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Early detection of dense harmful algal blooms (HABs) is possible using ocean colour

remote sensing. Some algorithms require a training dataset, usually constructed from

satellite images with a priori knowledge of the existence of the bloom. This approach

can be limited if there is a lack of in situ observations, coincident with satellite images. A

laboratory experiment collected biological and bio-optical data from a culture of Karenia

mikimotoi, a harmful phytoplankton dinoflagellate. These data showed characteristic

signals in chlorophyll-specific absorption and backscattering coefficients. The bio-optical

data from the culture and a bio-optical model were used to construct a training dataset for

an existing statistical classifier. MERIS imagery over the European continental shelf were

processed with the classifier using different training datasets. The differences in positive

rates of detection ofK.mikimotoi between using an algorithm trained with purely manually

selected areas on satellite images and using laboratory data as training was overall

<1%. The difference was higher, <15%, when using modeled optical data rather than

laboratory data, with potential for improvement if local average chlorophyll concentrations

are used. Using a laboratory-derived training dataset improved the ability of the algorithm

to distinguish high turbidity from high chlorophyll concentrations. However, additional

in situ observations of non-harmful high chlorophyll blooms in the area would improve

testing of the ability to distinguish harmful from non-harmful high chlorophyll blooms. This

approach can be expanded to use additional wavelengths, different satellite sensors and

different phytoplankton genera.

Keywords: phytoplankton, English channel, MERIS, optical backscattering, Karenia mikimotoi, harmful algal

blooms, ocean color

1. INTRODUCTION

Toxic phytoplankton species impact human health and the economy world wide (Kudela et al.,
2015; Sanseverino et al., 2016). Events of enhanced growth of toxic phytoplankton (or Harmful
algal blooms, HABs) are expected to be more frequent in a climate change scenario (Griffith and
Gobler, 2020). Because of their event-like nature it is difficult to design monitoring and early-
warning systems using solely in situ sampling (Babin et al., 2008). However, the optical properties
of some HABs species favor the use of ocean colour satellite remote sensing as a tool for detection
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(Cullen et al., 1997; Dierssen et al., 2015). In order to
improve HABs satellite algorithms, a better understanding of the
variability of the phytoplankton inherent optical properties (IOP)
is, therefore, crucial.

The variability of optical properties among phytoplankton
species has been studied through laboratory experiments
(Bricaud et al., 1983, 1988; Ahn et al., 1992). In the context
of HAB species, some authors have focused on the absorption
coefficient, showing potential for detection using the fourth-
derivative of the phytoplankton absorption coefficient (aphy,

m−1) (Millie et al., 1995, 1997; Stæhr and Cullen, 2003). Indeed,
this technique has been applied to the discrimination among
phytoplankton groups using hyperspectral remote sensing
reflectance, (Rrs, sr

−1), in preparation for new sensors (Xi et al.,
2015, 2017). Other laboratory studies have taken into account
the optical backscattering coefficient (bbp, m

−1) (Vaillancourt
et al., 2004; Whitmire et al., 2010; Harmel et al., 2016), including
the effects of different light regimes (Stramski and Morel, 1990;
Poulin et al., 2018).

However, few studies have implemented bio-optical
knowledge into practical remote sensing applications for
HAB detection. From in situ sampling, a HAB dominated by
dinoflagellate Karenia brevis in the Eastern Gulf of Mexico
(Cannizzaro et al., 2008) presented lower than expected
chlorophyll-specific backscattering coefficient and backscattering

ratio (i.e., b̃bp= bbp/bp), which was used to establish a HAB
detection criteria. These criteria were not applicable to the East
China Sea (Shang et al., 2014), and a different index had to be
developed regionally. Further, laboratory experiments showed a
wide dispersion among phytoplankton species for chlorophyll-
specific backscattering and demonstrated a relationship between

b̃bp and cell size (Whitmire et al., 2010). Given the regional
and biological differences recorded, it is therefore necessary
to develop algorithms and approaches that can take into
account these sources of variability to further develop HAB
detection capabilities.

A regional HAB detection algorithm developed for the
European Shelf (Kurekin et al., 2014) was developed to allow
for these factors. It employs a fully automatic data-driven
approach to identify key characteristics of Rrs and derived
quantities, and then applies these characteristics to classify pixels
in satellite images into no bloom, non-harmful bloom, and
harmful bloom categories (Miller et al., 2006). The performance
of this algorithm depends on the choice of the training data.
In the original implementation (Kurekin et al., 2014), the
training data were defined by manually selecting regions of
interest with a priori harmful phytoplankton species (i.e.,Karenia
mikimotoi and Phaeocystis globosa) from MODIS and MERIS
sensor measurements. Thus, the algorithm was adapted to
specific optical conditions, phytoplankton species and sensor
characteristics. If any of these changed, the algorithm would
need to be re-trained, in addition to the subjective component
introduced by the manual selection of the areas in the image.

