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Sponges hold a key role in benthic environments, and specifically in the Mediterranean
Sea. Past events of mass mortality in sponge communities have been linked to extended
periods of high-temperature anomalies, yet it is unknown how a gradual change,
such as the constant rise in global seawater temperatures, will affect biodiversity.
Here we present a case study of Agelas oroides, a common massive sponge in the
Mediterranean Sea, found at a wide depth range of 1–150 m. Last documented in the
1970s, A. oroides was considered lost from the Israeli coastal fauna. However, its recent
rediscovery in mesophotic depths, where environmental conditions are stable, provided
an opportunity to examine whether it can survive the present conditions in the shallow
Israeli coast – where temperatures increased by 3◦C during the past 60 years, while
the nutrients concentration decreased following the damming of the Nile River. To test
this hypothesis, A. oroides individuals were collected during winter from mesophotic
sponge grounds (100–120 m) and transplanted to a shallow rocky habitat (10 m).
Control individuals were transplanted back to the mesophotic habitat. Sponge survival,
temperature, and nutrient concentrations were measured in both habitats. The shallow-
transplanted sponges’ survival decreased only when the ambient temperature exceeded
28◦C. In contrast, the control group at the mesophotic depth, where the temperature
never rose above 20◦C, survived the duration of the experiment. Our findings suggest
that a prolonged period of high temperatures may constitute a major factor in A. oroides
survival and disappearance from the Israeli shallow habitats.

Keywords: transplantation, mesophotic, sponge ground, 3D modeling, nutrients, marine ecology, temperature

INTRODUCTION

Porifera (sponges) form the oldest metazoan phylum and have demonstrated resilience and
survival under various environmental conditions over different geological eras (Feuda et al., 2017).
Nonetheless, environmental conditions are considered a key factor in determining the dynamics
of sponge spatial distribution, with temperature playing a central role (Garrabou et al., 2009, 2019;
Di Camillo et al., 2013). For example, Mediterranean sponge diversity has been shown to follow
an NNW-SSE gradient that correlates with an increase in water temperature and salinity and a
decrease in nutrient concentration (Voultsiadou, 2009). In addition, several studies demonstrated
that extended periods of high-temperature anomalies during the summer resulted in mass mortality
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in sponge communities (Garrabou et al., 2009, 2019; Di Camillo
et al., 2013; Ereskovsky et al., 2019). Furthermore, recent studies
found that elevated temperatures led to significant physiological
responses in several sponge species, such as a decrease in buoyant
weight, prevalence of diseases, and an increase in mortality
(Webster, 2007; Massaro et al., 2012; Bennett et al., 2017; Laffy
et al., 2019; Beepat et al., 2020).

The present case-study species, Agelas oroides (Schmidt, 1864),
is a sponge common to the Mediterranean Sea, at both shallow
(<40 m) and mesophotic (40–150 m) depths (Voultsiadou, 2009;
Topaloglu and Evcen, 2014; Costa et al., 2018; Grenier et al.,
2018). It inhabits sheltered habitats with low light intensity (i.e.,
entrances to caves, crevices, or mesophotic habitats) (Tsurnamal,
1968; Gerovasileiou and Voultsiadou, 2012; Gerovasileiou et al.,
2017; Grenier et al., 2018). It has an important ecological role,
increasing the structural complexity of its surroundings and
consequently providing a habitat for the invertebrates and fish
that dwell in and on it (Bo et al., 2012; Beazley et al., 2013;
Kenchington et al., 2013; Gerovasileiou et al., 2016). A. oroides
has also proven to be an important source of many new natural
products, some with demonstrated bioactivity, e.g., oroidin
(Sauleau et al., 2017; Kovalerchik et al., 2020). A. oroides is thus
of considerable interest in the ecological and biotechnological
context and a meaningful study object.

