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Net community production (NCP) is a community level process informing on the balance
between production and consumption, determining the role of plankton communities in
carbon and nutrient balances fueling the marine food web. An assessment of net and
gross community production (NCP, GPP) and community respiration (CR) in 86 surface
plankton communities sampled between 15° and 36° South along coastal Western
Australia (WA) revealed a prevalence of net autotrophic metabolism (GPP/CR > 1),
comprising 81% of the communities sampled. NCP, GPP, and CR decreased with
decreasing nutrient and chlorophyll-a concentrations, from estuarine, to coastal and
oceanic waters. CR, standardized per unit chlorophyll-a, increased with temperature,
with higher activation energies (Ea) than GPP per unit chlorophyll-a (Ea 1.07 £+ 0.18 eV
and 0.65 £ 0.15 eV, respectively) either across ecosystem types and for coastal
and estuary communities alone, indicating plankton CR to increase much faster with
warming than GPP. These results characterize surface plankton communities across
Western Australia as CO» sinks, the stronger thermal-dependence of respiration that
gross primary production rates suggests that their role may weaken with future warming.

Keywords: Western Australia, surface plankton metabolism, primary production, respiration, drivers, estuary,
coastal and open ocean waters

INTRODUCTION

Plankton communities play an important role in the carbon cycle affecting the air-sea water
exchange of O,-CO; and fueling marine food webs through their metabolic processes (i.e., gross
primary production, respiration, and net production) (Gazeau et al., 2005; Duarte, 2011; Calleja
et al., 2013). Net community production (NCP) is a community level process that integrates
all of the processes affecting the balance between production and consumption (NCP = Gross
Primary Production, GPP - Community Respiration, CR). However, there is a paucity of reports
of plankton metabolism in the Indian Ocean and, specifically, in the Australia-Indonesia Coastal
Province (AUSW) of the Longhurst Biogeochemical Provinces classification (Longhurst et al., 1995;
Longhurst, 2007), including the Western Australian (WA) region (Duarte et al., 2013; Regaudie-
de-Gioux and Duarte, 2013). The few published plankton metabolism estimates available refer to
the North and North-eastern Australian coastal waters, showing important temporal and spatial
variability of the metabolic balance of these coastal subtropical areas (Furnas and Carpenter, 2016;
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McKinnon et al., 2017). Estimates along WA, are limited to near-
shore and estuarine surface waters (Agusti et al., 2018).

The AUSW province is divided into three subregions: (i) the
tropical southern coasts of Sumatra and Java, (ii) the subtropical
Western coast of Australia from Cape Bougainville (14°N) to
Cape Leeuwin (34°S); and iii) from Cape Leeuwin to the Bass
Strait along the temperate coast of the Great Australian Bight.
These three subregions are ecologically diverse as different
atmospheric and oceanic forcing characterize the northern and
southern parts of the large province (Longhurst, 2007).

The WA coast has unique oceanographic conditions, with
a combination of downwelling processes on a large-scale
perspective and, a small-scale seasonal coastal upwelling (Smith
et al., 1991). From the tropics, the southward-flowing Leeuwin
Current (LC) dominates the coastal area, transporting warm
and low salinity waters southward (Smith et al., 1991), with
maximum flow during the austral autumn and winter (Koslow
et al.,, 2008; Lourey et al.,, 2013; Pearce and Feng, 2013) when
the equatorward winds are weak (Godfrey and Ridgway, 1985).
Although, other currents characterize this region such as the
Ningaloo Current (NC) that flows northward near-shore (Taylor
and Pearce, 1999) and the inshore Capes Current (CC) in the
southwest which flows seasonally northward during the summer
months. South of about 32°S, the equatorward flow of cool,
high-salinity water of the subtropical gyre is the West Australian
Current (Pearce and Pattiaratchi, 1999).

Coastal areas have been described as the most productive
zones of the global ocean, responsible for about 14-33% of
total oceanic production (Gattuso et al., 1998). However, the
ordinary upwelling processes of cold, nutrient-rich waters in
the eastern boundary currents of the South Pacific and South
Atlantic with high primary production rates (Longhurst et al.,
1995), do not occur off the WA coast, where the warm,
nutrient-poor Leeuwin Current suppresses upwelling processes.
Therefore, WA oligotrophic waters are expected to support lower
pelagic productivity compare to the major eastern boundaries
currents (Koslow et al., 2008), but higher production compared
to more oligotrophic areas, such as the Mediterranean Sea or the
Subtropical Gyres of the ocean (Duarte et al., 2013).

Here we assess plankton metabolic rates from estuarine,
inshore and offshore surface waters in the WA coast, and assess
the relationship with temperature and nutrient concentrations,
and plankton community structure and biomass to elucidate
patterns in plankton metabolic rates and metabolic balance.

