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Coastal and open ocean regions of the Western Tropical South Pacific ocean have been
identified as a hotspot of N2 fixation. However, the environmental factors driving the
temporal variability of abundance, composition, and activity of diazotrophs are still poorly
understood, especially during the winter season. To address this, we quantified N2

fixation rates and the abundance of seven diazotroph phylotypes (UCYN-A1 symbiosis,
UCYN-B, UCYN-C, Trichodesmium, Het-1, Het-2, and Het-3) on a monthly basis during
two full years (2012 to 2014) at four stations along a coast to open ocean transect in
the New Caledonian lagoon. The total nifH gene concentration (sum of all nifH gene
copies) clearly decreased from the barrier reef to the shore. Apart from UCYN-B, which
peaked at very high abundances (106–108 nifH gene copies L−1) at two occasions
at the coastal station, the UCYN-A1 symbiosis was the most abundant group at all
stations, accounting for 79% of the total nifH gene copy counts along the transect
(average abundance 4.2 ± 10.3 × 104 nifH gene copies L−1). The next most abundant
groups were in order Trichodesmium (accounting for 14% of the total nifH gene copies),
Het-groups (6% of the total) and UCYN-C (1% of the total). Statistical analyses reveal
that the UCYN-A1 symbiosis and Het groups were associated with cold (<25◦C) waters,
high NOx and PO4

3−, weak winds from the south (occasionally southwest), while
Trichodesmium and UCYN-C were associated with warmer (>25◦C) waters, low NOx
and PO4

3− concentrations, strong and (mostly) easterly winds. Average N2 fixation rates
over the survey were 6.5 ± 6.7 nmol N L−1 d−1 and did not differ significantly among
seasons. The year to year variability was more pronounced with average integrated rates
significantly higher in the second year of the survey (162 ± 122 µmol N m−2 d−1) than
the first year (66 ± 91 µmol N m−2 d−1). This dataset suggests that seasonality is
less pronounced than previously thought, and that relatively high N2 fixation rates are
maintained in the New Caledonian lagoon all year long, despite seasonal changes in the
diazotroph community composition.
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INTRODUCTION

Biological dinitrogen (N2) fixation is a main source of fixed
N to the oceans and is performed by a suite of specialized
cyanobacteria, bacteria and archaea called “diazotrophs” (Zehr,
2011). Fixed N input fluxes on a global basis vary between
106–120 Tg N year−1 (Galloway et al., 2004; Gruber, 2008;
Jickells et al., 2017). The accuracy of those estimates is inevitably
affected by the temporal and spatial resolution of measurements.
Only few studies have addressed how the paucity of data on
spatial and temporal distribution of N2 fixation may affect
global fixed N input estimates. For instance, the global database
compiled in Luo et al. (2012) contains 2480 data points
of volumetric seawater N2 fixation rates from the northern
hemisphere, while samples from the southern hemisphere only
amount to 502. The temporal distribution of these data points
also suffers from a strong seasonal bias as >65% of the N2 fixation
measurements were made during the spring-summer season.
Hence, most of our recapitulative knowledge of marine N2
fixation stems from the northern hemisphere in spring-summer
conditions, largely from the sunlit layer of open ocean regions
of the North Atlantic and North Pacific Oceans (Benavides and
Voss, 2015; Böttjer et al., 2017).

Although the number of N2 fixation studies has increased in
recent years, temporal and spatial resolution remains coarse, as
oceanographic cruises commonly sample transects with stations
separated by tens of nautical miles, and typically at monthly
or seasonal time scales. For instance, N2 fixation rates varied
four- to nine-fold between summer and winter at Station ALOHA
in the Pacific Ocean between 2005 and 2013 (Böttjer et al.,
2017). If higher diazotrophic activity during summer prevails
among the available datasets it could cause an overestimation of
basin-wide estimates, which illustrates the need for conducting
sampling programs at finer temporal scales and throughout all
seasons of the year.

Recent intensive sampling of the western tropical South Pacific
(WTSP) Ocean revealed this region as a hotspot of N2 fixation
with some of the highest rates ever recorded (Messer et al., 2015;
Berthelot et al., 2017; Bonnet et al., 2017). However, most of our
understanding of diazotrophic activity and diversity in the WTSP
derives from open ocean cruises, the majority of which took
place in austral summer. Little sampling effort has been devoted
to coastal environments, despite their central role in the global
cycling of nutrients (Bauer et al., 2013) and increasing evidence
of their role as hotspots of diazotrophic activity (Mulholland
et al., 2012, 2019; Tang and Cassar, 2019). In the Australian Great
Barrier Reef, Hewson et al. (2007) reported nifH gene sequences
corresponding to usual open-ocean diazotroph phylotypes such
as the UCYN-A symbiosis, UCYN-B and the diatom-diazotroph
association (DDA) Het-1 (Richelia associated with Rhizosolenia).
Also in the Great Barrier Reef, Messer et al. (2017) found
Trichodesmium erythraeum to be the dominant diazotroph in
their nifH gene libraries and measured N2 fixation rates from 3
to 68 nmol N L−1 d−1.

