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INTRODUCTION

Artificial intelligence is an exciting technological frontier for the coral reef remote sensing
community, especially the emergence of machine learning algorithms for mapping and detecting
features from aerial images of coral reef environments. Machine learning algorithms are finding
uses in environmental remote sensing applications that are principally founded on three
technological advances.

Firstly, the spatial resolution of remote sensing images has increased incrementally since Earth
Observation images were first collected in the late 1960s. Greater detail and smaller features are now
visible in coral reef environments. Notably, the widespread use of drone platforms for collecting
images at low altitudes above coral reefs has made individual corals visible.

Secondly, more images than ever before are being collected. The “big data revolution” refers
to the phenomenon of increased capture of earth observation images, which has delivered the
information on which artificial intelligence relies to recognize environmental patterns and trends.
Global repositories are now continuously updated to provide real-time satellite images, often freely
downloadable, for observing coral reefs. A wealth of image-based information is now available for
training and evaluating algorithms to interpret coral reefs from above.

Thirdly, computational advances have made low-cost machines with fast arithmetic units widely
available, notably through virtual processing facilities. This has opened up the scope for numerical
approaches to image analysis, including several families of machine learning approaches.

Collectively, these three advances are fundamentally shifting the way that the remote sensing
community are interpreting images, with important implications for coral reef managers. Taking
a fundamentally different approach to most commercial image interpretation softwares, machine
learning algorithms work with data and desired results to generate a model that turns one into
the other (Domingos, 2015). By continually adjusting the mathematical and logical models built
through exposure to training datasets, machine learning algorithms recognize patterns and trends
in a manner akin to learning. Here, we outline two distinct applications of machine learning
algorithms to coral reef environments, before considering their future uses for coral reef managers:

1. Habitat classification for spatially continuous mapping, and

2. Detecting discrete features in a coral reef environment.
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DISCUSSION

Coral Reef Habitat Classification for
Mapping

Habitat maps provide a foundation for marine spatial planning
and the detection of changes to coral cover, reef health, and
ecosystem dynamics (Hamylton, 2017; Purkis et al, 2019).
Machine learning algorithms are now embedded into image
classification routines for mapping coral reef habitat at large
geographic scales. For the global Allen Coral Atlas, random forest
learning algorithms classified groups of image pixels (objects)
into habitat maps from a collection of covariate data layers,
including satellite image reflectance (e.g., Landsat, Sentinel-
2, Planet Dove, and Worldbiew-2), bathymetry, slope, seabed
texture and wave data (Lyons et al., 2020). Multiple decision trees
were trained from known occurrences of bottom type (“ground
truthing data”) to classify unknown objects from the mode of the
individual tree classes. Working with covariate data and desired
results, a machine learning classifier reliably turned one into the
other and applied at a global scale using Google Earth Engine to
provide a repository of high resolution earth observation imagery
and a remote supercomputer (Gorelick et al.,, 2017). Resulting
habitat maps had clear potential management applications, for
example, in evaluating reef connectivity for the dispersal of
coral and crown of thorns larvae, modeling water quality, and
evaluating reef restoration sites (Roelfsema et al., 2020).

While machine learning algorithms offer a reliable means
of habitat classification, their use for mapping relies on input
covariate biophysical data. Feature extraction provides an
alternative application of machine learning algorithms to coral
reef imagery.

Detecting Features in Coral Reef

Environments

Rather than classifying and mapping spatially continuous areas
of the ground, discrete features visible within images can be
directly detected as recurring patterns across multiple pixels. This
is commonly achieved through a family of multi-layered deep
learning algorithms known as convolutional neural networks
(CNN) that were initially developed for facial and handwriting
recognition. They define a series of mathematical convolutions
to generate the output from the input, allowing all instances
of a feature falling within an image to be located based on a
predefined set of features (LeCun et al., 2015).

On sand cay islands and reef flats, features that are amenable
to detection include fallen trees, particularly on narrow beaches,
which signify erosion of sand cay shorelines (Lowe et al., 2019)
and individual mangrove trees, from which forest expansion
and contraction can be monitored over time (Hamylton et al.,
2019). Excitingly, individual corals are now clearly visible in
drone images acquired above reefs (Figure 1C) and machine
learning algorithms hold good potential for detecting them,
opening up a wealth of potential management applications for
monitoring coral restoration and bleaching. For example, on
degraded reefs, restoration activities include planting tens of
thousands of juvenile corals (Lirman and Schopmeyer, 2016). For
rehabilitating comparable terrestrial vegetation, CNN algorithms

have detected and tracked the fate of individual plants to reveal
spatial trends in planting success, and to identify areas for re-
planting (Hamylton et al., 2020). Similar applications are feasible
for coral reef restoration.