MATERIALS AND METHODS
Study Site and Sampling

A total of 86 surface (0.5-3 m) stations were sampled in six areas
along the Western Australian Coast in the southeaster Indian
Ocean (Figure 1), including coastal, estuarine and open ocean
waters. These waters were sampled between 15° and 36° South
and 107° and 122° East, all within the Australia-Indonesia Coastal
Province (AUSW) (Longhurst et al., 1995; Longhurst, 2007).
Most of the coastal stations (70) were near-shore areas
and were reached from land sampling 10 L of surface waters

(0.5-3 m) at Ningaloo Reef (five stations), Woodman Point
(27 stations), Albany (four stations), Rottnest Island (1), and
Busselton (1). The same sampling methodology was used in the
Swan River Estuary (32 stations). The temperature (°C), dissolved
oxygen (% sat), conductivity (uS/cm), and pH were measured
through the water column with a YSI EXO1 Multi-parameter
Water Quality Sonde for all the samples collected from land.
The remaining 16 stations were sampled in research cruises
conducted on board three research vessels: the Pilbara region
(seven stations) sampled on board the RV/Solander (AIMS),
the Perth region (three stations), and Albany (one station)
on board RV/Hespérides during the Malaspina Expedition
Circumnavigation (Duarte, 2015), and an additional five stations
along the Perth Canyon area on board the RV/Falkor (Schmidt
Ocean Institute). These stations were sampled also at the surface
(0.5-3 m) with a rosette sampler (equipped with 24 or 18 12 L-
Niskin bottles), fitted with a Conductivity-Temperature-Depth
(CTD) instrument (SeabirdSBE9).

Plankton Community Metabolism

Surface water samples were collected and carefully siphoned
into a total of 19 bottles including: a set of seven borosilicate
glass Winkler bottles that were fixed immediately to determine
the initial oxygen concentration; seven black borosilicate glass
Winkler bottles for the measurement of respiration in the dark,
and five transparent quartz bottles for the measurement of net
community production in the light. Quartz bottles were used for
light incubations because it allows the full solar radiation spectra
to penetrate through, while borosilicate glass Winkler bottles
remove much of the solar UV spectra, which can bias surface
net community production estimates (Regaudie-de-Gioux et al,,
2014; Garcia-Corral et al., 2017a, 2020). Light quartz and dark
glass bottles were incubated during 24 h in tanks equipped
with a cooling and heating systems to mimic the in situ water
temperature and natural solar light radiation conditions or at the
in situ sampled place. After the 24 h incubation period, plankton
metabolic rates were evaluated from changes in dissolved oxygen
concentrations (Carpenter, 1965), determined by automated
high-precision Winkler titration with a potentiometric end-point
titrando (Oudot et al., 1988). NCP rates were determined from
the oxygen change in the clear bottles ([O;] final light bottles —
[O2] initial bottles), CR rates were determined from the oxygen
change in the dark bottles ([O;] initial bottles - [O;] final dark
bottles) and GPP rates were calculated as the sum of CR and NCP.
All rates are expressed as mmol Oy m® d—!.

Heterotrophic Prokaryotes and
Picophytoplankton Abundances

Heterotrophic prokaryotes abundance (ie., cell density)
was measured through flow cytometry technique (Gasol
and del Giorgio, 2000). Water samples were fixed with
1% of paraformaldehyde and 0.05% glutaraldehyde (final
concentration); frozen in liquid nitrogen for 10 s and store at
—80°C until analysis. All samples except the ones from the open
ocean stations, were stained with a solution of SYTO 13 (50 uM
final concentration) and analyzed with a BD FACSCanto II flow
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FIGURE 1 | Location of the sampled areas within the Australia-Indonesia Coastal Province (AUSW) of the Indian Ocean. Symbols represent: circles, open ocean
stations; triangles, the coastal locations and the inverted triangles, the estuary waters. Longhurst Biogeochemical Provinces: SSTC (South subtropical convergence),
AUSW (Western Australian and Indonesian coast), ISSG (Indian South subtropical gyre), MONS (Indian monsoon gyre), and ARCH (Archipelagic deep basins).
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cytometer at the Centre for Microscopy, Characterisation and
Analysis (Queen Elizabeth IT Medical Centre) at The University
of Western Australia (UWA, Perth). The open ocean samples
from the Malaspina Expedition were stained with SYBR Green I
and analyzed using a FACSCalibur Becton Dickinson cytometer
on board the RV/Hespérides. Picophytoplankton abundance of
Prochlorococcus, Synechococcus and eukaryotic picoautotrophs
were also determined by flow cytometry as described in Agusti
et al. (2019). Counting of cells per ml~! was done with the
Flow]Jo 9.7.6 software.

Chlorophyll-a and Inorganic Nutrient

Determinations

Surface water collected in each station (between 1 L and 100 mL)
was filtered through Whatman grade GF/F glass microfiber filters
of 25 mm diameter (nominal pore size of 0.7 pm). Filters were
frozen at —20°C and introduced in acetone 90% and left for 24 h
in a refrigerator, in the dark. After that period, chlorophyll-a
(Chl-a) fluorescence was measured by the use of a fluorimeter
calibrated with a Chl-a standard (Sigma-Aldrich) and equipped

with a module of Chlorophyll-a Non-Acidification Fluorescent
Module (CHL-A NA).

Dissolved inorganic nutrients samples (nitrate and phosphate)
were frozen upon sampling until laboratory analyses. All samples
were analyzed in a segmented-flow Skalar autoanalyzer following
standard procedures (Grasshoff et al., 2009).