In this study, we propose an alternative approach to
constructing a training dataset for the Kurekin et al. (2014)
algorithm in the European Shelf by using laboratory bio-optical
experiments, aiming to incorporate regional and species-specific

variability of optical properties. In particular, we focused as
an example species on the dinophyceae K. mikimotoi as it is
known to occur in blooms on the Western English Channel on
the European continental shelf (Barnes et al., 2015). Laboratory
experiments on this species were used to retrieve chlorophyll
specific IOP. These in turn were used to compute simulations
of Rrs to augment the training dataset for the classifier by
incorporating other optically active components and making it
more representative of natural conditions. We further performed
a numerical experiment, a sensitivity study, using different
configurations of the training datasets to investigate the benefit
of using laboratory and modeled data. Simulations included
a range of phytoplankton concentrations, as well as other
optically active components (detritus and yellow substance or
gelbstoff) in the absence of other blooms of non-harmful
algae. The results of our sensitivity study confirm the potential
of this approach to detect HABs based on species-specific
bio-optical information, which is applicable to many ocean
color sensors.

2. METHODS

The Kurekin et al. (2014) algorithm is a statistic operator that
requires training data based on spectral features of the targeted
phytoplankton species. It then calculates discrimination function
parameters in the feature hyperspace (Miller et al., 2006). The
original set of ocean color features was limited to arbitrary
combinations of Rrs from specific spectral bands of a particular
satellite sensor. In this study, spectral ratios of Rrs were also used.

The features are then automatically processed to select a
reduced subset of the most relevant features by applying a
Stepwise Discriminant Analysis (SDA) algorithm implemented
in the statistical package “klaR” (Weihs et al., 2005). The
best combination of features is selected iteratively, by adding
more significant or removing less significant features one by
one. The significance of features is estimated by applying the
probability of correct classification criterion. By reducing the
number of classification features, improvement of accuracy and
computational efficiency was achieved. The features are used to
classify pixels into the original classes no bloom, non-harmful, and
harmful. For the current study, the unknown class has been added
to represent data that cannot be related to any of known classes.

For this kind of statistical algorithm, in addition to the
statistical method, the choice of training datasets representative
of the different classes is critical and is the focus of this work.
In the Kurekin et al. (2014) work the training datasets were
subjectively defined from satellite images. Here, alternative ways
to produce training datasets are presented using modeled and
experimental data.

2.1. Model of Rrs
As in previous studies (Shang et al., 2014), the above surface
remote sensing reflectance (Rrs) was calculated with (Gordon
et al., 1988):

Rrs(λ) =
0.52× rrs(λ)

1− 1.7× rrs(λ)
(1)
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where the remote sensing reflectance just below the water surface
(rrs) is modeled as a function of the absorption (a(λ)) and
backscattering (bb(λ)) coefficients:

rrs(λ) =

(

g0 + g1 ×
bb(λ)

a(λ)+ bb(λ)

)

×
bb(λ)

a(λ)+ bb(λ)
(2)

with g0= 0.089 and g1 = 0.125, respectively. The spectrally varying
a (m−1) and bb(m

−1) were modeled as:

a = aw + abg + akm (3)

bb = bbw + bbp,bg + bbp,km (4)

Here aw and bbw were the absorption and backscattering
coefficients of pure seawater (Pope and Fry, 1997), the km sub-
index refers to K. mikimotoi, and the bg sub-index refers to
the background component. The background component was
assumed to covary with chlorophyll concentration including:
phytoplankton, gelbstoff (or colored dissolved organic matter)
and detritus. The background component was therefore modeled
using a generic phytoplankton model: the “new Case I model”
as described in Hydrolight (Mobley and Sundman, 2016), where
the inherent optical properties of particles solely co-vary with
chlorophyll concentration, TChlabg in mgm−1(Bricaud et al.,
1998; Loisel and Morel, 1998). With this assumption, Equation
(3) was rewritten as:

a = aw + ap,bg + ag,bg + ap,km + ag,km (5)

bb = bbw + bbp,bg + bbp,km (6)

where the contributions to background and K. mikimotoi
to the particulate (p), and dissolved (g), compartments
were modeled as follows. The absorption coefficients of
background had contributions from living phytoplankton and
detrital components (ap,bg= aphy,bg+adet,bg) as well as from
dissolved matter (ag,bg). Only phytoplankton (aphy,km) and
dissolved matter (ag,km) were considered as contributors to
the absorption coefficient due to K. mikimotoi, but not
particulate detritus. Particle backscattering for the background
(bbp,bg) and for K. mikimotoi were not further separated
in other particulate compartments. Optical absorption and
backscattering coefficients for background were described as
a function of TChlabg using well validated models (see
Supplementary Material, section 1).

Absorption and particle backscattering coefficients
for K. mikimotoi were computed using the formulae
below and parameterized using results from a laboratory
experiment (section 2.2).