The only other coastal N2 fixation studies in the WTSP
are those from the reef systems of New Caledonia, the second
largest in the world after the Great Barrier Reef, enclosing a

24,000 km2 lagoon. The New Caledonian lagoon waters are
shallow (∼20 m on average) and mostly oligotrophic, although
inorganic nutrients are detectable year-round in the waters
affected by the river and anthropogenic discharges near Noumea
city (Neveux et al., 2009; Ouillon et al., 2010). Previous studies
have documented high N2 fixation rates (1.9 to 29.3 nmol N L−1

d−1, Garcia et al., 2007; Bonnet et al., 2016), occurrence of large
Trichodesmium blooms (Rodier and Le Borgne, 2008; Tenório
et al., 2018) and co-occurrence with other common oceanic
diazotrophs such as DDAs, UCYN-A/haptophyte symbioses,
Crocosphaera (UCYN-B; Biegala and Raimbault, 2008; Turk-
Kubo et al., 2015; Henke et al., 2018), and UCYN-C (Turk-
Kubo et al., 2015). Most of these studies were performed during
austral summer conditions when diazotrophs are considered
to be most abundant and N2 fixation rates maximal. Yet the
effect of seasonal variability and nutrient inputs from the coast
on the distribution and activity of these diazotrophic groups
is lacking. Here we examine N2 fixation rates and diazotroph
phylotype abundances at four stations along a coast to open-
ocean transect in the New Caledonian lagoon during two full
years (2012 to 2014) on a monthly basis in the framework of
the “Grand Observatoire de l’environnement et de la biodiversité
terrestre et marine du Pacifique Sud” (GOPS). Henke et al.
(2018) examined the seasonal variability and diversity of UCYN-
A/haptophyte symbioses relative to environmental conditions. In
the current study we sought to expand our knowledge on the
broader diazotroph community and on diazotrophic activity.

MATERIALS AND METHODS

Sampling, Hydrographic and
Meteorological Parameters
Between July 2012 and April 2014, seawater samples were
collected monthly in the southwestern New Caledonian lagoon
along a transect of four stations (L2, M09, M99, and D39;
Figure 1) spanning from the reef barrier (Dumbea Pass) to the
shore (Dumbea Bay), into which the Dumbea river flows. The
sampling always started just before high tide to ensure that results
would be comparable. Seawater was collected from three depths
spanning the water column of the lagoon (1, 8, and 16 m at
station L2, M09, D39, and 1, 3, and 6 m at station M99) using a
trace metal clean Teflon pump connected to polyethylene tubing.
Vertical hydrographic profiles were obtained at each station by
casting a Seabird SBE19 CTD equipped with additional turbidity
(Seapoint optical back scatter) and in situ fluorescence (Wet
Lab Wetstar) sensors. Daily values of rainfall, wind direction
and velocity were obtained from the Météo-France station at
Faubourg Blanchot (Noumea, 22◦16.30’ S–166◦27.06’ E). Here we
used averages of the data from the week preceding sampling in
order to integrate meteorological variations.

Nutrient and Chlorophyll a Analyses
Seawater samples for nutrient analyses were collected at
each depth in acid-washed scintillation vials, poisoned with
HgCl2 (10 µg L−1 final concentration) and maintained in
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FIGURE 1 | Map of the study site in the New Caledonian lagoon (Western Tropical South Pacific), including stations L2, M09, M99, and D39.

the dark at 4◦C until analysis. Soluble reactive phosphorus
(PO4

3−; detection limit = 0.05 µmol L−1) and NOx (nitrite
(NO2

−) + nitrate (NO3
−); detection limit = 0.01 µmol L−1)

concentrations were determined according to Aminot and
Kérouel (2007). Silicate concentrations were measured according
to Mullin and Riley (1955) as modified by Fanning and Pilson
(1973; detection limit = 0.05 µmol L−1). All assays were
performed with a Bran + Luebbe AA3 autoanalyzer. Chlorophyll
a (Chl a) concentrations were determined fluorometrically
(Lorenzen, 1966) using a Turner Designs fluorometer (Trilogy
module Chl a Acid–040) calibrated with pure Chl a standards
(Sigma-Aldrich).