Data Analysis and Statistics

All data were recorded in Microsoft Excel and analyzed by the
statistical package program JMP version 9.0.1. A Shapiro-Wilk
test was conducted to assess the normal distribution in each set of
data; in all cases, the p-value was found to be less than 0.05. Non-
parametric test Kruskal-Wallis was performed to test significant
differences between ecosystems. A linear regression model type
II and second order polynomial (quadratic) regression was
fitted to evaluate the relationships between dependent and
independent variables. We used a forward stepwise multiple-
regression analysis with the minimum Akaike information
criterion (Hastie and Tibshirani, 1993) to assess the relative
influence of environmental factors on the metabolic rates (GPP,
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CR, and GPP/CR). The software Ocean Data View version 4.6.3
(Schlitzer, 2013) was used to create the map of the sampled areas
(Figure 1) and GraphPad Prism software for Figures 2-8.

RESULTS

Temperature showed a range of variation between 12 and 29°C,
with the warmest temperatures in open-ocean waters of the
Northern area of the Pilbara, and the lowest at the Swan Estuary
(Table 1 and Figure 1). Salinity varied differently between marine
sites, from 31.6 to 37.1 in coastal samples and from 34.5 to
36.5 in open ocean waters. Indeed, the Swan Estuary salinity
varied widely (22-37), with minimum salinity reached at the
time of maximum river discharge in late winter and spring.
The estuarine waters also showed the highest nutrient (nitrate-
NOs3 and phosphate-PO4) concentrations followed by coastal
and open ocean waters (Table 1). Chlorophyll-a concentrations
followed the same pattern as nutrient concentrations, decreasing
from estuarine waters to coastal areas and open ocean
waters (Table 1).

The picophytoplankton community composition also varied
between areas, with a lack of Prochlorococcus and picoeukaryotes
populations at the Swan Estuary. Indeed, Synechococcus was
the dominant picophytoplankton population across all regions
(mean range from 39.31 x 10° to 61.80 x 10° cells ml™}).
Heterotrophic prokaryote abundance varied widely, with mean
values ranging from 252 x 10> ml~! at the coastal waters to
461 x 10° ml~! at the open ocean (Table 1).

Plankton metabolic rates at the surface waters of WA
also varied across ecosystem types. Overall, surface plankton
communities in estuarine waters showed significantly higher
metabolic rates compared to those of coastal and open ocean
areas (Figures 2A-C). CR ranged from 0.36 to 26.97 mmol
0, m~? d7!, following a significant decrease from estuarine
(mean + SE 8.81 + 0.76 mmol O, m~3 d~!), to the coastal
(mean =+ SE 4.44 + 0.42 mmol O, m~3 d~ 1), and the open ocean
waters (mean + SE 1.93 + 0.46 mmol O, m—3 d~1) (Figure 2A).
GPP followed the same pattern as CR, with the highest GPP
registered in the estuarine waters (mean = SE 15.44 & 1.83 mmol
0, m~3 d7!), followed by coastal waters (5.77 £ 0.55 mmol
0, m~3 d7!), and the lowest GPP measured in the open ocean
(2.68 £+ 0.66 mmol O, m~3 d~ 1) (Figure 2B). Net community
production ranged between —7.06 &= 1.77 and 42.10 = 0.27 mmol
0, m~? d~!, showing mean autotrophic values (NCP > 0)
across ecosystem types (mean =+ SE: 6.88 £ 1.55 mmol O,
m~3 d~! estuary > 1.27 & 0.58 coastal > 0.73 % 0.46 open
ocean). Negative NCP rates were uncommon and represented
10% of estuarine, 22% of coastal, and 29% of open ocean
communities. GPP/CR ratios showed no significant differences
among ecosystems, all of which had mean GPP/CR ratios > 1
(mean =+ SE: 1.85 & 0.15 estuarine; 1.75 =+ 0.25 coastal;
1.50 + 0.32 open ocean communities) (Figure 2D). When
standardizing metabolic rates by Chlorophyll-a concentration,
these trends changes as different carbon efficiencies can be found
for the diverse taxonomic groups and nutrient bioavailability
(Maranon et al., 2001, 2007, 2013). The experimental standard

errors (SE) of O, determinations among replicate bottles varied
between 0.06 and 1.37 mmol O, m~—3 d~!, with a mean of
0.25 mmol O, m~3 d~!. These errors represent a mean of
0.11% of the total value of the measurements. The estuarine
replicates showed higher mean error (0.46 mmol O, m~3d1),
than coastal (0.37 mmol O, m~3 d~!), and open ocean replicates
(0.16 mmol O, m~3 d~1).

The multiple-regression analysis (Table 2) shows that
Chlorophyll-a (Chl-a) was the main factor explaining the
metabolic rates (GPP, CR, and the GPP/CR ratio) in the WA
studied region. Thus, GPP was positively correlated with Chl-
a and temperature (the correlation is negative but it is the
inverse of temperature) (Table 2). Accordingly, CR followed
the same trend as GPP with Chl-a and temperature, but also
was positively correlated with phosphate concentration and
heterotrophic prokaryote abundance (Table 2). In addition,
Chl-a, phosphate concentration and heterotrophic prokaryote
abundance were the explanatory variables that appeared to
control the GPP/CR ratio (Table 2).