It is therefore of concern that the distribution range of
A. oroides in the Mediterranean appears to have decreased over
time. Historically, A. oroides was considered abundant in the
shallow water of the Israeli Mediterranean coast. Although few
specimens were collected from mesophotic depths in the 1970s,
A. oroides was last reported from the shallow Israeli coast in
the 1960s (Tsurnamal, 1968). Since then, it has been regarded as
lost from the Israeli sponge fauna. The reason for its regional
disappearance is unclear, but over the past 60 years, seawater
temperature along the Israeli Mediterranean coast has risen by
over 3◦C during the summer, presently surpassing temperatures
of 30◦C (Lipkin and Safriel, 1971; Shaltout and Omstedt, 2014;
Ozer et al., 2017). An alternative explanation may relate to the
construction of the Aswan High Dam in 1965 that limited the
discharge of the Nile River to the overflow of the dam only (Oren,
1969). This limitation dramatically reduced the primary source
of nutrient flow into the south Eastern Mediterranean (Oren,
1969; Azov, 1991), further lowering nutrients concentration
and resulting in ultra-oligotrophic conditions in the Levant
Basin (Krom et al., 2010; Kress et al., 2014; Ozer et al., 2017).
Therefore, these two factors together (temperature and nutrient
concentration) are the most likely causes for the disappearance of
local A. oroides populations. As seawater temperature continues
to rise and the ecology of the oceans is changing, it is essential to
understand the interaction with other environmental factors and
potential effects on biodiversity.

The recent rediscovery of dense populations of A. oroides
in Israel’s mesophotic sponge grounds with environmental
conditions markedly different from those along the shallow coast
(Idan et al., 2018) has provided the opportunity to test the
hypothesis that shallow-water temperature and nutrient levels
have adverse effects on A. oroides and could limit its distribution
along the Israeli coast. To assess the effect of habitat-related

environmental factors on the growth and survival of A. oroides
along the Israeli coast, an experiment was conducted in which
sponges from the mesophotic sponge ground were transplanted
to a shallow rocky habitat, and others returned to mesophotic
depths as controls.

MATERIALS AND METHODS

Study Sites
Mesophotic sponges were collected at a depth of 100–120 m from
a site that is part of a submerged sandstone ridge off the coast
of Herzliya along the Israeli Mediterranean coast (32.17710◦N,
034.63306◦E, WGS-84). Sponges were transplanted from this
mesophotic site to a rocky, shallow habitat in 10 m depth off the
coast of Mikhmoret (32.42854◦N, 034.87313◦E, WGS-84), where
A. oroides used to grow in the 1960s both under overhangs and
on exposed rocks (Tsurnamal, 1968).

Sponge Collection
Sponges were collected during two expeditions onboard the R/V
Mediterranean Explorer (using a Remotely Operated Vehicle
(ROV; ECA-Robotics H800). This ROV is equipped with a
five-function-manipulator, a full high-definition camera, and
two parallel laser beams for scale. The sampled sponges were
brought on board in a collection basket and immediately
placed in a seawater flow tank, in which they were individually
numbered and attached to settlement tiles (environmental
cement R© 20 cm × 20 cm × 5 cm) using coated electric
wire. Twenty A. oroides individuals were collected from the
mesophotic site between January and March 2018, of which
fourteen were transplanted to 10 m depth at Mikhmoret, while
six sponges served as a control group and were transplanted back
to the mesophotic site.

Transplantation
On the day of collection, the specimens were transferred
to running seawater tanks at the Ruppin Academic Center’s
research facility in Mikhmoret. The following morning the
sponges, still maintained unexposed to air, were transferred by
SCUBA diving to the transplantation site. Most of the sponge
specimens (n = 11) were placed (attached to tiles) in plastic
crates (55 cm × 15 cm × 29 cm) that had been bolted to
the rocky substrate prior to the translocation (Figure 1A). The
crates were selected to allow low light and moderate water flow
conditions through a mesh-like structure at the top and large
holes on the sides. These conditions are naturally favored by
A. oroides (Tsurnamal, 1968; Gerovasileiou and Voultsiadou,
2012; Gerovasileiou et al., 2017). The crates were cleaned of
fouling organisms and algae weekly to ensure the holes stayed
open, enabling water flow, and that other filter-feeders are not
growing in the crates. Three specimens were attached to the
crates’ exterior (Supplementary Table 1) in order to control
for possible effects of the specimens being inside the plastic
crates. As a control for handling and translocating the sponges,
six individuals were placed with their tiles on two metal trays
onboard the R/V and then positioned by ROV back on their
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original rocky substrate at the mesophotic site (Figure 1B),
where A. oroides grows abundantly (Idan et al., 2018). The
control sponges were not placed inside of crates so that in situ
visual inspections of them would be possible without bringing
them on board and because there was no need to cover them
from direct light in the mesophotic zone. The metal trays
were chosen in order to provide a sonar signature for easier
location in the following visits, and since the sponges were
attached to tiles, there was no physical contact between them
and the metal. The location of the trays was marked on a high-
resolution bathymetric map using the HYPACK R© navigational
system, which allowed us to return to the trays and monitor the
control sponges. The choice of an open tray was made so that we
can monitor the appearance of control sponges. All sponges were
left to acclimate until April 1st, 2018.

