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Few studies have described the effects of physical disturbance and post-recovery
of deep-sea benthic communities. Here, we explore the status of deep-sea sponge
ground communities four years after being impacted by an experimental bottom
trawl. The diversity and abundance of epibenthic megafauna of two distinct benthic
communities in disturbed versus control areas were surveyed using a remotely operated
vehicle on the Schulz Bank, Arctic Ocean. Four years after disturbance, megafaunal
densities of the shallow (∼600 m depth) and deep (∼1,400 m depth) sites were
significantly lower on the disturbed patches compared to the control areas. Multivariate
analyses revealed a distinct separation between disturbed and control communities
for both sites, with trawling causing 29–58% of the variation. Many epibenthic
morphotypes were significantly impacted by the trawl, including ascidians, Geodia
parva, Hexactinellida spp., Craniella infrequens, Lissodendoryx complicata, Haliclonia
sp. Stylocordyla borealis, Gersemia rubiformis and Actiniaria sp. However, we found
some smaller morphospecies to be equally abundant with control transects, including
Polymastia thielei, Geodia hentscheli, and Stelletta rhaphidiophora, reflecting lower
trawl impact for these morphotypes. Overall, our results suggest that these are fragile
ecosystems that require much more time than four years to recover from physical
disturbance typical of trawling activities.

Keywords: recovery, fishing, sponge ground, trawling, seamount, Arctic mid-ocean ridge, deep sea

INTRODUCTION

Under favorable environmental conditions, dense aggregations of large sponges form diverse
structural habitats known as sponge grounds (Hogg et al., 2010). Sponge grounds are found
globally at varying depths and physiographic features, like seamounts, oceanic ridges, continental
slopes, and canyons (Howell et al., 2016; Maldonado et al., 2017; Roberts et al., 2018). It is poorly
understood what drives the formation of these habitats, but it is known that their distribution relies
on moderate water flow to supply nutrients and gases while inhibiting sedimentation (Vogel, 1974).

Sponge grounds serve many functional roles and can influence ecosystem functioning
and community composition (Bell, 2008). In addition to being active filter feeders
(Vogel, 1977; Yahel et al., 2007) and contributing to benthic-pelagic coupling (Maldonado
et al., 2005; Pile and Young, 2006), sponges can alter their habitat and increase
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local biodiversity (Kenchington et al., 2013; Hawkes et al.,
2019). Sponges with siliceous spicules, especially glass sponges
(Hexactinellida spp.) which shed large amounts of spicules, alter
the sediment by forming dense spicule mats that can influence
the distribution and diversity of epibenthic fauna (Barthel, 1992;
Bett and Rice, 1992). As a result, sponge grounds tend to
have more abundant and diverse community assemblages than
habitats without sponges (Beazley et al., 2013). Many animals
are associated with sponge grounds; fishes and invertebrates use
them as an indirect food source (Kunzmann, 1996), shelter from
predators (Kunzmann, 1996; Cook et al., 2008), spawning, and
nursery grounds (Freese and Wing, 2003; Amsler et al., 2009).

Deep-sea sponge aggregations are included in the list of
vulnerable marine ecosystems (VMEs) (FAO, 2009) because of
their overall low resilience to disturbance and because they are
threatened by deep-sea fisheries (OSPAR Commission, 2008).
Epibenthic animals known to form complex structures emerging
from the seabed including sponges are particularly vulnerable
to bottom-contact fishing practices through direct and indirect
effects (Clark et al., 2015). Direct effects include the removal
of individuals as bycatch but also the damage, dislodgement
and crushing caused by the motion of the trawl (Clark et al.,
2015). As a result, many studies have observed a reduction
in the abundance of epibenthic invertebrates in highly trawled
locations (Freese et al., 1999; Fosså et al., 2002; Clark and Rowden,
2009). Furthermore, the removal of habitat forming organisms or
structural engineers can lead to long-term changes in community
structure and composition (e.g., Sköld et al., 2018). Such shifts
have been particularly well documented in shelf communities
(Kaiser et al., 2000), whereas in the deep sea, studies are scarcer
due to the difficulty in finding comparable untrawled conditions
(Goode et al., 2020). In addition to direct physical impacts,
sponges can be affected by increased suspended sediments caused
by bottom trawlers, even when trawling activity is performed
kilometers away (Martín et al., 2014). While certain sponges can
tolerate high levels of sedimentation (Bell et al., 2015), some
studies found that increased turbidity can reduce the filtering
rates (Grant et al., 2019) and compromises the survival of
juveniles (Tjensvoll et al., 2013).