There was an overall strong positive linear relationship
between CR and GPP (R?> = 0.61, p < 0.0001, n = 75),
with a In-In slope of 0.73 £ 0.07, significantly lower than 1
(Figure 3). Communities in each ecosystem type showed positive
In-In relationship between CR and GPP, with no significant
difference (Kruskal-Wallis test, p > 0.05), in slope for open ocean
(0.66 =+ 0.18), coastal (0.49 =+ 0.22), and estuarine communities
(0.47 £ 0.11, Figure 3). However, despite the significant
regression in coastal ecosystems, the predictive capacity of the
relationship was lower (R? = 0.14) than that for open ocean
(R? = 0.41) and estuarine communities (R* = 0.50; Figure 3).

Chlorophyll-a showed an increasing gradient from low
concentrations at the open ocean communities, trough medium
values at the coastal areas and the highest concentrations
measured in the estuary waters (Figures 4A,B,D).

Metabolic rates increased linearly with Chl-a concentrations,
explaining ~ 41% of the variance in CR and ~ 66% of that in
GPP (Figures 4A,B). NCP increase exponentially with Chl-a and
explain about ~ 64% of NCP variability (Figure 5D). However,
no relationship was found between CR and heterotrophic
prokaryote abundances (HPA, Figure 4C).

The exponential relationship between nitrate concentrations
and metabolic rates explained ~ 23% of the CR variability, ~
29% of GPP, and ~ 36% of NCP (Figures 5A-C). Phosphate
concentration was also exponentially correlated with surface
metabolic rates explaining ~ 41% of the CR, ~ 38% of GPP, and
~ 10% of NCP variability (Figures 5D-F).

For the entire data set, both CR and GPP metabolic rates
increased with temperature (Figures 6A,B, 7A,B,D,E), but this
relationship was not observed when examining open-ocean
communities alone (Figures 7G-I). The increased in CR/Chl-
a with temperature was characterized by higher activation
energies (Ea) compared to GPP/Chl-a (Ea CR/Chl-a = -
slope; 1.07 = 0.18 eV vs. Ea GPP/Chl-a = 0.65 £+ 0.15 eV,
Figures 6A,B) either across ecosystem types for coastal and
estuary communities alone (Figures 7A-F). Although weak,
a significant temperature-dependence was observed for the
GPP/CR ratio, decreasing with water temperature increase
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(Figure 6D). No temperature-dependence was observed when a weaker linear positive relationship with Synechococcus and
CR was standardized by HPA (Figure 6C). picoeukaryotes abundances and a stronger negative relationship

Gross primary production was related to the abundance of ~with Prochlorococcus concentrations (Figures 8A-C). CR
the three picophytoplankton populations, however, it showed followed the same pattern as GPP with picophytoplankton

Frontiers in Marine Science | www.frontiersin.org 5 January 2021 | Volume 7 | Article 582136


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Garcia-Corral et al. Plankton Metabolism in Western Australia

A [
4= Y=049"X+129 4 Y=0.10"X+0.16
. R?=0.41,p <0.0001 _ R2=o.oo,p>g.os
% 3 n=77 = % 3] n=70
'?E '?E P .) .
L]
= 2 « 2] 8 $ 0o o
=) =4 % e
<] 14 <] 14 [ 29 °
£ E ®e o
E £ w® , e
" 0 = 0 . LN .
o [3)
5 -1+ 5 14 . L
2 T T T 1 2 T T T T T 1
-4 -2 0 2 4 10 1" 12 13 14 15 16
Ln Chiorophyll-a (mg m3) Ln HPA (cells mI)
B D
6o Y=065"X+167 50m Y =-0.39 +4.15*Ln Chla +
. R2=0.66,p <0.0001 2.15%(Ln Chla-0.18)"2
b2 n=73 = 40{ R?=0.64,p<0.0001 ®
T b n=75
~ £ 30
o o
g 24 5 20
£ £
o £ 104
[ o
o 3]
5 z 01
T T T 1 = T T T 1
-4 2 0 2 4 -4 2 0 2 4
Ln Chlorophyll-a (mg m) Ln Chlorophyll-a (mg m=3)

FIGURE 4 | Linear relationships between the transformed natural logarithm of (A) CR and (B) GPP vs. natural logarithm of Chlorophyll-a concentrations; (C) Natural
logarithm of CR vs. natural logarithm of heterotrophic prokaryote abundances and (D) NCP vs. natural logarithm of Chlorophyll-a concentrations. Symbols colors
are: Green dots (estuary waters), red dots (coastal waters), and blue dots (open ocean waters). The solid line shows the fitted linear regression Type I.