The aph,km was modeled as a function of its chlorophyll
concentration (TChlakm):

aph,km(λ) = Aa(λ)× (TChlakm)
Ba(λ) (7)

where the values of Aa(λ) and Ba(λ) were derived from
measurements. The adg,km was modeled in the same way as ag,bg
(see Supplementary Material, section 1) but with a range of f
from 0.2 to 1.0 with a step of 0.2, to cover more variability
of ag,km.

The backscattering coefficient of K. mikimotoi (bbp,km) was
modeled as Equation (7):

bbp,km(λ) = Abb(λ)(TChlakm)
Bbb(λ) (8)

where the values of parameters Abb(λ) and Bbb(λ) were
derived from measurements. Data from the reflectance model
were re-sampled to 0.1 nm spectral resolution by spline
interpolation, multiplied by MERIS spectral response coefficients
and integrated over the full wavelength range to obtain
band-averaged Rrs.

2.2. Laboratory Measurements of Optical
Properties of Karenia mikimotoi
The optical properties and TChlakm were obtained through
sequential additions of a Karenia mikimotoi culture to a flow-
through system (Slade et al., 2010; Browning et al., 2015)
following the method detailed in this section.

Karenia mikimotoi is a naked unicellular dinoflagellate with
diameter between 15 and 40 µm (K-0260, SCCAP). For this
experiment it was grown at the University of Lisbon, where also
the optical measurements took place. The culturing chamber
had a light:dark cycle of 14:10 h. Karenia mikimotoi was grown
at a temperature of 15◦C and salinity of 30 psu, in a L1
media and a photon flux density of 43 µmolm−2s−1. The
health of the culture was monitored using microscopy counts
and the optical experiment was performed when they reached
exponential growth phase. The experimental setup consisted
of a peristaltic pump (Watson Marlow 603S) connected to a
hyperspectral absorption and attenuation meter (Wetlabs acs),
and to a black chamber housing a three wavelengths backscatter
meter (Wetlabs ECO-BB3). The system was cleaned successively
with de-ionized water, diluted Extran and diluted HCl, then
rinsed with de-ionized water previous to the experiment. After
the cleaning cycle, the system was filled with pre-filtered seawater
(Pall Acropak 0.2 µm/0.2 µm) and recirculated at 1 lmin−1 (or
30 r.p.m.) for the whole experiment. Different flow speed were
tested (10 and 60 r.p.m.) with no significant changes in the data.
Data were recorded for at least 3 min for each addition of culture
(Browning et al., 2015). After each addition of the culture into the
experimental setup the system was left to stabilize for 1–2 min,
then data were recorded for 3 min with the acs and ECO-BB3,
and finally water was collected for laboratory analysis.

Temperature, T, and salinity, S, were measured with a probe
(YSI-85, Model 85/50 FT) before and after each culture addition
and the average was used to correct the optical measurements.

Data from the acs and ECO-BB3 instruments were processed
following standard protocols (Wetlabs, 2009; Whitmire et al.,
2010). Median and interquartile range (IQR) for the inherent
optical properties were calculated for each concentration of
culture and the median values from the blank were subtracted
(see Supplementary Material, section 2 for further details on
data processing and data quality control procedures).

Water samples (100–500 ml) were collected from the system
after each Karenia mikimotoi culture addition for particulate
absorption, pigment analysis, and microscopy. Samples for
spectrophotometric and HPLC pigment analysis were filtered
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TABLE 1 | Summary of combination of training datasets for the simulation experiments.

Class Experiment 1 Experiment 2 Experiment 3

No bloom Satellite Satellite Satellite

Non-harmful bloom Satellite Satellite Background

Harmful bloom Satellite Background and laboratory Background and laboratory

Satellite indicates where only MERIS data have been used to characterize the optical signature of a class. Background indicates where modeled data have been used (section 2.1 and

Supplementary Material). Laboratory indicates where optical measurements specific to Karenia mikimotoi have been used (section 2.2).

onto Whatman GF/F 25 mm filters using low pressure pumps,
flash frozen in liquid nitrogen and kept at −80◦C for <3
months. Spectrophotometric measurements (Shimazdu UV2450
with 0.5 nm resolution) of the particulate absorption coefficient
of the sample retained on the filter (ap,km) was used to derive
the phytoplankton (aph,km) and particulate detritus, (ad,km)
absorption coefficients (Tassan and Ferrari, 1995) with β-
correction from laboratory experiments (Finkel and Irwin, 2001).
High performance liquid chromatography (HPLC) analysis
was done to determine phytoplankton pigments concentrations
(Zapata et al., 2000; Mendes et al., 2007). Total chlorophyll a
concentration (TChlakm) was defined as the sum of Chl-a +
Chl-a allomers + Chl-a epimers concentrations. The health of
the cultures was confirmed as the percentage of phaeopigments
to TChlakm plus phaeopigments, which was always ≤ 3%. Cell
concentration of the culture was determined by microscopy
counts. Depending on cell size and cell concentration, different
counting chambers were used (Palmer-Maloney and Sedgwick-
Rafter) following the standard procedures (Andersen, 2005).