The loss of dense sponge aggregations is a detrimental
outcome of bottom trawling because it can lead to a loss
of ecosystem functioning and decreased biodiversity (Bell,
2008; Pusceddu et al., 2014). The time it takes for a
community to recover to its pre-disturbed state depends on
the degree of disturbance, the life history characteristics of
the fauna, and management practices in place (Lotze et al.,
2011; Clark et al., 2019). Most deep-sea organisms have life
history characteristics making them particularly vulnerable to
anthropogenic disturbances. For example, some cold-water
corals have growth rates <1 mm per year with life span
exceeding 1,000 years (Roark et al., 2005, 2006, 2009; Carreiro-
Silva et al., 2013). Therefore, recovery of deep-water assemblages
from external disturbance events occurs extremely slowly and
is predicted to take decades to centuries (Leys and Lauzon,
1998; Gatti, 2002; Young, 2003). Williams et al. (2010) studied
benthic seamount communities in Australia and New Zealand
and found that, due to the slow growth rates and high longevity of

deep, structural invertebrates (notably the dominant cold-water
corals), it would take decades (at least) for benthic community
structure to return to a pre-disturbed state. Clark et al. (2019) also
found that deep-sea benthic communities dominated by stony-
corals on New Zealand seamounts were unable to recover from
bottom trawling after 15 years.

Currently, there are no studies documenting recovery of deep-
sea Arctic sponge grounds following disturbance. Information
on the recovery of communities living in extreme environments
are relevant for understanding the impacts of anthropogenic
activities but also to increase our knowledge of the ecological
processes of sponge communities. The Schulz Bank, an Arctic
seamount, is an ideal case study because it is a pristine
sponge-dominated community that remains untouched by
direct human activities. Here, we used video surveys collected
4 years after experimental trawls on the summit and on a
deeper area of the Schulz Bank to understand the recovery
potential of this highly productive seamount after disturbance
events. Specifically, we compare the taxonomic composition and
abundance of sponges and associated fauna within disturbed
areas to nearby control sites.

MATERIALS AND METHODS

Study Area
This study was conducted on the Schulz Bank, a seamount on
the Arctic Mid-Ocean Ridge (AMOR) located at the nominal
junction between the Mohn and Knipovich Ridges, which
separate the Greenland and Lofoten Basins (Figure 1). The
summit of Schulz Bank is the richest area of the bank with a

FIGURE 1 | Map of Schulz Bank showing the two Agassiz trawl marks made
in 2014. Control transects are located 50 m to the west and east of each trawl
mark. The red box in the overview panel highlights the location of Schulz
Bank.
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diverse and dense benthic community (Roberts et al., 2018; Meyer
et al., 2019). As depth increases, species density and richness
decreases (Roberts et al., 2018).

Study Design and Data Collection
In 2014, two experimental Agassiz trawls were conducted on the
Schulz Bank (Figure 1); one at the summit (568–670 m depth)
and one on the southwestern flank (1,464 m depth). The 3-
m-wide Agassiz trawl, with a 1 cm mesh size in the cod-end
(Figure 2), was towed along the seafloor for 676 m on the summit
and 441 m on the flank, resulting in a disturbed area of 2,028
and 1,323 m2, for the summit and flank, respectively. Towing
speed was maintained at around 2 knots and the initial and final
position were recorded.

Although we do not have visual information on the
communities inhabiting that specific patch prior to trawling, the
densities estimated from the trawl catches suggested that most
morphospecies were present in comparable densities compared

to neighboring areas (Rapp, H.T, unpublished data). This is
further corroborated by the study of Meyer et al. (2019) who
found that the distribution of the benthic community in the area
is sufficiently homogenous for our purposes.