N2 Fixation Rates
Seawater samples were collected at each depth in transparent
4.5 L-polycarbonate bottles closed gas-tight with septum screw
caps (Nalgene). Bottles were filled to overflow and amended with
5 mL of 98.9 atom% 15N2 (Cambridge isotopes) either by directly
injecting the tracer as a bubble (Montoya et al., 1996) or as
dissolved in a subset of seawater previously N2 degassed (Mohr
et al., 2010) according to the methodology fully described in
Berthelot et al. (2015). A comparison between the two methods
did not show any significant difference (p > 0.05) between N2
fixation estimates (Supplementary Figure 1). To ensure accurate
rate calculations, the 15N/14N ratio of the dissolved N2 pool
in the incubation bottles was measured regularly whatever the
method used. For this purpose, after 24 h of incubation with the
15N2 tracer, 12 mL subsamples of each bottle were moved into

Exetainers R© fixed with HgCl2 (final concentration 10 µg L−1),
which were stored upside down in the dark at 4◦C until analyzed
by membrane inlet mass spectrometry (MIMS) according to Kana
et al. (1994). Lastly, time zero (not 15N-enriched) samples were
collected at each monthly survey and station to determine the
natural N isotopic signature (EA-IRMS) of ambient particulate
N (PN). The 15N2 gas batches used did not contain significant
concentrations of other nitrogenous compounds labeled with
15N, as previously measured (Dabundo et al., 2014; Benavides
et al., 2015). The minimum quantifiable rates (quantification
limit, QL) were 0.035 nmol N L−1 d−1. Integrated rates over the
water column were calculated by using the trapezoidal method.

DNA Extraction and Quantitative PCR
For DNA analyses, seawater samples were collected only from the
surface (1 m) in 2.3 L polycarbonate bottles and 930–2,300 mL
were filtered within 1 h through 0.2 µm Supor filters (Pall
Gelman), that were stored at −80◦C in bead beater tubes
containing a mixture of 0.1-mm and 0.5-mm diameter glass
beads (BioSpec Products, Bartlesville, OK, United States). DNA
was extracted using the Qiagen Plant kit with additional steps
for enhanced DNA recovery from cyanobacteria (Moisander
et al., 2008) before automated on-column purification and elution
using a Qiacube (Qiagen). All DNA samples were quantified by
NanoDrop ND-1000 Spectrophotometry (Thermo Scientific).

The abundance of diazotrophs was determined using
TaqMan R© qPCR assays on either an ABI 7500 or StepOnePlus
Real-Time PCR System (Applied Biosystems), with primer-probe
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sets for Trichodesmium (Church et al., 2005), UCYN-B
(Moisander et al., 2010), UCYN-C (Church et al., 2005), Het-1
(Richelia in Rhizosolenia), Het-2 (Richelia in Hemiaulus), and
Het-3 (Calothrix in Chaetoceros; Foster et al., 2007), and UCYN-
A1 and UCYN-A2 (Henke et al., 2018). For the purpose of this
study, UCYN-A1 and UCYN-A2 have been summed, yielding
to total UCYN-A abundances. Standard dilutions (107–101)
were run in duplicate, and samples and no-template controls
(NTCs) were run in triplicate. NTCs were undetectable. The
efficiency of the primer-probe sets was 82–102%. Inhibition
tests were carried out on all samples and each primer-probe set
by adding 2 µL of 105 standard to each sample. No inhibition
was detected. The limit of detection (LOD) and detected but
not quantifiable (DNQ) limits used were 1 and 8 gene copies
per reaction, respectively, (Goebel et al., 2010). Samples that
were below LOD were designated a value of 0 in the data set,
whereas gene copies higher than LOD but less than DNQ
were designated a conservative value of 1 nifH gene copy L−1.
Note that abundances are reported as nifH gene copies L−1;
extrapolating cell numbers from nifH gene copies can be difficult
due to the possibility that some taxa have multiple genome copies
(polyploidy; Sargent et al., 2016; White et al., 2018).

