that annual
mean temperature and cumulative river discharge have more
significant uncertainties that the regional relative sea-level change
projections. Therefore, variabilities associated with projections of
T and Q are the major sources of model input uncertainties in this

application. These are reflected in the projected uncertainties of
1VT at the case study systems, as discussed in more detail below.

Projected sea-level rise has substantial implications on the
behavior of all but the Kalutara inlet system, which has a relatively
small estuary surface area. The overall variation of 1VT at
Kalutara estuary is governed by the change in fluvial sediment
supply. Due to the uncertainties in key climatic model inputs
(i.e., T and Q), the projected 1VT at the Kalutara estuary system
shows substantial variations, especially for RCP 8.5 during the
end-century period. The deterministic projections of 1VT for
RCP 2.6 presented in Bamunawala et al. (2020) deviates (by
about 15%) from the 50th percentile values of 1VT of the
probabilistic projections presented here. This deviation is due
to the uncertainties associated with the model inputs (i.e., T
and Q). The averaged ensemble values of T and Q used in the
deterministic application of G-SMIC presented in Bamunawala
et al. (2020) do not adequately account for the uncertainties
associated with the GCM projections.

In addition to the estuarine sediment demand due to basin
infilling, the Alsea estuary system is also significantly affected
by the fluvial sediment supply. As a result, the projected 1VT
values at the Alsea estuary show considerable uncertainties for all
RCPs, especially toward the end-century period (min-max range
of 1.0 MCM for RCP 8.5). These uncertainties also arise from
the variations associated with the model inputs (i.e., T and Q
projections). However, due to the dominance of sea-level rise
driven basin infilling in this case, these uncertainties are not as
prominent as at the Kalutara estuary system. The deterministic
projections of 1VT for RCP 8.5 presented in Bamunawala et al.
(2020) deviates (by about 30%) from the 50th percentile values
of 1VT of the probabilistic projections presented here. This
deviation is due to the uncertainties associated with the model
inputs (i.e., T and Q).

The Dyfi estuary system is dominated by the sea-level rise
driven basin infilling. Therefore, the projected 50th percentile
values of 1VT at the Dyfi estuary system shows the best
agreement with the deterministic model results presented by
Bamunawala et al. (2020). This agreement illustrates the impact
of the uncertainties associated with the climatic model inputs
(i.e., T and Q) have on the projected 1VT at CEC systems. The
uncertainties of the projected 1VT values at the Dyfi estuary

TABLE 3 | Comparison of projected coastline change by 2100 with the results presented in Vousdoukas et al. (2020b) (for RCP 8.5).

CEC system Projected coastline change (m) by 2100 under RCP 8.5 Remarks

Vousdoukas et al. (2020b) G-SMIC application

Up-drift Down-drift Up-drift Down-drift

Alsea estuary −50 −50 −72 −86 Up-drift projections do not vary by more than 50%, but the
down-drift projections are varied by ∼70%

Dyfi estuary −100 −100 −152 −92 Down-drift projections are within 10% of each other, and the
up-drift projections do not vary by more than ∼50%

Kalutara estuary −150 −150 −67 −105 Projections do not vary by more than ∼50%

Negative values of coastline change indicate coastal recessions. The 50th percentile values of coast recessions presented in Vousdoukas et al. (2020b) at the vicinity of
the three selected CEC systems are used in this comparison.

Frontiers in Marine Science | www.frontiersin.org 16 December 2020 | Volume 7 | Article 579203

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-579203 December 10, 2020 Time: 20:48 # 17

Bamunawala et al. Probabilistic Assessment of CEC System Evolution

follow the variability of1RSL and hence increases rapidly toward
the end-century period for RCP 8.5.

The projected coastline changes at the case study sites by
2100 are compared with the model results presented in a global
assessment of coastline change by Vousdoukas et al. (2020b)
(Table 3). Here, only the projections made under RCP 8.5 are
considered in this comparison. It should, however, be noted
that the global assessment of sandy coastline variation presented
by Vousdoukas et al. (2020b) does not consider the estuarine
and watershed effects and incorporates a correction factor for
Bruun effect-driven coastline recession. Therefore, the coastline
change projections presented in this study will, by necessity, differ
from the results presented in the global assessment of sandy
shorelines by Vousdoukas et al. (2020b).