In August 2018, the two trawl marks and four additional
control transects (one on either side of the trawl mark) were
surveyed while onboard the R/V G.O.Sars (Table 1). Video
recordings were taken along the trawl marks and control
transects with the ROV AEGIR6000. Control transects were
located 50 m to the east and west of each trawl mark and were
performed parallel to the mark. Prior to the collection of video
footage, we performed various transects in order to carefully map
the trawl marks using the high resolution multibeam mounted on
the remotely operated vehicle (ROV). In addition, scrape marks
were clearly visible on both sides of the Agassiz trawl transect line,
which helped the ROV pilots maintaining the transects.

The ROV was equipped with two high-definition HD video
cameras (Imenco Spinner Shark Camera HD-SDI camera,

FIGURE 2 | Agassiz trawl used to create physical disturbance on the Schulz Bank.

TABLE 1 | Details of the 2018 imagery transects recorded on Schulz Bank.

Transect Start (◦N/◦E)
End (◦N/◦E)

Avg. depth
(m)

Transect
area (m2)

Images
used

Sampling
units

Avg. sampling
unit size (m2)

Total area
covered (m2)

Transect
coverage (%)

Summit (August 1, 2018)

West 73.8263/7.5376 609 (31) 2082 72 18 16.0 (1.5) 287 13.8%

73.8304/7.5545

East 73.8303/7.5555 590 (31) 2043 27 8 14.3 (1.4) 114 5.6%

73.8261/7.5395

Trawl 73.8262/7.5384 605 (31) 2040 64 15 14.8 (1.5) 223 10.9%

73.8303/7.5547

Flank (August 4, 2018)

West 73.8159/7.4430 1464 (0.1) 1477 n/a 10 150 (0.2) 1477 100%

73.8125/7.4340

East 73.8125/7.4352 1464 (0.1) 1417 n/a 9 150 (0.3) 1417 100%

73.8157/7.4437

Trawl 73.8126/7.4349 1464 (0.1) 1323 n/a 9 150 (0.3) 1323 100%

73.8158/7.4433

“Images used” shows total numbers of photographs with acceptable quality and covering an area in the 1.5 to 6 m2 range for the summit. Standard deviations are
shown in parentheses.
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1080p/720p). Only the downward looking camera was used for
quantitative ecological data. Two parallel lasers were used as scale
(16 cm apart). The ROV was equipped with both ultra-short
baseline navigation to provide absolute global position (accuracy
approximately ±10 m), and Doppler velocity log navigation
(LINKQUEST Doppler log) to provide very accurate relative
position (±0.1 m). During every transect the ROV was run in a
straight line, on a set bearing, at a constant speed and at the same
set altitude (2–3 m).

Image and Video Analysis
From the summit transects, we extracted 287 randomly selected,
non-overlapping images (at least 5 m apart). Seafloor images
were excluded if (1) the area of the image was less than
1.5 m2 or greater than 6 m2, (2) laser dots were not visible,
or (3) the image was obscured by suspended sediment. From
the summit, after excluding unusable images, a total of 163
images were used.

All discernable epibenthic megafauna (hereafter referred
to as “morphospecies”) greater than 1 cm were counted and
identified to the lowest possible taxonomic level in each
frame. Fauna that could not be identified to genus or species
level were grouped by their size. Unidentifiable demosponges
smaller than 10 cm were grouped as “small demosponges,”
those between 10 and 20 cm were grouped as “medium
demosponges,” and those greater than 20 cm were grouped
as “large demosponges.” Schaudinnia rosea, Trichasterina
borealis, and Scyphidium septentrionale were grouped as
“Hexactinellida spp.” (Meyer et al., 2019). Hexactinellids
smaller than 10 cm were grouped as “small Hexactinellida
spp.”

For each image, we also measured image area, percent
coverage of different substrate types (soft substrate, hard
substrate, and spicule mat), and percent coverage of
Lissodendoryx complicata which could not be distinguished
by individuals, using a grid in IMAGEJ software. Substrate types
and fauna were counted in each grid cell and divided by the total
number of cells and multiplied by 100 to get percent coverage.
Percent coverage of Hexadella dedritifera, an encrusting sponge,
was recorded as part of a subsample.

A subsample of 46 random frames taken from our summit
samples was used to count highly abundant fauna (Ascidiacea
sp. 1 and H. dedritifera), and to assess the sizes (cm2) of the
five largest sponge morphospecies on the summit (Geodia parva,
Stelletta rhaphidiophora, “large demosponges,” Hexactinellida
spp. and Hemigellius sp.).