Statistical Analyses
Normal distribution tests (Shapiro–Wilk) by descriptive statistics
were performed on the following parameters: temperature,

salinity, Si(OH)4, NOx, PO4
3−, PON, N2 fixation, rainfall, wind

speed, wind direction and nifH gene copies per liter seawater
for UCYN-A symbiosis, UCYN-B, UCYN-C, Trichodesmium,
Het-1, Het-2, and Het-3. All targets (UCYN-A symbiosis,
UCYN-B, UCYN-C, Trichodesmium, Het-1, Het-2, and Het-3)
and eight environmental parameters (PO4

3−, Chl a, silicates,
rainfall, wind direction, NOx, salinity, and N2 fixation) were not
normally distributed (Shapiro–Wilk, p < 0.05). To investigate
the relationship between diazotroph community structure and
environmental variables, a redundancy analysis (RDA) was
conducted using XLSTAT, version 2020.1.1. To test if the
abundance of diazotrophs was different between stations and
seasons, two non-parametric tests were used: the Kruskal–
Wallis test and the Mann–Whitney test with 72 observations
(18 per station).

RESULTS

Environmental Conditions
Seawater temperature ranged from 21.7◦C to 28.1◦C over the
course of the survey, and was relatively homogeneous throughout
the water column (Figure 2A). Maximum temperatures were
measured between December and February, while minima were
recorded between August and September, corresponding to the
New Caledonian warm and cool seasons. The stations close to

FIGURE 2 | Vertical distributions of seawater temperature (A), salinity (B), Si(OH)4 concentrations (C), NOx concentrations (D), PO4
3− concentrations (E), PON

concentrations (F), and chlorophyll a concentrations (G) over the 2-year survey at the stations L2, M09, M99, and D39.
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the coast (D39, M99) were generally warmer than those located
close to the reef barrier (M09, L2; Figure 2A). Salinity ranged
from 34.29 to 35.72, showing three sharp decreases in August
2012, May 2013 and January 2014 (Figure 2B), consistent with
intense rainfall (Supplementary Table 1). This freshening was
particularly pronounced at coastal stations D39 and M99 located
close to the Dumbea river (Figure 2B).

NOx and PO4
3− concentrations (Figures 2D,E) ranged

from undetectable to 0.31 µmol L−1 and to 0.16 µmol L−1,
respectively, (Figure 2), with no clear seasonal trend. The
NOx:PO4

3− was on average 3:1 over the study period, indicative
of PO4

3− excess relative to NOx. The Si(OH)4 concentrations
(range 0.8–15.0 µmol L−1) gradually increased from the reef
(0.84–2.92 µmol L−1) to the coast (2.0–15.0 µmol L−1),
where they were the highest at the surface (Figure 2C). The
Si(OH)4:NOx ratio was on average 45 over the study period,
indicative of Si(OH)4 excess relative to NOx. The biomass
indicators (Chl a and PON concentrations) were higher at coastal
stations (D39 and M99) compared to reef stations (M09 and L2),
and generally higher during the warm season (November-April)
compared to the cold one (May-October; Figures 2F,G). The
average weekly wind direction indicated E-SE settled trade winds
(6–10 m s−1) most of the year, with some sporadic S-SW
episodes recorded in late winter-early summer 2012 and 2013
(Supplementary Table 1).

Rates of N2 Fixation in New Caledonian
Waters
N2 fixation rates ranged from not quantifiable to 51.9 nmol
N L−1 d−1 (mean over the survey: 6.5 ± 6.7 nmol N L−1

d−1). Consistent with hydrographic parameters, they were
relatively homogeneous over the well-mixed water column and
displayed similar temporal patterns among stations, although
less variability was observed at station M99 compared to the
three others (note that this station is shallower than the three
others; Figure 3A). Generally, rates integrated over the water
column (Figure 3B) were highest during austral summer months
(October-March), but not significantly different (p > 0.05), and
highly variable from one monthly survey to another. The year to
year variability was more pronounced than the seasonal one: the
average annual rates were significantly (p < 0.05) lower during
the first year of the survey (July 2012–May 2013, 66 ± 91 µmol
N m−2 d−1) than during the second year (June 2013–April 2014,
162 ± 122 µmol N m−2 d−1). When averaged over the whole
survey, rates were the highest at station M09 (168 ± 153 µmol
N m−2 d−1), followed by stations D39 (168 ± 122 µmol N m−2

d−1), L2 (117 ± 110 µmol N m−2 d−1), and M99 (48 ± 36 µmol
N m−2 d−1, note that the depth of integration is 8 m instead of
16 m for the others).