Here, we illustrate the application of a bespoke deep
convolutional neural network feature extraction algorithm
(Faster R-CNN) (Ren et al, 2016) to detect 507 Porites
microatolls from 1400 UAV images of Nymph Island (GBR,
Figure 1). Porites are distinctive corals, typically between 1 and
5m in diameter. The algorithm was trained on a rule set that
specific individual corals were circular, had a dark external
margin and were found in moated intertidal reef flat areas, as
specified by a “regions of interest” domain map. The detector
had a tendency to overfit (ie., it detected corals where they
did not exist), which is a common feature detection problem in
busy images. On the heterogeneous reef flat, this was addressed
through: (i) adjustments to the non-maximum suppression
parameter (NMS) that defines the threshold of confidence for
detecting microatolls, (ii) use of Feature Pyramid Networks to
specify the expected size of the microatolls, and (iii) use of Online
Hard Example Mining to train the detection algorithm in areas
of the reef flat where it was difficult to detect microatolls, thereby
removing false positive detections. These three steps resulted in
a faster R-CNN algorithm that could reliably detect microatolls
on the neighboring reef flat at Three Isles (Recall, 94%, Average
Precision 72%).

As illustrated by this example, the primary challenge for
extracting features from coral reef images lies in reliably
identifying individual corals against a heterogeneous background
of shallow reef flat that is typically colonized by a mosaic of
marine organisms. The detection of “false positives” can largely
be overcome with the three aforementioned amendments in the
initial algorithm development and training phase. Advantages
of feature detection approaches are that they can incorporate
spectral or color information, as well as spatial context and
local or global texture features. Significantly, in contrast to
the use of machine learning in habitat classification, they self-
generate features from raw image data rather than relying on
hand-crafted features from experts. Once adequately trained, this
capacity to self-generate can yield features across many aerial
photographs taken over comparable environments (for example,
the algorithm can be trained on one reef, then applied to similar
reef flats selected from the remaining 2,904 reefs of the Great
Barrier Reef).

WHERE TO FROM HERE?

There is exciting potential for the coral reef management
community to harness the powerful products provided by
machine learning, although to do so may require changes to
existing operational norms. The results of machine learning often
take the form of a probabilistic output, which is subsequently
degraded to a categorical map class (e.g., a sampling distribution
of the individual tree classes, corresponding to a probability of
class membership for each mapped object). Transitioning toward
management applications that employ probabilistic spatial data
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® Porites microatoll

(D) Porites microatolls detected on the reef flat.

FIGURE 1 | (A) A mosaic of 1400 UAV images over Nymph Island, GBR, including a map to indicate probability of microatoll detection based on intertidal areas and
density of reef flat coral framework. (B) A porites microatoll coral on the reef flat. (C) The detail visible in an aerial drone image of a reef flat, showing individual corals.

can help to address the mismatch between the machine learning
output and the discrete thematic maps that managers typically
work with (e.g., a coral reef probability map, as opposed to “reet”
vs. “non-reef” map; Li et al., 2020). Further, collecting spatially
continuous blocks of field information rather than point records
would better support the needs of deep learning applications in
mapping habitat, rather than discrete features.

Learning algorithms are increasingly providing other useful
services in coral reef environments, including in the analysis of
benthic composition from in-situ field photos, with automated
extraction of metrics like coral cover for reporting on reef
condition (see https://reefcloud.ai/). The increased application
of machine learning to aerial images is driving an important
and exciting shift in how reef managers make use of spatial
information. It is a shift that gives us the confidence, for
example, to ask whether algorithms can help managers to control
infestations of crown-of-thorns starfish by detecting the starfish
themselves, rather than mapping their habitat as a surrogate for
their presence.

Increasingly, machine learning algorithms are being run
outside the automated toolbox of commercial image processing
softwares and programmed for bespoke applications. Guided
by users rather than computer programmers, logical rule
sets can profitably incorporate biological, ecological and

geomorphological principles into both habitat mapping and
feature detection. Under such conditions, their application in
coral reef environments can be creatively and productively
expanded by turning around the title question to ask “what
can the artificial intelligence community learn from coral
reef managers?” The answers hold exciting prospects in the
years ahead.
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