Linear regressions on the log10-transformed inherent optical
data and TChlakm were used to compute the coefficients needed
for Equations (5) and (6). Spectral interpolation was necessary to
match the inherent optical properties. Backscattering coefficient
(bbp,km) was interpolated to 0.5 nm interval to match the
spectrophotometric aphy,km measurements by fitting a power-law
(i.e., bbp,km(λ) = bbp,km(532)× (λ/532)−γ ).

2.3. Simulation Experiments and Evaluation
Three separate simulation experiments were performed
using different training datasets combinations (Table 1). This
section describes the training datasets for each Experiment,
the evaluation dataset and the statistics used to measure
algorithm performance.

2.3.1. Training Datasets

The training dataset in Experiment 1 was taken as the reference.
It was generated from MERIS sensor measurements of Rrs at
wavelengths 413, 443, 490, 510, 560, 620, 665, 681, and 709
nm. Absorption and backscattering coefficients derived from
inversion algorithms (e.g., Smyth et al., 2007) were not used
in this training dataset. Using IOP derived from MERIS data
introduced additional uncertainty (Defoin-Platel and Chami,
2007; Werdell et al., 2018). Historical MERIS scenes with
documented K. mikimotoi bloom events in the English Channel
in years 2002–2004, were selected (Kelly-Gerreyn et al., 2004;
Vanhoutte-Brunier et al., 2008). Areas of these scenes were
manually delineated and labeled into no bloom, non-harmful,

and harmful classes. In total five MERIS scenes were selected
on 19 July 2002, 1 and 7 July 2003, 10 and 23 July 2004. To
compose a training dataset the images were first sub-sampled
by a factor of 4. Overall, 6.25% of satellite pixels were used for
training and 93.75% were used for evaluation (section 2.3.2). The
data in the training dataset were arranged in a 2D table format
with Rrs values and class labels of individual image pixels stored
in rows. In total the training table contained 14,072 records of
no bloom class, 12,116 records of non-harmful bloom class, and
10,294 records of harmful bloom class.

In Experiment 2, the records in the training table labeled as
harmful bloom were removed. Rrs spectra harmful bloom class
results from the addition of the background optical properties
from bio-optical models (section 2.1) to the K. mikimotoi optical
properties derived from laboratory experiments (section 2.2),
to include in the training dataset the effect of a mixed particle
assemblage in a HAB event. Values used for TChlakm varied from
1 to 15mgm−3 with a constant step in logarithm scale resulting in
500 concentrations. TChlabg varied from 0.01 to 2mgm−3 having
10 concentrations with an identical interval in logarithm scale,
therefore a total of 5,000 combinations were obtained.

Experiment 3, was the same as Experiment 2 but with the non-
harmful bloom class defined by the background optical properties
from bio-optical models (section 2.1), with TChlabg between

1 and 10 mgm−3. From each experiment, a set of classifier
coefficients was obtained after training. In all the Experiments,
the no bloom class was defined using themanual selection of parts
of the satellite images.

2.3.2. Evaluation Dataset

Due to lack of in situ data to perform an independent validation
of the classification, the results from each Experiment were
evaluated with the part of the training images that had been
reserved (i.e., not used for training). The performance was
quantified through statistical comparisons with the manually
classified pixels. The same 5 MERIS scenes as those used for
training were used to generate training and evaluation datasets
for the HAB classifier (see section 2.3.1). The same evaluation
dataset was applied in all three experiments, but the classification
results were different because the training data were different.

The measures of performance included a confusion matrix
and derived statistical measures: overall accuracy, kappa
coefficient, errors of commission, and producer accuracy. Overall
accuracy was calculated as the number of correctly classified
pixels divided by the total number of classified pixels. The
kappa coefficient measures the agreement between the evaluation
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FIGURE 1 | Relationship between measured TChla and optical properties at a

given wavelength. Red solid line is the background model and blue solid

triangles and line are experimental results from this study for Karenia

mikimotoi: (A) Phytoplankton absorption. Green dot-dash line are Cannizzaro

et al. (2008) predictions of aphy (443) for >10
−4 cells l−1; (B) bbp,km(532). Green

dotted-dash line are Cannizzaro et al. (2008) predictions of bbp(532) for >10
−4

cells l−1; purple alternate-dash is Antoine et al. (2011). Symbols are median

experimental values and error bars are IQR. Solid lines are power law fit to

these data (Table 2).

dataset and the classification results in the range from 0 to 1.
The data can be considered to be in perfect statistical agreement
when kappa is 1 and disagree when kappa equals 0. Errors of
commission is the measure of false positive, estimated for each
class as the fraction of pixels that were classified incorrectly.
Producer accuracy is calculated for each class as the probability
that the pixels in this class were classified correctly.