Spatiotemporal Variability of Diazotroph
Abundances
Total nifH counts L−1 (sum of all nifH gene copies L−1 of the
five phylotypes targeted by qPCR assays) showed limited seasonal
variability and were on average 2.9 ± 23 × 106 nifH gene copies
L−1 along the entire survey (Figure 4A). UCYN-B was the most

FIGURE 3 | Vertical distributions of N2 fixation rates (nmol N L−1 d−1) over
the 2-year survey at the stations L2, M09, M99, and D39 (A). Temporal
dynamics of integrated N2 fixation rates at the four stations studied (B; the
error bars correspond to the error propagation from the IRM measurements).

abundant group, accounting for >99% of the total nifH gene copy
counts on average over the survey all stations combined. This
was due to very high abundances on two occasions at the coastal
site D39 (8.4 × 106 and 2.0 × 108 nifH gene copies L−1 on Feb.
28 and May 2 2013; Figure 4B), but abundances were otherwise
sporadic (below the limit of detection in 57 out of 71 samples).
Not taking into account those two peaks, the total nifH clearly
decreased along the transect from the barrier reef (Dumbea pass)
to the shore (Dumbea river; Figure 4C). The UCYN-A symbiosis
was the most abundant group, accounting for 79% of the total
nifH gene copy counts along the transect (average abundance
4.2 ± 10.3 × 104 nifH gene copies L−1). The next most abundant
groups were Trichodesmium (7.7 ± 28.2 × 103 nifH gene
copies L−1, accounting for 14% of the total nifH gene copies),
Het-groups (3.0 ± 7.9 × 103 nifH gene copies L−1, 6% of the
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FIGURE 4 | Temporal dynamics of total nifH gene counts L−1 over the survey in surface waters (A; the errors bars correspond to the errors propagation from
triplicate analyses), relative abundance of each diazotroph phylotype targeted in this study and sea surface temperature (SST, red triangles; B), and average nifH
counts L−1 over the survey per target group and per station (C).

total; Het-1 accounted for 96% of the Het gene copies), UCYN-C
(6.8 ± 9.7 × 102 nifH gene copies L−1, 1% of the total nifH
gene copies), and finally UCYN-B (1.5 ± 4.8 × 102 nifH gene
copies L−1, 0.3% of the total nifH gene copies; Figure 4A). The
average abundance of Trichodesmium and UCYN-A increased
significantly (p < 0.05) from the coast (station D39; 6.7 × 102 and
4.2 × 103 nifH gene copies L−1, respectively) to the reef (station
L2; 2.2 × 104 and 1.1 × 105 nifH gene copies L−1, respectively).
On the contrary, Het- groups were significantly (p < 0.05) more
abundant at the two inner stations M99 and D39 compared to
the reef stations.

While the total nifH gene count did not differ between seasons,
the nifH gene abundance per target group showed temporal
variability (Figure 4B). Using temperature categories (< or
>25◦C; Moisander et al., 2010; Bonnet et al., 2015), the UCYN-A
symbiosis and Het groups were 4.8 and 4.6 times more abundant
in <25◦C waters compared to >25◦C. The opposite trend was
observed for Trichodesmium and UCYN-C, which were 1.6 and
1.2 more abundant in >25◦C waters.

The redundancy analysis (RDA) shows that the correlation
between environmental factors and diazotroph phylotypes
is mainly explained by the first two axes (75% of the
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total variance; Figure 5). The factorial axis 1 separates two
phylotypes: (i) Trichodesmium and UCYN-C, associated with
low NOx and PO4

3− concentrations, warm waters, strong and
(mostly) wind direction (dominant easterly winds), and high N2
fixation rates, (ii) UCYN-A symbiosis and Het groups, associated
with higher NOx and PO4

3−, colder waters, weaker winds
from the south (occasionally southwest), and lower N2 fixation
rates. The factorial axis 2 separates UCYN-B from all other
nifH phylotypes. UCYN-B are mainly associated with rainfall,
desalted and warm waters characterized by high biomass (POC,
PON, and Chl a).