A B [
61 R2=0.23, p < 0.0001 61 R2=0.29, p <0.0001 507 R2=0.36, p <0.0001
.g n =68 % n =64 ‘:40_ n =66 .
Q. 4 P 44
E & B T 30
N o ~N
c_; T o
£ 21 £ ]
E E E
g o % 0- :‘;
5 5 ° s z
6 4 2 0 2 a4 2 0 2 a 2 0 2
Ln Nitrate (uM) Ln Nitrate (uM) Ln Nitrate (uM)
D E F
61 R2=0.41, p <0.0001 61 R2=0.38, p <0.0001 501 R2=0.10,p =0.05
7: n=70 % n =66 = 40 n=68 °
o 4 T 4 By
E . = £ 304
S o ~
TE’ 24 'g 2 % 204 .
£ £ E 1o 3
% o- % 0- & . ‘. Y <
5 5 e S Z 04 LA @ n
L]
2 L} L] T T 1 '2 T T T T 1 '1": T T T L) 1
E] -4 2 0 2 4 6 4 2 0 2 4 6 4 2 0 2 4
Ln Phosphate (uM) Ln Phosphate (uM) Ln Phosphate (uM)

FIGURE 5 | Natural log of (A,D) community respiration (CR), (B,E) gross primary production (GPP), and (C,F) net community production (NCP) relatioships with
natural logarithm of nutrient concentrations. Nitrate in the upper panel and phosphate in the lower panel. Green dots represent estuary waters, red dots the
coastal waters, and blue dots the open ocean waters. The solid line denotes the fitted second-degree polynomial regression.

Frontiers in Marine Science | www.frontiersin.org 6 January 2021 | Volume 7 | Article 582136


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Garcia-Corral et al.

Plankton Metabolism in Western Australia

Y =-1.07"X +43.25

R?=0.33, p <0.0001
n=77 H

Ln (CR/Chl-a) (mmol O, mg Chla d) 3

Temperature (1/kT, eV-!)

Y =-0.65*X +27.22

R?=0.21,p <0.0001
n=73

a

34

2

14

Ln (GPP /Chl-a) (mmol O, mg Chla" d) m

Temperature (1/kT, eV-)

FIGURE 6 | The relationship between the natural logarithm of the volumetric specific metabolic rates (A) CR/Chl-a, (B) GPP/Chl-a, (C) CR/HPA, and (D) GPP/CR
ratio vs. the inverted water temperature [1/kT with k, the Boltzmann’s constant (8.617734 10-5 eV K~ 1) and with T, the water temperature (°K)]. The solid line shows
the linear regression Type | and the dotted lines indicate the 95% intervals of confidence.

O

Y =0.22"X-19.99

= -8 2

s R2=0.01,p>0.05

b n=70 e

- . o .

m -101 weo o .

o wq e " ®e °

S T e

E 121 b . o

= [y ®

P B .

T .14 o *

™ .

e

c

- 16 T T 1
38 39 40 el

Temperature (1/kT, eV-)

D
Y =0.43"X-16.36
21 R2-0.10,p=0.005 .
n=76 L] 5 .
1-
3
2
& o
o
c
-
1 .
[ ]
-2 T T 1
38 39 40 4

Temperature (1/kT, eV-1)

communities, except for the picoeukaryotes population, which
was not significant (Figures 8D-F). Prochlorococcus explained a
larger fraction of the variance of CR and GPP, than Synechococcus
and picoeukaryotes (Figures 8A,B,D,E). No relationship was
observed between plankton metabolic rates and heterotrophic
prokaryote abundances.

DISCUSSION

Western Australia surface plankton communities showed an
increasing productivity from oceanic to coastal and estuarine
waters, parallel to increasing nutrient and chlorophyll-a
concentrations. Indeed, the use of quartz bottles to measured
metabolic rates, showed the most accurate measurements for
surface plankton communities, as it has been proved that
borosilicate glass bottles, which excluded UV ration bias primary
production (gross and net) rates (Regaudie-de-Gioux et al., 2014;
Garcia-Corral et al., 2017a,b, 2020).

All Western Australian ecosystem types showed a prevalence
of autotrophic (GPP/CR > 1) plankton metabolic balance.
Metabolic rates were remarkably high for the Swan River estuary,
which has been reported to be one of the most productive
estuaries among 130 estuarine systems of the world (Cloern
et al., 2014), supporting high GPP and NCP rates and with
autotrophic metabolism prevailing throughout the year (Agusti
et al, 2018). Accordingly, our data suggest that the surface

estuarine, oceanic and coastal plankton communities of WA
act as CO, sinks (Bauer et al., 2013). The near-shore waters,
as those sampled here, have been traditionally considered net
sources of CO, (Smith and Mackenzie, 1987; Ram et al., 2003;
Chen and Borges, 2009; Cai, 2011; Shen et al, 2019, 2020),
although, some recent studies pointed to a change in this trend
over the last century, with near-shore continental shelves waters
acting as CO; sinks (Laruelle et al., 2018). Nevertheless, our
data only allows the carbon balance assessment of the surface
layer, without the possibility of extrapolating these data to the
entire water column, as we only showed volumetric and not
integrated data.