Not all of the classified image pixels were used for estimation
of the confusion matrix. If the probability of unknown class
was higher than 0.6 or the probability of any of other three
classes was lower that 0.6, the pixel was considered as unreliable
and discarded.

3. RESULTS AND DISCUSSION

3.1. Optical Properties: Modeled Data for
Background and Laboratory Experiments
for Karenia mikimotoi
The background model is constructed with the underlying
hypothesis that at lower TChlbg , the smaller phytoplankton sizes
dominate the optical properties. For absorption (Figure 1A)
this means that there is a higher slope for lower chlorophyll
concentrations (i.e., less than ∼2 mg Chla m−3). Larger cells
are expected to have lower per-chlorophyll absorption due to
the package effect (Bricaud et al., 2004). Values from this
laboratory experiment are greater than those predicted by the
model, pointing toward higher TChla per cell in the culture.
However, the values are close to other studies for HAB-forming
dinoflagellates (Cannizzaro et al., 2008).

The backscattering coefficient is also modeled as a power law
for the background (Figure 1B), following the same underlying
assumption of smaller cells dominating optical properties of
lower chlorophyll concentrations (Loisel and Morel, 1998).
Measurements from the current laboratory experiment are lower
than those predicted by the background model, but similar
to other laboratory experiments. For example, b∗

bp,km
(470) =

0.000525 m−2 mg Chla−1 is comparable to the lower values
obtained for other species of dinophyceae (b∗

bp
(442) from

0.0005786 to 0.0009194m−2 mgChla−1 ) (Whitmire et al., 2010).
These laboratory values are low in comparison with other field
studies in coastal waters (Antoine et al., 2011) and in areas with
HAB blooms (Cannizzaro et al., 2008). This disagreement is to
be expected, as the in situ studies incorporate the bbp signal from
the whole population, which is an assemblage of phytoplankton
and other particles (Stramski et al., 2001; Martinez-Vicente et al.,
2010, 2012). In fact, for Experiment 2, the harmful class bbp(532)

can vary from 0.00718 m−1 for 1.01 mg Chla m−3 to 0.01112
m−1 for 17 mg Chla m−3, when the contributions of background
and K. mikimotoi were added. As a comparison, Cannizzaro et al.
(2008) predicts bbp(532) = 0.00855 m−1 for 17 mg Chla m−3.
The coefficients resulting from the power law fit to the laboratory
data, used by the classifier, are summarized in Table 2.

The second set of parameters needed in Equations (7) and
(8) are the chlorophyll-specific spectrally varying inherent optical
properties (Supplementary Figure 1). For chlorophyll-specific
absorption, themodel predicts a flattening of the spectra at higher
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TABLE 2 | Regression coefficients and statistics of the fit for aphy,km(440) and

bbp,km(532), as a function of chlorophyll concentration, TChla.

Optical

properties A(C.I.) B(C.I.) r2 RMSE

aphy,km(440) 0.0438 (0.0420) 0.83 (0.04) 0.98 1.52

bbp,km(532) 0.0006 (0.0244) 0.90 (0.03) 0.99 3.31

Data were fitted to the power function Y = A × XB, (see Equations 7, 8) using a

Type-II linear regression (major axis), on log10-transformed variables. All regressions are

significant (p < 0.005), 95% confidence intervals (C.I.) of the coefficients are given in

parenthesis. The determination coefficient, r2, and the root mean square error, RMSE, are

calculated from the log10-transformed variables. Considered four TChla concentrations

after data quality control.

FIGURE 2 | Spectral backscattering ratio (b̃bp= bbp/bp) for background model

and for Karenia mikimotoi from laboratory. Red lines are modeled values at

different TChla. Blue squares and line are median values from experimental

data. Black circle is value reported by Harmel et al. (2016).

chlorophyll concentrations. The median values obtained from
the laboratory experiment are consistent with this prediction
for the blue part of the spectra (400–500 nm) but they
are higher for the red. However, the experiment is in close
agreement with previous laboratory experiments, in particular
with observations under low light conditions (see Figure 4 in
Stæhr and Cullen, 2003). Concerning the spectral chlorophyll-
specific backscattering coefficient (Supplementary Figure 1),
modeled values for the background follow also the assumption
of smaller phytoplankton sizes dominating at lower TChlbg . This
leads to higher chlorophyll-specific backscattering values (i.e.,
smaller phytoplankton is more efficient at backscattering light)
and more features due to absorption effects on the backscattering
spectral shape.

Backscattering ratio (Figure 2) shows that the laboratory
measurements are 6% higher than other experimental data
from the literature specific to the same species (Harmel

et al., 2016), and within range for other dinophyceae algae

[b̃bp(442) from 0.0061 to 0.0210] (Whitmire et al., 2010). The
laboratory experiment results also aligns with in situ observations
(Whitmire et al., 2007; Cannizzaro et al., 2008).