Single photographs do not represent adequate sampling
units because the area of one image is too small to represent
benthic communities (Durden et al., 2016). To better represent
the community, we chose a desired area based on species
accumulation curves (Figure 3) using the “Vegan” package
in R statistical software (version 4.0.2; R Core Team, 2017).
Data from multiple consecutive images were pooled into
“sampling units” that covered segments of transect close
to the desired area (ranging between 12.23 and 18.54 m2)
(Table 1). In our analyses, “sampling units” have been
treated as replicates.

FIGURE 3 | Species accumulation curves for each site determined from
seafloor area coverage of the summit (A) and the flank (B) of Schulz Bank.
Shaded areas represent 95% confidence intervals. Curves were made using
the species accumulation “random” method in “Vegan” package in R
statistical software.

The benthic community found in the deeper area was
less dense and patchier, therefore we chose to do continuous
annotation of the entire transects to quantify sponges and
associated fauna to ensure appropriate coverage. We used OFOP
software (Ocean Floor Observation Protocol 3.3.7e) (Huetten
and Greinert, 2008) to annotate all observations from the three
flank transects. Like the summit, all taxa greater than 1 cm were
counted and identified to the lowest possible taxonomic level.
Accumulation curves (Figure 3) suggested that the observations
would be grouped into 28 replicate video segments covering
150 m2 “sampling units” (Table 1). In addition, a subsample of
142 random frames was taken to count ophiuroids, which were
highly abundant.
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Data Analysis
For each sampling unit, we computed total
morphospecies density (individuals m−2) and individual
morphospecies densities.

Fishes were excluded from analyses due to their high
mobility and, to focus on more abundant and reliably sampled
taxa, only data from morphospecies observed at least three
times were included in analyses (excluding 20 morphospecies
on the summit and 8 on the flank). On the summit 23
morphospecies were used. On the flank 19 morphospecies were
used (Supplementary Table 1). Sponge morphospecies were
designated as “structural” following ICES (2009) and Beazley
et al. (2013). Non-structural sponges and other invertebrates
were designated as “associated fauna.” These included sessile
cnidarians, echinoderms, ascidians, and encrusting sponges.

To compare the diversity of morphospecies for each treatment
(trawled and control transects), several diversity metrics were
computed including number of different morphospecies present
(S), Shannon diversity index (H’), Simpson’s reciprocal diversity
index (1-D), and evenness (J’ and E) using the “Vegan”
package in R software (Oksanen et al., 2013). We hypothesize
that the communities on the trawled areas will have a lower
number of morphospecies (S), Shannon diversity index (H’)
and Simpson’s reciprocal diversity index (1-D). However, we

expect that both measures of evenness (J’ and E) will be
higher inside the trawled areas compared to the control
transects (Table 6).

To evaluate if there were significant differences in
morphospecies densities and diversity indices between the
different transects, we used either a one-way ANOVA following
assumptions of normality or Kruskal–Wallis matched pairs
test if normality was not met. Normality was tested using the
Anderson–Darling normality test. To identify which treatments
differed for each site, post hoc tests were performed (Tukey HSD
for parametric and Dunn for non-parametric). Significance at
the 5% level was reported.

For multivariate community analyses, Bray–Curtis metric was
chosen for its capability in handling a large proportion of zeros.
Matrices were used in non-metric multidimensional scaling
(nMDS) to visualize differences in community composition
among transects. The similarity matrices were compared
statistically using permutational ANOVA (PERMANOVA, 999
permutations) with pair-wise tests to see statistically significant
variations in community composition between treatments.
The morphospecies contributing most to dissimilarity
between groups were identified using Similarity Percentage
(SIMPER) analysis.

Differences in substrate types and in the sizes of the five largest
structural sponges between the control and trawled transects

TABLE 2 | Schulz Bank summit mean individuals m−2 (SE) of morphospecies and significance of the difference between transects.