The mean metabolic rates observed for WA open-ocean
communities (GPP 2.68 + 0.66 mmol O, m~> d~!, CR
1.93 £ 0.46 mmol O, m™? d~!, and NCP 0.73 + 0.46 mmol
0, m~3 d~1), are in the range of those mean values reported
by McKinnon et al. (2017) for the NE Australian open water
communities (GPP 2.49 + 0.20, CR 1.84 + 0.06, and NCP
0.65 + 0.17 mmol Oy m™3 d~!). Western Australia coastal
metabolic rates were lower than those described for the NE
Australian coast McKinnon et al. (2017), but, closer to the
metabolic rates measured in the coral reef areas of NE Australia
McKinnon et al. (2017). Moreover, metabolic rates for the
estuarine communities found in this study, were within a
similar range of those registered for the coastal waters of the
North and North-eastern of the continent (estuary vs. coastal
metabolic rates, respectively, CR = 8.81 &£ 0.76 vs. 4.85 &+ 0.21;
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FIGURE 7 | The relationship between the natural logarithm of the volumetric specific metabolic rates: GPP/Chl-a, (A,D,G), CR/Chl-a (B,E,H), and GPP/CR ratio
(C,F)l) vs. the inverted water temperature [1/kT with k, the Boltzmann’s constant (8.617734 10-° eV K~ 1) and with T, the water temperature (°K)]. The solid line
shows the linear regression Type |, and the dotted lines indicate the 95% intervals of confidence. The color dots represent: Red as the coastal communities, green
the estuarine communities, and blue dots the oceanic communities.

GPP = 15.44 4 1.83 vs. 11.78 & 0.60, and NCP = 6.88 £ 1.55 vs.
6.61 £ 0.53) (McKinnon et al., 2017).

Plankton metabolism is regulated by a number of abiotic and
biotic characteristics of the ecosystems, including temperature,
nutrient and organic matter supply, light and community
composition (McKinnon et al., 2013; Regaudie-de-Gioux and
Duarte, 2013; Lonborg et al., 2016). Open-ocean communities
showed oligotrophic characteristics, such as low chlorophyll-a
(from 0.1 to 1 mg m~3, mean 0.37) and nutrient concentrations
(nitrate and phosphate between 0 and 0.2 pM, mean = 0.06 and
0.04 WM, respectively), which is reflected in the lower metabolic
rates found. However, although Chl-a concentrations at open-
ocean communities are lower than those for the estuarine and
coastal waters, they are still higher than those observed at the
ultraoligotrophic surface waters of the Subtropical Indian Ocean
Gyre [0.03-0.65 mg m~>, mean 0.15 £ 0.02 mg m~> (Garcia-
Corral et al., 2017a,b)].

The role of trophic status in determining the metabolic rates
in WA waters was supported by the significant relationship

found between water nutrients (PO4 and NO3) concentrations
and plankton metabolism. These relationships have been
demonstrated in experimental nutrient additions (Olsen et al.,
2006) but not in comparative analyses of in situ field data yet,
as rapid nutrient turnover in planktonic ecosystems prevent the
identification of relationships between nutrient concentration
and community metabolism (Regaudie-de-Gioux et al., 2015).
As reported here for WA waters, chlorophyll-a and nutrient
concentrations show a characteristic relationship in marine
ecosystems (Smith, 2006; Carstensen et al., 2011) including the
Swan Estuary (Thompson and Hosja, 1996). We observed a
clear increase of nitrate and phosphate concentrations from
open ocean to coastal areas and estuarine waters, where highest
nutrient concentrations were found in the Swan River Estuary,
receiving large agricultural and urban inputs (Thompson,
1998; Chan et al, 2002). Coastal plankton communities in
the nutrient-poor Leeuwin Current, which dominates the WA
oceanic waters, have been characterized by strong nitrogen
limitation (Lourey et al., 2006), as reflected in a relative excess
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of phosphate and silicate concentrations relative to nitrogen
for phytoplankton growth (Thompson et al, 2011). The N/P
ratios in the communities sampled were consistently below the
Redfield ratio (N/P = 16), pointing at a deficit of nitrogen,
declining from open-ocean communities (N/P = 11.7), to coastal
(N/P = 7.2) and estuarine (N/P = 4.4) waters. Phosphate
and nitrate concentrations explained part of metabolic rates
variability. However, CR and GPP increased exponentially with
increasing phosphate concentration, while appeared to saturate
at high nitrate concentrations. Therefore, plankton metabolism
could be limited by other factors such as the bioavailability
of nitrate, greater flushing because rainfall and river runoff,
decreased solar irradiance, lower temperatures, increased cloud
cover and greater turbidity of the water column that counteract
plankton metabolism (Thompson, 1998). NCP only showed an
exponential and positive regression with nitrate concentrations
while a weak and close to significant relationship appeared with
phosphate concentrations.

Overall CR in WA plankton communities scaled as the
3/4 power of GPP (In-In slope 0.73), similar to the global
scaling of 0.79 (Regaudie-de-Gioux and Duarte, 2013), although
higher than the 0.66 described for the Northern Australian

waters (McKinnon et al,, 2017). The fact that CR increases
as the 3/4 power of GPP shows that GPP increases more
rapidly than CR, and thus, the GPP/CR ratio tend to be
higher in more productive communities. When assessed across
WA ecosystem type, we found the scaling factors between CR
and GPP to be highest in open-ocean communities (0.66).
Differences in the scaling of GPP to CR may depend on
the allochthonous inputs of dissolved organic carbon (DOC)
(Duarte et al, 2013) and the different relationship between
heterotrophic communities with DOC (Gonzalez-Benitez et al.,
2019). Rainfall and upwelling fluxes are important sources of
DOC and nutrients in the coastal and estuarine regions of
WA (Thompson and Hosja, 1996; Thompson, 1998). This extra
DOC could stimulate the heterotrophic activities (increase in
CR not associated with an increase in GPP), while in the more
oligotrophic open ocean stations, the heterotrophic community
might depend on the photosynthetic derived DOC or dissolved
primary production (DPP). Therefore, oceanic communities
showed stronger coupling (0.66) between metabolic processes
(Morén et al., 2002; Rochelle-Newall et al., 2008) than coastal
and estuarine communities (0.49 and 0.47, respectively), and an
increase in GPP might be associated with an increase in CR.
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TABLE 1 | Biotic and abiotic environmental variables for the sampled Western Australian waters.