3.2. Training Dataset From Modeled and
Laboratory Data
The forward calculated Rrs from background and laboratory
experiments are shown in Figure 3, for different chlorophyll
concentrations, alongside the training dataset derived from pixels
in the satellite image manual selection. The no bloom class
is defined in all Experiments from the manual selection in
the satellite image. Figures 3B,D display the results for the
background model reflectances. Increase in TChla controls the
shape of the spectra. These data are used for training class non-
harmful bloom and harmful bloom (Table 1). Figure 3F shows
modeled Rrs spectra for K. mikimotoi using the specific optical
properties derived from the laboratory experiments.

The median Rrs spectrum for the no bloom class from
satellite (Figure 3A) compares well in magnitude and shape to
Rrs modeled for the lower TChlbg (Figure 3B). Median TChla
for no bloom from satellite, computed using OC5, is 0.35
mg Chla m−3 and dispersion (half the inter-decile range= (Q90-
Q10)/2) is 0.13 mg Chla m−3. The harmful class from satellite
(Figure 3E) and from the laboratory experiments (Figure 3F)
are also in agreement of scale and spectral shape. TChla from
the satellite is 8.15 ± 10.6 mg Chla m−3, which encompasses
the range of TChlakm simulated. However, Rrs spectra of the
harmless bloom class from satellite (Figure 3C) is lower than
the Rrs modeled (Figure 3D). Satellite TChla is 1.01 ± 0.52
mg Chla m−3 and is representative of the lower limit of the
simulated range (i.e., from 1 mg Chla m−3) for the background,
which could explain some differences in the results below. The
classifier coefficients are available and attached to this paper
(Supplementary Material, section 3).

3.3. Detection of HABs in Satellite Data
Figure 4 presents two examples of MERIS scenes with
documented K. mikimotoi blooms. These scenes were selected to
train and to compare the sensitivity of the classifier to training
datasets in Experiments 1, 2, and 3 (see section 2.3). The
enhanced MERIS true color images of the bloom are shown in
Figures 4A,B. The harmful bloom class can be seen in the images
as a reddish patch close to the center of the images. Figures 4C,D
show the TChla as retrieved by standard chlorophyll algorithm
for the area, highlighting the co-location of elevated TChla
with harmful bloom class. The manual delineation of the
area around those blooms for harmful bloom is shown in red
in Figures 4E,F.

The turquoise and darker greenish colors, mostly toward the
Atlantic Ocean, are associated with no bloom and non-harmful
bloom classes (Figures 4A,B). They match low to medium TChla
(Figures 4C,D). The manually selected areas for these classes are
blue and green respectively (Figures 4E,F). In these examples,
the pixels manually selected for the non-harmful bloom class
are mostly toward the Atlantic Ocean, with TChla∼1 mgm−3,
which explains the Rrs (Figure 3C). A special case is the white
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FIGURE 3 | Rrs spectra used for training the HAB classifier. (A,C,E) Median and standard deviation Rrs from MERIS pixels for no bloom, no harmful, and harmful

classes, respectively (section 2.3). (B,D,F) Rrs spectra at different TChla concentrations for background (B,D) and Karenia mikimotoi (F) datasets used to train the

classifier in Experiments 2 and 3. MERIS bands are indicated by stars.

bright patch on the Western English Channel, close to the coast
of England (Figure 4A). This corresponds to a bloom of non-
toxic coccolithophores species, which has not been identified as
high TChla (Figure 4C) and has not been labeled as a separate
class in the classifier. However, the chlorophyll algorithm is not
always capable to discern “bright” waters from high chlorophyll
concentrations. For instance, toward the North, in the Bristol
Channel, an orangy-white patch, is a well documented location of
high riverine contributions of suspended particulate matter (Neil
et al., 2011) (Figures 4A,B). Finally, at the center of the Western

English Channel, dark red patches (Figures 4A,B) match the
corresponding extremely high chlorophyll concentration images
(Figures 4C,D) from documented blooms (Kelly-Gerreyn et al.,
2004; Vanhoutte-Brunier et al., 2008). These patches were used
to define the harmful bloom class manually from satellite
(Figures 4E,F). are distinguishable. Overall, high TChla can
be considered a good indicator of areas with potential HAB,
however, highly turbid waters in coastal areas can produce
misleading high TChla when chlorophyll algorithms fail. Lack of
in situ data to verify high-chlorophyll non-harmful bloom areas,
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FIGURE 4 | MERIS images showing a Karenia mikimotoi bloom in the English Channel on 19 July 2002 (A,C,E) and 1 July 2003 (B,D,F). Enhanced true colour

images (A,B) and chlorophyll concentration from Algorithm OC5 for MERIS (C,D) (Tilstone et al., 2017). Image masks used for training and evaluation of Karenia

mikimotoi HAB classifier (E,F). Blue areas indicate data selected to construct the training dataset for no bloom class. Green areas are for non-harmful bloom training

dataset. Red areas for a generic harmful bloom class training dataset.

preclude drawing any conclusion about the validity of using the
current algorithm and training datasets to identify those, and it is
an extension for this study.