DISCUSSION

Here we present a spatiotemporal study of N2 fixation rates and
diazotrophic community composition over 2 years in the New
Caledonian lagoon. N2 fixation was detected and diazotrophs
were present throughout the year with generally high total mean
abundances (106 nifH gene copies L−1). Inorganic nutrients
are supplied to the lagoon by the Dumbea river, however,
bioavailable forms are generally low (∼0.05 µmol L−1) in most
of the lagoon waters, and NOx are depleted relative to PO4

3−,
making these waters favorable for N2 fixation. The total number
of diazotrophs detected by qPCR increased toward the more
oligotrophic reef stations (Figure 4C). This pattern was mainly
influenced by the UCYN-A symbiosis, which were more than
two orders of magnitude more abundant at offshore stations
receiving open-ocean influences (Fichez et al., 2010) compared

to inner stations. This is in accordance with previous studies
reporting surface UCYN-A symbiosis abundances of 103–106

nifH gene copies L−1 in the Coral Sea off New Caledonia
(Moisander et al., 2010; Bonnet et al., 2015; Messer et al.,
2015), and at the entrance of the Noumea lagoon (Turk-Kubo
et al., 2015). This is also consistent with earlier reports of
significant N2 fixation and diazotroph abundances in the <3 µm
size-fraction in New Caledonian waters (Garcia et al., 2007;
Biegala and Raimbault, 2008). However, our results contrast with
data from open ocean waters around Melanesian archipelagos,
where Trichodesmium and UCYN-B outnumber other groups
and the UCYN-A symbiosis is almost absent in surface waters and
only develop deeper in the water column (Berthelot et al., 2017;
Stenegren et al., 2018), at least during austral summer conditions.
However, Moisander et al. (2010) found high abundances of
the UCYN-A symbiosis close to New Caledonia (>106 nifH
gene copies L−1), coinciding with a local upwelling system
characterized by colder temperatures (∼25◦C) compared with
surrounding waters at the same latitude (27–30◦C). Bonnet et al.
(2015) also reported high UCYN-A symbiosis abundances in
the Coral Sea off New Caledonia but during austral winter
conditions [Surface Sea Temperature (SST) ∼22◦C]. These
studies support a niche partitioning between surface warm
(>25◦C) waters where Trichodesmium and UCYN-B thrive, and
cooler (<25◦C) waters preferred by the UCYN-A symbiosis.
We observed the same pattern in the inner lagoon waters,
where the UCYN-A symbiosis was ∼5 times more abundant
during the winter season (SST < 25◦C), but to a lesser extent
compared to open ocean waters. Indeed, the UCYN-A symbiosis

FIGURE 5 | Redundancy analysis (RDA) biplot of abundance of each diazotroph phylotype targeted in this study (UCYN-A, UCYN-B, UCYN-C, Trichodesmium,
Het-1, Het-2, and Het-3) and environmental parameters [sea surface temperature, Si(OH)4, PON, POC, rainfall, Chl a, wind direction, wind speed, NOx, PO4

3−,
Salinity, and N2 fixation rates]. Points represents one of all diazotrophic phylotypes targeted at a specific time-point (n = 71), each diazotrophic phylotype are
represented by squares and environmental parameters are indicated by lines with arrows.
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still accounted for ∼60% of the diazotroph community during
the summer season (SST > 25◦C), which is not the case in the
nearby open ocean waters (Moisander et al., 2010; Stenegren
et al., 2018). The dominance of the UCYN-A symbiosis in the
New Caledonian lagoon also contrasts with recent reports of
Trichodesmium dominance and low abundances of the UCYN-A
symbiosis at Great Barrier Reef and in the adjacent Coral
Sea waters off Australia, especially during the winter season
(Messer et al., 2015, 2017).

The UCYN-A symbiosis dominated the diazotrophic
community at the four stations over both the austral summer and
winter seasons (Figure 4), suggesting the lagoon waters provide
favorable conditions for their growth. Henke et al. (2018) found
that SST and Chl a concentrations were negative predictors
of UCYN-A symbiosis abundance, and NOx concentration
was a positive predictor. This may be explained by the SE
winds triggering an upwelling off the southwestern coast of
New Caledonia (north of the Dumbea pass) that may decrease
seawater temperature by 5◦C in summer and 1◦C in winter
(Hénin and Cresswell, 2005; Ganachaud et al., 2010), and affects
the lagoon SST by incoming tides. SE winds also drive cool,
oligotrophic South Equatorial Current waters through the
lagoon, arguing for a possible open ocean origin of the UCYN-A
symbiosis detected in lagoon waters (Henke et al., 2018). The
positive correlation between the UCYN-A symbiosis and S and
SE winds (Henke et al., 2018) supports this hypothesis. NOx
concentrations are an order of magnitude higher in the lagoon
than in open-ocean waters (Moutin et al., 2018) and Great
Barrier Reef (Messer et al., 2017), which may also explain why
UCYN-A thrive in the New Caledonian lagoon compared to
other more oligotrophic areas of the WTSP (open-ocean waters
of the Melanesian archipelagos; Bonnet et al., 2015; Stenegren
et al., 2018). This is also in accordance with Mills et al. (2020)
who recently reported an enhanced activity of the UCYN-A
symbiosis after NO3- additions in N-limited environments.
Finally, due to the inability of UCYN-A to fix inorganic carbon
(Tripp et al., 2010), it is likely that the high abundance of the
symbiosis in lagoon waters is sustained by photosynthates of the
haptophyte host and/or labile dissolved organic matter input
from the Dumbea River. Indeed, a recent study reported an
increase in N2 fixation rates and UCYN-A nifH gene expression
in the mouth of the Dumbea River compared to waters located
close to the reef (Benavides et al., 2018).