Estuary Coast Open ocean
Sampled areas Locations (n stations) Swan river estuary Woodman point (27) Pilbara (7)
(33) Ningaloo (5) Perth area (9)
Perth area (1) Albany (1)
Albany (3)
Total n 33 36 17
Latitude (N) Max —31.99 —22.21 —156.03
Min —31.99 —35.07 —35.98
Longitude (E) Max 115.82 117.92 122.16
Min 1156.82 113.76 107.24
Temperature (°C) Mean + SE 20.90 + 0.66 21.16 £ 0.47 24.77 + 0.63
Min 12.00 15.10 21.17
Max 27.40 25.40 29.00
Salinity Mean + SE 32.09 + 0.95 35.29 + 0.23 35.35 +0.11
Min 22.03 31.62 34.51
Max 36.97 37.12 36.47
Nitrate (uM) Mean + SE 0.52 +0.16 0.11 £ 0.01 0.06 £ 0.02
Min 0.04 0.04 0.01
Max 2.69 0.29 0.20
Phosphate (uM) Mean + SE 0.17 £0.02 0.06 + 0.01 0.04 £ 0.01
Min 0.07 0 0
Max 0.41 0.1 0.17
Chlorophyll-a (mg m~3) Mean + SE 4.05+0.47 1.28 +£0.14 0.37 £0.07
Min 1.29 0.09 0.10
Max 14.39 3.40 0.99
Heterotrophic Prokaryote (cells mi=" x 10%) Mean + SE 382.28 + 36.21 251.87 £ 55.33 460.99 + 61.46
Min 135.08 69.90 167.66
Max 864.67 1800.43 962.35
Synechococcus (cells ml=" x 10°) Mean + SE 61.80 + 20.95 45.99 + 6.29 39.31 + 7.39
Min 7148.66 2.42 3.25
Max 528.45 157.06 99.78
Picoeukaryotes (cells mi~1 x 103) Mean + SE 16.71 + 0.36 2.56 £ 0.75
Min 0.05 0.61
Max 4.71 11.84
Prochlorococcus (cells mi=1 x 103) Mean + SE 11.15 + 4.08 62.70 + 18.33
Min 2.41 5.70
Max 24.18 195.54

Sampling periods for the different locations are: Swan River Estuary from March 2014 to March 2015 fortnightly; Coast: Woodman Point (fortnightly from March 2014 to
March 2015), Ningaloo (October and November 2014), Perth Area and Albany (November 2014) and Open Ocean: Pilbara (January 2015), Perth Area (March 2015) and

Albany (March 2015).

However, our results showed an opposite pattern of that found in
the North-eastern Australian ecosystems, were lower slopes of CR
vs. GPP appeared in open-ocean communities (0.56) compared
to the coral reef (0.77) and coastal (0.98) plankton communities
(McKinnon et al., 2017).

In this study, Chl-a explained 66% of GPP variability and
41% of CR, greater percentage than that for GPP (50%), and
similar to CR (40%) registered in the Northern Australian waters
McKinnon et al. (2017). The exponential relationship found
between NCP and Chl-g, explaining 64% of its variability, close to
the 73% reported for WA coastal areas (Agusti et al., 2018). The
important role of Chl-a in explaining variability in GPP in WA
communities in contrast to the more modest role for the global

open ocean (30% of variance explained, Regaudie-de-Gioux and
Duarte, 2013), may partly reflect the broad range of Chl-a in WA
coastal waters compared to the open ocean.

Picophytoplankton abundance was also related to GPP
and CR metabolic rates. However, the relationships varied
among picophytoplankton community components. Strong
negative linear relationship appeared between Prochlorococcus
abundance and GPP and CR (p < 0.05, R?> = 0.35 and 0.63,
respectively). However, although significant (p < 0.05),
weaker and positive relationships appeared with Synechococcus
abundances (R* = 0.07 and 0.2 for GPP and CR, respectively).
Prochlorococcus was located mainly in the open ocean stations
and in a few coastal stations at Woodman Point. Likely
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TABLE 2 | Forward stepwise multiple-regression analyses with the minimum
Akaike information criterion (Hastie and Tibshirani, 1993) to assess the relative
influence of environmental factors on the metabolic rates (GPP, CR, and GPP/CR).

Dependent Independent variable  Estimate  F - Ratio P

variable

Ln GPP Ln Chlorophyll-a 0.71 133 <0.001*
1/KT -0.32 4.53 0.037*
R?=0.68
N =73

Ln CR Ln Chlorophyll-a 0.39 18.09 <0.001*
Ln Phosphate 0.26 14.83 0.0003*
Ln HPA 0.30 6.72 0.012*
1/KT —0.40 5.2 0.026*
R? =0.62
N =67

Ln GPP/CR Ln Chlorophyll-a 0.35 20.77 <0.0001*
Ln Phosphate —-0.22 11.54 0.0012*
Ln HPA —0.31 6.8 0.011*
R? =0.30
N =64

*means statistically significant p < 0.05.