It should be noted that because the shoreline changes
presented here and by Bamunawala et al. (2020) are based on
deviations from present (reference) river discharge and sediment
input rates (and on SLR rates that are greater than present). These
shoreline change rates are best interpreted as representing future
deviations from present (reference) rates of shoreline change.
For CEC systems with present rates of shoreline change that
have a magnitude similar to the projected rates of shoreline
change, based on the analysis presented here, final shoreline
positions over the future time slices should be derived by
superimposing the projected and reference rates of coastline
change. For CEC systems in which projected rates of change
based on this analysis are much larger than those under reference
conditions, final shoreline positions will result mainly from the
deviations from the present rates. The model hindcasts presented
by Bamunawala et al. (2020) indicate that, for all the case study
sites considered in this study, rates of projected coastline changes
are of the same order of magnitude as the hindcast values.
Therefore, in this study, all future coastline positions should
be obtained by superimposing the hindcast rates of coastline
changes presented by Bamunawala et al. (2020) with projected
coastline changes shown in section “Projections of Coastline
Change” and Figure 12.

It should also be noted that the coastline change projections
presented here were obtained using the simplified one-line
model presented in Bamunawala et al. (2020). This simplified
coastline change model does not account for possible changes
in longshore sediment transport rates and gradients therein
due to future changes in wave conditions, local variations
in coastline orientation (i.e., straight shoreline segments are
assumed) or the presence of any coastal structures. The model
also does not contain a built-in facility to apply any known
limits to eroding sand from up- and down-drift coasts to fulfill
estuarine sediment demand. Therefore, when applied along
coasts with known limits for sand erodibility, an appropriate
threshold should be considered. The model also does not
consider the role that the deltas (when present) could play in
distributing the exchange sediment volume (1VT). In general,
in an inlet-estuary system containing significant ebb deltas with
sediment that can be mobilized, part of the sediment demand
from the estuary will be supplied from the ebb delta [e.g.,
Dissanayake et al. (2009, 2012)]. In such cases, these simplified
model projections will overestimate coastline recession (i.e.,
pessimistic estimates). For a sediment exporting estuary system,

a part of sediment received by the coast will contribute to
the development of ebb delta. In such circumstances, model
projections made by this simplified approach can be considered
as optimistic projections (i.e., over-projection of coastline
progradation). Therefore, these coastline change projections only
provide first-order approximations of the long-term evolution
of the coastline at the case study sites. Coupling the projected
sediment volumes with a coastline change model that provides
a more realistic representation of the shape and orientation of
coastlines, such as the Coastline Evolution Model (CEM) (Ashton
and Murray, 2006), the Coastal One-line Vector Evolution
Model (COVE) (Hurst et al., 2015), or ShorelineS (Roelvink
et al., 2020) will significantly enhance the quality of coastline
change projections.

CONCLUSION

This manuscript presents the development and application
of a reduced-complexity modeling technique that can
probabilistically assess climate change-driven evolution of
inlet-interrupted coasts at time scales of 50 to 100 years while
taking into account the contributions from CEC systems in
a holistic manner. The model represents the main physical
processes that govern the variations of total sediment volume
exchange between the estuary system (1VT) and the adjacent
coast under the influence of climate change and anthropogenic
activities. The probabilistic framework within which the model
is applied here enabled the quantification of the uncertainties
associated with the projected change in sediment volume
exchange between the inlet-estuary systems and the adjacent
coast and consequent coastline changes, arising from model
input uncertainties. The model was applied to three case-study:
the Alsea estuary (Oregon, United States), Dyfi estuary (Wales,
United Kingdom), and Kalutara inlet (Sri Lanka) over the
period 2020–2100.

Results obtained for the three case study sites showed that
future variation in total sediment volume exchange at tidal
inlets (i.e., 1VT) could be governed by any of the contributing
components [i.e., basin infilling (1VBI), basin volume (1VBV),
and fluvial sediment supply (1VFS)] or combinations thereof.
As such, the results of this study underlines the importance of
taking into account all these processes when investigating future
variations in the sediment budget at CEC systems.

Model projections showed that there are significant
uncertainties associated with the sediment volume exchange
between the estuary system (1VT) and inlet-interrupted coasts,
especially for RCP 8.5 and toward the end-century period (2091–
2100). These uncertainties arise mainly due to the intra-annual
variabilities in projections of climatic variables (i.e., T and Q),
and variations among the General Circulation Model (GCM)
projections. Compared to the uncertainties in projections
of T and Q, projections of regional relative sea-level change
(1RSL) contain less variability over the 21st century. Inter-site
differences between the projected 50th percentile values and
the deterministic estimates of 1VT illustrate the importance
of adopting probabilistic modeling techniques to evaluate the
long-term evolution of CEC systems.
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Projections of coastline change at the three case study sites
obtained with the 50th percentile projections of total sediment
exchange volume (1VT) showed that accounting for basin
infilling (1VBI), basin volume (1VBV), and fluvial sediment
supply (1VFS) in computing coastline change at these inlet-
interrupted coasts results in projections that are between 20% -
134% greater than the projections that would be obtained if only
the Bruun effect were taken into account. This further emphasizes
the need to consider the CEC systems in a holistic fashion when
investigating coastline change along inlet-interrupted coasts.
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