The scenes in Figure 4 were further processed using the K.
mikimotoi classifier, trained with the datasets in Experiments
1–3 to generate risk maps (Figure 5). Qualitatively, the
three experiments produced overall similar maps with some
interesting localized differences (Figure 5). The classification

results were different in the Bristol Channel, where concentration
of sediments was relatively high. No collocated in situ
suspended particulate matter are available, but this is well
known area of intense bottom resuspension of sediments
and river runoff (Uncles, 2010; Uncles et al., 2015). In
Experiment 1 (Figures 5A,B) the classifier, trained on satellite
data, discriminated this region as HAB. This false positive
detection disappeared in Experiments 2 and 3 (Figures 5C–F),
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FIGURE 5 | Karenia mikimotoi HAB classification maps of the English Channel on 19 July 2002 (left column) and 1 July 2003 (right column): (A,B) Experiment 1, (C,D)

Experiment 2, and (E,F) Experiment 3. Pixels classified as Harmful bloom are shown in red, non-harmful bloom in green, and no bloom in blue. Pixels classified as

unknown, are presented in gray and black is land within contours and missing data over water, due to cloud cover or sun glint.

highlighting an improvement of performance in this optically
complex region. Another observation in these examples is
that the coverage by grey areas increased from Experiments
1 to 3. Indeed, the percentage of unknown class pixels
(Table 3) shows a slight increase from Experiment 1 to
Experiment 2. It has the highest value for Experiment
3, indicating where the algorithm fails to classify a pixel
among one of the known categories. Figures 5E,F point to
greater areas of grey (unknown class) coinciding with areas
of lower TChla (Figures 4C,D). The increase in unknown

class for Experiment 3 can be related to using a range of
chlorophyll for modeling the non-harmful class with higher
values than what is normally encountered in the area (i.e., ∼1.5
mg Chla m−3 from Smyth et al., 2010). It is worth noting
that the coccolithophore bloom was classified as unknown in
Figures 5A,C,E for the three Experiments. None of the satellite
training images or simulated data for the three training classes
included the coccolithophore bloom examples and in all three
experiments the algorithm correctly discriminated these data as
unknown class.
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TABLE 3 | The percentage of image pixels, classified as unknown.

Scene(Date) Experiment 1(%) Experiment 2(%) Experiment 3(%)

19 July 2002 8.81 11.15 36.61

1 July 2003 9.93 11.50 40.93

TABLE 4 | The confusion matrix for Karenia mikimotoi classifier.

Classified as (%)

True class Harmful bloom Non-harmful bloom No bloom

Experiment 1

Harmful bloom 98.6 1.41 0.00

Non-harmful bloom 2.84 96.0 1.20

No bloom 0.00 0.61 99.4

Experiment 2

Harmful bloom 97.7 2.29 0.06

Non-harmful bloom 2.52 95.6 1.88

No bloom 0.00 0.66 99.3

Experiment 3

Harmful bloom 84.1 15.9 0.00

Non-harmful bloom 4.62 78.6 16.8

No bloom 0.00 0.00 100

The matrix was normalized by the number of elements in each class.

Numerically, the comparisons of the classification algorithm
was assessed using the confusion matrix and statistical measures
derived from the confusion matrix. The results of classifier
assessment in Experiments 1–3 are summarized in Tables 4, 5.
Due to the limited availability of in situ data for validation,
the evaluation of the experiments has been made using satellite
data (see section 2.3), the focus being on the relative changes in
the results.

Overall, there are small differences among the results from
the Experiments. Importantly, Experiment 1 and 2 percentage
classification of harmful bloom class is <1% and the greatest
difference is<15% (Table 4). The confusionmatrix demonstrates
that the accuracy of non-harmful bloom classification is lower for
the Experiment 3. The differences in results between Experiment
1 and 3 may be due to the difference in the range of Rrs for
the ranges of TChla considered for the non-harmful bloom class,
as discussed above. The small differences between Experiment 1
and 2 may point to expected variability of the optical properties
within the K. mikimotoi culture. It follows from Table 4 that the
classifier results in Experiment 2 have the lowest false positive
rate for non-harmful blooms being classified as K. mikimotoi (i.e.,
2.52). This observation is in good agreement with the classified
maps in Figure 5 that showed reduced false alarms in the Bristol
Channel for Experiment 2 and even fewer in Experiment 3.