Prochlorococcus dominates the picophytoplankton community
in the oligotrophic, less productive offshore regions, or
coastal areas influenced by the nutrient-poor Leeuwin Current
eddy (Paterson et al, 2013; Mena et al, 2019). In contrast,
Synechococcus was present in the three ecosystem types sampled
(coastal, estuary, and open ocean), being particularly abundant
in the autotrophic nutrient-rich estuarine waters. However,
the picophytoplankton communities explained a general
low percentage of GPP and CR variability, likely because
higher productive ecosystems are more biodiverse including
other photosynthetic groups such as diatoms, pelagophytes,
prasinophytes, cryptophytes, and chlorophytes (Thompson
et al, 2011; Lourey et al, 2013). We found no significant
relationship between CR and heterotrophic prokaryote
abundance, consistent with earlier reports for the global ocean
(Regaudie-de-Gioux and Duarte, 2013).

The Metabolic Theory of the Ecology (MTE, Brown et al.,
2004) provides a potentially useful framework to build a
predictive understanding of the feedbacks between temperature
and biogeochemical carbon cycling in ecosystems (Brown
et al, 2004; Allen et al., 2005; Lopez-Urrutia et al., 2006;
Yvon-Durocher et al., 2010a,b). In this study, metabolic rates,
standardized to chlorophyll-a concentration, showed strong
temperature dependence, both for CR/Chl-a and GPP/Chl-
a (Figures 6A,B). The activation energy (Ea) for CR/Chl-a
of 1.07 eV £ 0.18 was higher than the Ea for GPP/Chl-
a of 0.65 £ 0.15 eV, consistent with predictions from MTE
(Brown et al., 2004). However, our Ea values were lower than
those reported for the Subtropical Indian Ocean (Ea CR/Chl-
a = 148 £ 0.35, Ea GPP/Chl-a = 1.70 £ 0.37 eV; Garcia-
Corral et al., 2017b). The different temperature dependence
between ecosystems, with coastal GPP and CR Ea’s higher than
the estuarine about a factor of 2 and the lack of temperature-
dependence within the oceanic stations, may be influence by

the different temperature ranges registered and likely to other
relevant processes other than the direct physiological effect
of temperature on metabolism that co-vary with temperature,
such as seasonal changes in light, nutrients distribution and
plankton community temperature sensitivity (Regaudie-de-
Gioux and Duarte, 2012; Garcia-Corral et al., 2017b). We
did not find, however, any relationship between temperature
and CR scaled to heterotrophic prokaryote abundance for
WA plankton communities, in contrast to reports of a Ea of
0.57 £ 0.35 eV in Subtropical Indian Ocean (Garcia-Corral
et al,, 2017b). The different environmental characteristic of
the oligotrophic Indian Subtropical Gyre compared to the
more coastal and productive waters sampled here may help
explain, together with the fact that our results refers only
to surface waters, the differences with the results of Garcia-
Corral et al. (2017b). In the Northeastern Australian waters,
only CR in coral reef communities (Ea = 1.32 £+ 0.47 eV)
and GPP in the open sea (Ea = 2.76 £ 0.58 eV), showed a
temperature-dependence McKinnon et al. (2017), with activation
energies well above those obtained here for WA waters.
Extremely high Ea values were also find by Regaudie-de-
Gioux and Duarte (2012) for the Indian Ocean, (CR/Chl-a
of 3.19 £ 0.60 eV and 10.83 & 3.32 eV for GPP/Chl-a).
However, their assessment was limited due to a paucity of
metabolic estimates for the Indian Ocean (n = 5) in their
global data set.

Overall, Western Australia plankton communities studied
here were characterized by a prevalence of autotrophic
metabolism (GPP/CR > 1), which represented 81% of the
communities sampled here. The GPP/CR ratio for coastal
(1.75 £ 0.25) and estuary waters (1.85 = 0.15) are consistent with
the average values of ~1.5 reported earlier for Ningaloo Reef and
Exmouth Gulf (North Western Australia coast) McKinnon et al.
(2017). The overall median GPP/CR found in the open ocean
communities sampled here (1.50 £+ 0.32) was, however, lower
than that described for the Subtropical Indian Ocean Gyre of
(2.12 4 0.41, Duarte et al., 2013).

In summary, the results presented here contribute to address
a paucity of studies of plankton community metabolism in
the Indian Ocean (Regaudie-de-Gioux and Duarte, 2013), by
reporting metabolic rates, characterized by a prevalence of
autotrophic communities, along Western Australian coastal,
estuarine and open ocean waters. Plankton metabolism
increased strongly with chlorophyll-a, nutrient concentrations
and temperature. Overall, our results characterize plankton
communities across Western Australia to act as a CO;
sinks, but the stronger thermal-dependence of respiration
than gross primary production rates suggests that their
role may weaken with future warming. Further studies are
necessary in order to better characterize planktonic Western
Australian ecosystems.
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