Surprisingly, Trichodesmium abundances were lower than
those of the UCYN-A symbiosis (Figure 4). Over the past
20 years, Trichodesmium has been routinely studied in the
New Caledonian lagoon and surrounding waters during summer
conditions using satellite observations (Dupouy et al., 2000,
2011; Dupouy et al., 2018a,b) and direct field measurements
(Rodier and Le Borgne, 2008; Turk-Kubo et al., 2015). These
studies have revealed higher abundances in summer (∼0–250
trichomes L−1 and ∼104 nifH genes copies L−1, respectively)
than during our surveys (7.7 × 103 nifH genes copies L−1; note
that microscope cell counts do not equal nifH counts; White et al.,
2018). Trichodesmium abundances gradually increased from the
coast to the open-ocean (D39 = 6.66 × 102; M99 = 1.4 × 103;
M09 = 6.89 × 103; and L2 = 2.19 × 104 nifH gene copies L−1),

suggesting that they could have an open-ocean origin and could
be advected toward the coast with rising tide currents that
flow over the reef (Jarrige et al., 1975; Rougerie, 1986). The
abundance of Trichodesmium was higher during the summer and
SST clustered positively with the abundance of Trichodesmium,
in agreement with earlier findings (Tenório et al., 2018). This is
consistent with previous studies showing that Trichodesmium is
constrained by SST (20–30◦C; Capone et al., 1997) and thrives
at temperatures of 25◦C or warmer (e.g., Breitbarth et al., 2007;
Fu et al., 2014). The distribution pattern of Trichodesmium
determined in this study is opposite to that of the UCYN-A
symbiosis, whose abundances peaked during the winter. This
points toward an ecological niche partitioning between the
two phylotypes, a temporal segregation that mirrors the spatial
segregation observed in open-ocean waters (Moisander et al.,
2010; Bonnet et al., 2015; Stenegren et al., 2018).

Heterocystous cyanobacterial symbionts (Het- groups) were
present almost throughout the survey (mean 3.0 ± 7.9 × 103

nifH gene copies L−1; Figure 4), and were clearly dominated
by Het-1 targeting Richelia, in line with previous lagoon
(Turk-Kubo et al., 2015) and regional open-ocean studies
(Stenegren et al., 2018). The abundance of Het- groups was
maximum at the two inner stations (close to the Dumbea
river mouth) impacted by nutrient input, and mostly in waters
<25◦C, consistent with previous studies reporting high Het-
abundances in the vicinity of the Amazon and Mekong river
plumes (e.g., Carpenter et al., 1999; Subramaniam et al., 2008;
Bombar et al., 2011).

Apart from the two peaks of UCYN-B at the coastal station
(see below), the unicellular groups B and C were the least
abundant in lagoon waters over the 2-years survey. They did not
show any clear spatial or seasonal pattern, but were present at
low abundances (102 to 103 nifH gene copies L−1) over space and
time, which is consistent with our observations during a 3-week
survey performed close to the reef (Turk-Kubo et al., 2015).
UCYN-B peaked on two occasions (8.4 × 106 and 2.0 × 108 nifH
gene copies L−1 on February 28 and May 2 2013) coinciding with
high rainfall and a peak of Si(OH)4 on May, but not in February,
making a linkage questionable.

N2 fixation rates (unquantifiable to 51.9 nmol N L−1 d−1;
mean over the survey: 6.5 ± 6.7 nmol N L−1 d−1) are in line
with those measured previously in the lagoon (8.0–27.7 nmol
N L−1 d−1; Biegala and Raimbault, 2008; Berthelot et al., 2015;
Bonnet et al., 2016) and open-ocean mixed layer waters around
the Melanesian archipelagos (unquantifiable to 48 nmol N L−1