According to the results, all three classifiers performed well,
achieving overall accuracy above 0.91 and kappa value above
0.85 (Table 5). The best performance was demonstrated by the
classifier in Experiment 1 and the worst for the classifier in
Experiment 3 with 7% lower overall accuracy, highlighting the

importance of the choice of ranges in chlorophyll adapted to the
region of study. However, the fact that the difference among using
different training datasets was low (i.e., subjective in Experiment
1 vs. laboratory-derived in Experiment 2), supports the use of
laboratory data to train this type of classifier.

The errors of commission and producer accuracy statistical
measures for different classes are summarized in Table 5. These
values are quite similar for Experiment 1 and Experiment 2,
indicating that the performance loss is relatively small when
the satellite training data for harmful bloom are replaced with
laboratory derived data in Experiment 2. This points to a small
degradation of the classification accuracy using laboratory data. A
more significant loss in accuracy can be observed in Experiment
3, where the producer accuracy for non-harmful bloom class is
reduced by almost 20% by using the bio-optical model instead
of satellite-derived data for training.

Overall, the results demonstrate that the novel approach
based on laboratory experiments can be used for simulation
of Rrs values and training of a HAB classifier with only slight
degradation of the classification accuracy while reducing false
positives due to turbid coastal waters. This study has highlighted
the impact of the selection ranges for no bloom conditions that
should be fit to simulate TChla similar to those found in the
environment where the model is deployed. A smaller source of
uncertainty could be related to the use of laboratory conditions
as representative of natural conditions for K. mikimotoi. A
wider set of culture conditions of the phytoplankton could allow
for increasing the training dataset to be able to deal with the
natural environmental variability to which the phytoplankton is
exposed in the real ocean. We speculate that the low light culture
conditions in our experiment could have affected the optical
properties of the phytoplankton. While they are in agreement
with other studies under similar conditions (Whitmire et al.,
2010; Harmel et al., 2016), the variability with light intensity
and adaptation should be considered and included in subsequent
training datasets (Poulin et al., 2018). More complex modeling of
Rrs by different mixes of phytoplankton species and use of more
advanced radiative transfer modeling (Mobley and Stramski,
1997; Stramski and Mobley, 1997) could also make our training
dataset more robust. However, it is the lack of in situ observations
co-incident with either radiometry from in situ and/or satellite
platforms that limits further advance (Tomlinson et al., 2009),
as we were unable to validate our results against real-world
observations. Therefore, more efforts to collate existing data and
to gather new ones are required.

4. CONCLUSIONS AND FURTHER WORK

In this work, a novel approach, tested through a sensitivity
study, to produce training datasets for HAB classification using
machine learning methods has been proposed. The novelty of the
approach consists in injecting the bio-optical knowledge from
the literature and from a purpose built laboratory experiment
into a training dataset for detection of a specific phytoplankton
species that can cause health and economic harm to the
coastal communities.
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TABLE 5 | Performance measures derived from the confusion matrix.

True class Errors of commission Producer accuracy Overall accuracy Kappa coefficient

Experiment 1

Harmful bloom 0.027 0.986

Non-harmful bloom 0.023 0.960 0.981 0.972

No bloom 0.009 0.994

Experiment 2

Harmful bloom 0.029 0.976

Non-harmful bloom 0.030 0.956 0.978 0.966

No bloom 0.013 0.993

Experiment 3

Harmful bloom 0.024 0.841

Non-harmful bloom 0.310 0.786 0.915 0.858

No bloom 0.047 0.999

The potential advantages of this approach include moving
away from subjectivity in terms of selection of training datasets
as well as not being sensor or even region specific. It is easy
to envisage that this approach can be applied to radiometric
sensors installed in multiple platforms such as ferries, drones or
different satellites.

Laboratory measurements of absorption and backscattering
coefficients for different concentrations of K. mikimotoi
chlorophyll have been performed,matching existing observations
at low light conditions of the culture. When these data were
used to train a HABs classifier and applied to MERIS images
from the European coastal shelf, there was <1% degradation
of the capacity to detect the harmful bloom in comparison
to using satellite data, but there was a better discrimination
of false positives in turbid coastal waters. Further tests on the
ability to separate non-harmful from harmful algal blooms
when both have high chlorophyll concentrations are needed.
Even replacing most of the training datasets with a combination
of modeled and laboratory derived Rrs did not degrade HAB
detection significantly, although regional average chlorophyll
concentrations need to be known a priory to improve the results.

The limited availability of suitable datasets to ground truth the
results, constrains the conclusions of this study to a sensitivity
analysis. If HAB detection from satellite is to progress to become
an operational satellite product, in a similar way radiometry
or Chla products are, the construction and open availability
of standardized and purpose built relevant validation datasets
should be the focus of future work. Indeed, when in situ
observations are available (Caballero et al., 2020), local tuning of
an algorithm can be achieved. The approach proposed here could
be ported to different species by modifying the training datasets.
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