Throughout the experiment (April to August 2018), the
transplanted sponges were monitored twice a month for viability
and growth. The examined parameters were: ectosome integrity,
state of oscula (open or closed); water pumping.

Pumping, which indicates that the sponge is active, was
visualized by releasing fluorescein-dyed seawater (fluorescein,
100 mg/L) next to the sponge and documenting if it flowed
out of the oscula (Yahel et al., 2005). All parameters were
measured at the transplantation site (underwater) with minimal
handling of the sponges.

In order to estimate individual growth, sponge volume
was assessed using 3D photogrammetry. Six randomly chosen
individuals were monitored throughout the experiment. They
were photographed from multiple angles twice a month for
3D model reconstruction, beginning on April 12th (Lavy et al.,
2015; Olinger et al., 2019). The 3D models were reconstructed
using Agisoft PhotoScan v1.4 (Agisoft, 2017) and Metashape
v1.5 (Agisoft, 2019) professional edition softwares. Sponges
were transferred with their tiles, without direct handling of
the sponge and placed on a “Lazy Susan” turntable marked
with scale bars and place-markers (Figure 2A). The cameras
(Canon G16 or G12) were positioned ∼20 cm from the
turntable, and the turntables were rotated to capture all possible
perspectives of the specimens, rulers, and markers. For each
model, 75–160 images were imported to the software and
then automatically aligned (high accuracy, key point limit
100,000, tie point limit 20,000). The next step was generating
a dense point cloud (high quality, depth filtering mild).
Upon completion, a mesh (surface type arbitrary, face count
high, calculated vortex colors enabled) was created through
interpolation of the points in the dense cloud, and finally,
the texture was added (mapping mode generic, blending mode
average). Manual proofing was performed for each step to
ensure maximal accuracy. To scale the model, markers were
placed on at least two scale bars (Figure 2B). This stage was
performed manually for each image, after which the base and
turntable were erased, the remaining gaps were closed, and the
volume was assessed.

The growth rate (%) of each individual was calculated using
the following formula:

Growth rate = ([(Vt − Vt−1) /Vt−1]× 100) /n

Where Vt is the volume of the sponge measured at time t, Vt−1
is the volume of the sponge measured in the previous time point,
and n is the number of days passed between t and t–1.

Sponges from the control group were monitored every
3 months due to the high cost and technical difficulty of
the expeditions. Volume and pumping were not measured for
the control group due to the technical incompatibility of the
ROV for such tasks.

In all of the specimens, part of the sponge was damaged
by the ROV manipulator at the time of collection, and shortly
after transplantation, the damaged part became necrotic; sponge
#19 is shown as an example (Figure 3). In both shallow and
mesophotic habitats, all specimens regenerated by creating a new
body wall underneath the necrotic area and eventually detaching
the necrotic part (Figure 3, 14/06/18). The part that was detached
was measured and subtracted from the volume estimation, before
its detachment, in order to compare the results accurately.

Environmental Parameters
All environmental parameters in both habitats were measured in
morning times (7:30–9:00 AM) unless mentioned otherwise.