d−1, mean 8.9 ± 10.0 nmol N L−1 d−1, Bonnet et al., 2018),
but lower than those off the tropical north-northeast coast of
Australia (3 to 68 nmol N L−1 d−1, mean 32.0 ± 24.0 nmol
N L−1 d−1; Messer et al., 2017). When compared with Pacific
surface water rates at similar latitudes, including the Eastern
tropical South Pacific (∼0.9 nmol N L−1 d−1; Dekaezemacker
et al., 2013) and the tropical South Pacific Gyre (∼0.5 nmol N
L−1 d−1; Raimbault and Garcia, 2008; Bonnet et al., 2018), the
rates reported here are high. Indeed, our observations, along
with those previously reported in the WTSP (Montoya et al.,
2004; Bonnet et al., 2009, 2015, 2018; Messer et al., 2015, 2017;
Berthelot et al., 2017), reinforce the view of the WTSP region as
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a hotspot of diazotroph activity within the southern hemisphere
(Bonnet et al., 2017).

N2 fixation rates were higher (although not statistically
significant) during summer, but the year to year variability was
more pronounced than the seasonal variability with significantly
higher N2 fixation rates in the second year of the survey
(2013; Figure 3), consistent with low PO4

3− concentrations.
This pattern was mostly dictated by offshore stations and
are synchronous with higher Trichodesmium and UCYN-C
abundances (by a factor of 2.5) at station L2 in the second year.
The explanation for such an increase is unclear and may be due
to a combination of: (i) higher seawater temperatures (25.44◦C)
in austral summer 2013 compared to 2012 (24.67◦C), which
may have stimulated diazotroph activity (Stal, 2009), (ii) higher
occurrence of S-SW winds in 2013 that may have advected more
Trichodesmium from the open-ocean. Notably, the ENSO index
and rainfall did not differ significantly between the 2 years and
are, therefore, unlikely to explain the observed differences.

With a few exceptions (Garcia et al., 2007; Bonnet et al.,
2015), previous N2 fixation studies from the New Caledonian
lagoon and the WTSP were conducted over the austral summer,
which is considered the main N2 fixation season in the region
(Garcia et al., 2007). Our data suggest that seasonality in the New
Caledonian lagoon is less pronounced than previously thought,
and that relatively high N2 fixation rates are maintained all
year long, despite seasonal changes in the dominant diazotrophs.
During the 2 years of study in the New Caledonian lagoon, the
composition of the diazotrophic community was variable, but
provided a constant N input.

Assuming that diazotrophs fix on average 115 ± 47 µmol N
m−2 d−1 throughout the year (the average of the four stations)
and considering a southwestern lagoon area of 2,066 km2,
planktonic N2 fixation would introduce 0.6–1.7 × 109 g N
year−1 to the lagoon. For comparison, the inorganic N inputs
from the three major rivers flowing into the southwestern
lagoon (Dumbea, Pirogue and La Coulée rivers) calculated
from mean annual river flows from Direction of Food and
Rural Veterinary Affairs (Direction des Affaires Vétérinaires
Alimentaires et Rurales, DAVAR, New Caledonia) and dissolved
NOx concentrations data would introduce 0.03 × 109 g N year−1,
i.e., 22–56 times less than N2 fixation. Consequently, planktonic
N2 fixation represents a significant source of N for biological
communities of the southwestern lagoon. In comparison, Charpy
et al. (2007) reported mean benthic N2 fixation rates for the
southwestern lagoon of 293 ± 96 µmol N m−2 d−1, i.e.,
three times higher than planktonic N2 fixation. Collectively,
these results suggest that N2 fixation plays a critical role in
sustaining the productivity of the New Caledonian waters, which
features an exceptional diversity and is listed as a UNESCO
World Heritage Site.

CONCLUSION

Several studies have pinpointed the importance of N2 fixation for
sustaining both planktonic (Berthelot et al., 2015) and benthic
(Benavides et al., 2016) productivity during the summer season

in the New Caledonian lagoon, but here we document that
high fixed N input takes place also during the cold season. Our
analyses suggest that the meteorological and physicochemical
characteristics of New Caledonian lagoon waters lead to the
heterogeneity of diazotrophic populations both at seasonal
and annual timescales. The UCYN-A symbiosis dominate the
diazotrophic community, even during warmer, summer months,
and likely provide a constant background of fixed N to
surrounding waters, together with other UCYN groups (UCYN-
B and UCYN-C). Trichodesmium is second most abundant
group, peaking preferentially during summer months, and
adding additional fixed N during the summer. However, the year
to year variability was more pronounced, highlighting the need
for longer time-series studies with fine temporal and geographical
resolution to refine our understanding of the environmental
factors regulating diazotrophs.
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