Nutrients
Water samples were collected from both the mesophotic
and shallow habitats in order to compare concentrations of
particulate organic carbon (POC), total organic carbon (TOC),
and total nitrogen (TN). In the mesophotic habitat, water samples
were collected every 3 months using 12 L Niskin bottles placed
on a typical rosette sampler (Baetge et al., 2020). The bottles
were lowered while open and then closed at approximately one
meter above the bottom. For each parameter, at each date,
duplicate samples were taken from two separate Niskin bottles.
At the shallow site, water was collected during SCUBA dives
every 2–4 weeks using a single Niskin bottle, which was closed
approximately one meter above the bottom.

TOC and TN Sample Collection
Collection and processing followed a previously established
protocol (Morganti et al., 2016; Baetge et al., 2020). Samples were
collected directly from the Niskin bottles into pre-combusted
40 mL glass EPA vials with PTFE lined septa. Each vial was
washed twice in sample water, then 20 ml of sample water were
collected per vial, and 80 µl of HCL 32% were added. These
samples were frozen onboard the R/V in dry ice and stored
at −80◦C (Morganti et al., 2016). Samples were analyzed at
the Carlson Microbial Oceanography Lab at the Marine Science
Institute, UC, Santa Barbara.

POC Sample Collection and Processing
GF/F filters were pre-combusted at 400◦C for 4 h and kept in a dry
and clean environment prior to the expedition. Water samples
were pre-filtered through 80 µm plankton mesh to avoid large
particles that could block the filter and which are not utilized
by sponges. Duplicates of ∼4 L from the two Niskin bottles
were filtered on each mesophotic expedition, at three consecutive
days for each expedition. In the shallow water, duplicates of
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FIGURE 1 | Transplanted A. oroides. (A) specimens transplanted to the shallow site placed both inside and outside the plastic crates; (B) specimens transplanted to
the deep site, placed on a metal tray.

FIGURE 2 | Creating a 3D model of the transplanted A. oroides: (A) specimen #18 placed on the turntable. Markers and scale bars in the image were used for the
alignment stage and later enabled volume assessment. (B) 3D model of specimen #18; the blue flags are the manually placed markers.

∼3 L were filtered at least once a month. As GF/F filters
can become blocked with particles, the exact amount of water
filtered was documented to obtain an accurate estimation of the
POC concentration (Morganti et al., 2016). Filters were frozen
immediately after filtration, and at least 24 h before analysis,
the filters were dried in an oven (60◦C). Samples were then
analyzed using a TOC analyzer (Shimadzu Instruments), where
the Carbon is oxygenized at high temperatures (800–900◦C) to
create CO2. The CO2 creates a signal which is then detected by
Infra-Red sensors. The surface of that signal is proportional to
the amount of Carbon.

Temperature
Water temperature at the mesophotic sponge ground was
measured every three months from January until November
2018, using a CTD mounted on the rosette sampler,
creating a temperature profile of the water column. In
the shallow habitat, the water temperature was monitored
continuously from April to August 2018, using two HOBO
Pendant R© data loggers (Onset Computer Corporation,
Bourne, MA, United States). In order to monitor the

temperature and light inside and outside the crates, one of
the loggers was placed on the inside of a crate and the other
on its exterior.

RESULTS

The experiment lasted four months (April–August 2018) and
ended when the last of the specimens transplanted to the shallow
site had died. All sponges from the mesophotic control group
survived the entire duration of the experiment and beyond.

Environmental Parameters
Water temperature in the shallow habitat increased gradually
throughout the experiment (April-August 2018) from 20 to
30.5◦C (Figure 4A). No difference in temperature was measured
between the loggers placed inside the crates and those placed on
the crats’ exterior (Supplementary Figure 1). In contrast, over
the same period, the temperature remained relatively stable in the
mesophotic habitat below the seasonal thermocline (Figure 4B),
decreasing by 2.4◦C, from 19.5 to 17.1◦C (Figure 4A).
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FIGURE 3 | Sponge #19 throughout the experiment: dates and seawater temperatures are noted on each image. The part of the sponge damaged by the ROV
during collection became necrotic (circled) on 13/03 – 29/05. Later (14/06), the necrotic part detached, and a new ectosome is visible. On 09/07, the sponge
stopped pumping seawater. By 27/07, the sponge was dead, and on the 07/08, only the skeleton remained.

The range of nutrient concentrations (POC, TOC, and TN)
in the shallow habitat was 4.3–17.8, 92.0–159.3, and 5.0–8.0 µM,
respectively (Figure 5). These concentrations were higher and
showed greater variability than those in the mesophotic habitat
(3.1–7.7, 68.3–101.8, and 3.7–5.8 µM, respectively; Figure 5).
Differences in TOC and TN concentrations between the
mesophotic and shallow water were small, with higher values in
the shallow water. POC concentration at the shallow site had a
greater variation between sampling dates.

Transplant Survival and Vitality
At the end of June, 3.5 months since the sponges’ transplantation,
86% of the sponges at the shallow depth were still alive (i.e., their
ectosome was intact and their oscula were open), and 64–86%
of them were observed to be pumping at each visit (Figure 6).
After the temperature at the shallow site had risen to over 28◦C
in July, the sponges were still alive, but all pumping had ceased
(Figure 6). Two weeks later (July 27th), only one specimen was

still alive while the rest were visibly dead (i.e., their ectosome was
completely fragmented). By August, all the sponges at the shallow
site had died, and the experiment ended (Figure 6). The survival
patterns of the sponges that had been mounted inside and outside
the crates were similar (Supplementary Table 1). In contrast,
all the sponges in the mesophotic control group survived until
the end of the experiment and were observed alive more than
5 months later (Figure 7, Supplementary Figure 2).

The growth pattern of the sponges appeared to follow
an optimum curve (Figure 8). Within 1.5 months, i.e.,
from 12/04 – 29/05/2018, the shallow site sponges grew on
average 0.19% a day, increasing the volume of the sponges
by an average of 9.2% ± 2.5 when temperatures reached
24◦C. As the temperature continued to rise, we observed a
decline in sponges’ volume until the end of the experiment,
reaching a minimum of −1.7% ± 2.6 of the original volume.
The change in sponge volume was not constant: initially,
the growth rate was 0.11% a day, and it increased as
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FIGURE 4 | Temperature regime measured from January to November 2018. (A) The temperature at the mesophotic sponge ground (100 m depth; black triangles)
and at the shallow transplantation site (10 m depth; gray circles). The temperature was measured with CTD in both habitats. In addition, from April to November, the
temperature in the shallow water was measured four times a day with a HOBO logger. (B) Temperature profile at the mesophotic sponge ground showing seasonal
thermocline (measured with CTD).

the temperature rose. Between 15/05 and 29/05, the growth
rate reached an average of 0.43% a day. Then the volume
decreased at a rather constant rate (0.23–0.26% a day) between
29/05 and 26/06.

DISCUSSION

Agelas oroides is a common sponge in shallow waters throughout
the Mediterranean (Carteron, 2002; Voultsiadou, 2005, 2009;
Lejeusne et al., 2010; Topaloglu and Evcen, 2014; Costa et al.,
2018). In the past, it was recorded as a common species in
Israel’s coastal water (Tsurnamal, 1968). However, our findings
suggest that the current distribution of A. oroides might be
limited by the increasing water temperatures along the shallow
Israeli coast. During the experiment, all A. oroides individuals
transplanted from mesophotic to shallow water died within
4 months. In contrast, the specimens that were transplanted
back to the mesophotic sponge ground survived well past the
end of the experiment. The shallow habitat differed from the
mesophotic habitat in many aspects that could affect the survival
of the transplanted individuals: Differences in concentrations of
TOC, TN, and POC were small but higher at the shallow site
compared to the mesophotic sponge grounds. These findings
are consistent with the results of other studies showing that
nutrient levels at the Mediterranean mesophotic depths are
usually lower than in the shallow water near the shore because
of the run-off of freshwater from land and re-suspension of

sediments due to wave action (Santinelli, 2015). While A. oroides
cannot survive in the shallow local site, it thrives at other
shallow locations such as Western Mediterranean, with similar
DOC and POC concentrations (Morganti et al., 2017, 2019).
Therefore, excess of nutrients, or nutrients limitation, were
ruled out as a limiting factor. By placing the sponges inside
large crates, we were able to control for other environmental
parameters, such as light and water flow regime. Thus, the crates
provided the sponges in shallow water conditions closer to their
natural habitat, i.e., lower water motion and light intensities
(Tsurnamal, 1968; Gerovasileiou et al., 2017). In the current
study, the majority of sponges were vital (i.e., ectosome intact,
open oscula, and pumping water) throughout the first 2.5 months
of the experiment.

Moreover, the sponges seemed to have recovered from the
initial damage caused by the ROV collection, rebuilding their
body wall and detaching the necrotic parts – indicating that the
conditions at the time of the experiment onset were suitable
for their survival. In addition, all sponges increased in size
during the first part of the experiment. Only when water
temperature reached 28◦C did the sponges begin to show signs
of stress, observed by a decrease in body size and cessation
of pumping. Although variations in sponge pumping are well
documented as a normal phenomenon (Hoffmann et al., 2008;
Lavy et al., 2016; Kumala et al., 2017), the prolonged arrest of
pumping is a clear sign of sponge stress, eventually leading to
its mortality (Massaro et al., 2012). Many marine organisms,
including sponges, are known to be adversely affected by rising
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FIGURE 5 | Concentrations of organic carbon and total nitrogen at the mesophotic and transplantation sites over time (01–10/2018). At 10 m, the first three dates
have only one sample for TN and TOC, and the same for the first two dates for POC. (A) Total nitrogen (TN; µM), (B) Total organic carbon (TOC; µM), and
(C) Particulate organic carbon (POC; µM).

FIGURE 6 | Survival of Agelas oroides specimens (%) and water temperature (◦C) at the shallow transplantation site. The percentage of survival was calculated as
the number of live sponges (not necessarily pumping water) out of the total number of sponges; The percentage of pumping specimens was calculated separately.

temperatures (Webster, 2007; Webster et al., 2008a; Coma
et al., 2009; Garrabou et al., 2009, 2019; Cebrian et al., 2011;
Pairaud et al., 2014; Laffy et al., 2019), and past events of
sponge mass-mortality in the Western Mediterranean have been
linked to events of unusually high temperatures (Garrabou
et al., 2009, 2019; Lejeusne et al., 2010; Cebrian et al., 2011;
Di Camillo et al., 2013; Ledda et al., 2014; Ereskovsky et al., 2019).

It has been suggested that sponges in coral reefs are more
resilient than corals to the rise in seawater temperatures, and
some argue that they may outcompete corals in such cases (Bell
et al., 2013, 2018). Others, however, claim that synergistic effects
with additional factors (e.g., ocean acidification, reduction in
nutrients, and pollution) will adversely affect their populations
(Bennett et al., 2017; Lesser and Slattery, 2020). The effect of

Frontiers in Marine Science | www.frontiersin.org 7 December 2020 | Volume 7 | Article 603593

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-603593 December 2, 2020 Time: 19:45 # 8

Idan et al. Sponges in a Changing Climate

FIGURE 7 | Agelas oroides mesophotic control group survival (% specimens)
and seawater temperature (◦C) at the Herzliya mesophotic sponge ground.

rising temperatures may be direct, by causing stress to the
sponges themselves – evident by the expression of heat-shock
protein (Itskovich et al., 2018), or indirect, by affecting the
composition of the microbiota inhabiting the sponges (Webster
et al., 2008a,b), in some cases creating favorable conditions for
opportunistic or pathogenic microorganisms (Webster et al.,
2008a; Laffy et al., 2019). And indeed, with the increase in
seawater temperatures worldwide, there were many reports of
an increase in sponge diseases and a decline in their populations
(Webster et al., 2008a).

Analysis of changes in the hard-bottom community over a
period of 25 years at the Ligurian Sea showed that sponges
maintained their overall coverage, although this region suffered
from severe urbanization of the coastline, pollution, fishing
impact, and was exposed to global warming (Bertolino et al.,
2016). Specifically, A. oroides showed some coverage increase
(though the trend was not significant), which might suggest that
this species could be resilient to temperature elevation. However,
in spite of the reported seawater warming, the temperatures in
the Ligurian Sea remained lower than those of the Levantine
Sea and probably did not reach the threshold temperature for
A. oroides survivorship.

A. oroides was last observed at the shallow Israeli coast in
1967 (Tsurnamal, 1968). Since then, the temperature in the
shallow waters of the Eastern Mediterranean has risen during
the summer by over three degrees, from a maximum of 28.4◦C
in the 1960s to 31.5◦C in present times (Lipkin and Safriel,
1971; Shaltout and Omstedt, 2014; Ozer et al., 2017). In this
study, the daily temperature amplitude was around 28◦C for
3 weeks (Figures 4A, 6), in which time most of the sponges
have stopped pumping. About a week later, the temperature
has surpassed 29◦C, and no pumping activity was detected.
The sponges, however, still appeared alive (by their ectosomes’
integrity). The ability of sponges to withstand short-term (several
days) thermal stress was also demonstrated for the Mediterranean
sponge Spongia officinalis (Koutsouveli et al., 2020). That work
described the mechanism of genetic expression involved in heat-
tolerance and adaptation of S. officinalis.

Although we have no specific information about heat-
tolerance or intolerance of A. oroides, it was shown that a
heat-dependent prevalence of disease in different sponges was
positively correlated with the duration for which they were

FIGURE 8 | Percentage change in sponge volume throughout the experiment
for A. oroides specimens transplanted to a shallow site n = 6.

exposed to extreme temperature (Erwin et al., 2012; Laffy
et al., 2019). Similarly, the heatwave in the year 2003, in
which Mediterranean A. oroides populations suffered from mass
mortality, lasted ∼100 days (Garrabou et al., 2009; Marbà et al.,
2015). In 1999, on the other hand, a high-temperature anomaly
of 27◦C that lasted ∼30 days was reported to cause a decline of
some sponge populations in the Mediterranean. A. oroides did
not appear to be affected (Cerrano et al., 2000; Marbà et al., 2015;
Bertolino et al., 2016).

These observations imply that not only high temperature but
its duration may affect sponges’ survival. At the present study
site, seawater temperature in the summer of 2018 remained above
28◦C for almost 3 months and reached a maximum of 31.4◦C
at 10 m depth (Figures 4, 5). This suggests that a prolonged
period of time during which the temperature surpasses 28◦C may
constitute a threshold too high for A. oroides survival and that it
constitutes one of the main factors affecting the disappearance
of A. oroides from the Israeli shallow waters. Another support
for this hypothesis is the fact that throughout the experiment,
the temperature at the mesophotic control site never surpassed
19.5◦C, and the control sponges remained alive (Supplementary
Figure 2). In the past, A. oroides did face temperatures surpassing
this threshold along the shallow Israeli coast (28.4◦C). However,
the sponges were only exposed to these conditions for a short
time. While sponges may have the capacity to acclimate to such
conditions Guzman and Conaco (2016) and Koutsouveli et al.
(2020), in long-term exposure, the damage caused by the thermal
stress may accumulate and lead to the sponge death.

While other abiotic conditions that were not within the scope
of this study (such as the presence of anthropogenic pollutants)
may contribute to shaping sponge communities, our findings
are in congruence with the notion that low sponge richness in
the shallow water of this easternmost part of the Mediterranean
Sea, could be attributed to temperature (Voultsiadou, 2005,
2009; Bianchi, 2007). Finally, while sea temperature continues
to rise, it is expected that benthic communities in shallow,
coastal waters, will likely change and result in a disappearance
of temperature-sensitive species (Webster et al., 2013). A loss of
habitat-engineering sponge species may have a profound impact
on the ecosystem and other organisms that depend on these
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sponges [e.g., (Herrnkind et al., 1997; Peterson et al., 2006)]. Our
present findings suggest that the mesophotic sponge grounds, in
which environmental conditions are much more stable, could
provide a refuge for some species like A. oroides that may
gradually be displaced from shallow water in a warming climate
(Webster et al., 2013). Moreover, because the abiotic conditions
in the Levantine Sea are changing faster, and the temperature is
rising (Marbà et al., 2015), the status of sponge communities there
may provide us with a possible prediction for other areas of the
Mediterranean Sea as water temperatures continue to increase.
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