Summit densities (individuals m−2)

Structural sponges West East Trawl significance

Small Hexactinellida spp. 0.16 (0.03) 0.18 (0.07) 0.06 (0.02) *

Hexactinellida spp. 0.34 (0.06) 0.64 (0.19) 0.07 (0.03) ***

Geodia parva 0.59 (0.04) 0.26 (0.05) 0.12 (0.03) ***

Craniella infrequens 1.82 (0.09) 2.31 (0.37) 0.84 (0.11) ***

Polymastia thielei 0.06 (0.02) 0.04 (0.03) 0.02 (0.01) •

Stylocordyla borealis 0.07 (0.02) 0.07 (0.04) 0.03 (0.01) •

Haliclona sp. 0.05 (0.01) 0.09 (0.02) 0.01 (0.01) ***

Hemigellius sp. 0.14 (0.02) 0.13 (0.05) 0.03 (0.01) **

Stelletta rhaphidiophora 0.45 (0.08) 0.43 (0.09) 0.21 (0.04) •

Small demosponge 2.19 (0.15) 2.87 (0.32) 3.04 (0.37) •

Medium demosponge 0.13 (0.03) 0.15 (0.04) 0.57 (0.14) ***

Unidentified demosponge 3 0.14 (0.04) 0.13 (0.03) 0.01 (0.01) ***

Large demosponge 0.17 (0.03) 0.25 (0.07) 0.17 (0.03) •

Total 6.25 (0.24) 7.54 (0.77) 5.18 (0.58) *

Associated fauna

Unidentified demosponge 1 0.58 (0.06) 0.41 (0.06) 0.12 (0.04) ***

Unidentified demosponge 2 0.17 (0.03) 0.04 (0.02) 0.03 (0.02) ***

Gersemia rubiformis 3.52 (0.43) 3.40 (0.44) 1.34 (0.17) ***

Actiniaria sp. 16.74 (0.79) 14.16 (1.50) 6.08 (0.90) ***

Tylaster willei 0.04 (0.01) 0.11 (0.03) 0.02 (0.01) **

Hymenaster sp. 0.03 (0.01) 0.01 (0.01) 0.02 (0.01) •

Strongylocentrotus test 0.06 (0.02) 0.15 (0.04) 0.07 (0.01) •

Ascidiacea sp. 1 6.91 (0.83) 8.24 (0.95) 2.97 (0.64) ***

Total 28.05 (0.96) 26.52 (1.7) 10.65 (0.99) ***

•p > 0.05. *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001.

Frontiers in Marine Science | www.frontiersin.org 5 December 2020 | Volume 7 | Article 605281

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-605281 December 22, 2020 Time: 12:16 # 6

Morrison et al. Sponge Ground After Trawling

TABLE 3 | Schulz Bank flank mean individuals m−2 (SE) of morphospecies and significance of the difference between transects.

Flank densities (individuals m−2)

Structural sponges West East Trawl significance

Hexactinellida spp. 0.016 (0.006) 0.010 (0.003) 0.002 (0.002) *

Geodia hentscheli 0.003 (0.002) 0.001 (0.001) 0 •

Craniella infrequens 0.049 (0.012) 0.041 (0.008) 0.024 (0.007) •

Stylocordyla borealis 0.195 (0.055) 0.181 (0.041) 0.082 (0.016) *

Lycopodina sp. 0.014 (0.003) 0.045 (0.009) 0.030 (0.006) **

Haliclona sp. 0.003 (0.001) 0 0 *

Small demosponge 0.022 (0.004) 0.039 (0.007) 0.002 (0.002) ***

Medium demosponge 0.003 (0.002) 0.008 (0.003) 0.004 (0.004) *

Large demosponge 0.006 (0.002) 0.007 (0.003) 0 *

Total 0.311 (0.058) 0.331 (0.051) 0.144 (0.022) **

Associated fauna

Actiniaria sp. 0.105 (0.010) 0.090 (0.011) 0.033 (0.006) ***

Umbellula sp. 0.002 (0.001) 0.001 (0.001) 0.001 (0.001) •

Bythocaris sp. 0.017 (0.004) 0.010 (0.002) 0.010 (0.003) •

Scalpellidae indet. 0.012 (0.006) 0.006 (0.003) 0.004 (0.001) •

Feather star 0.001 (0.001) 0.002 (0.001) 0.001 (0.001) •

Asteroidea sp. 0.040 (0.005) 0.027 (0.004) 0.047 (0.009) •

Solaster sp. 0.002 (0.001) 0.002 (0.001) 0 •

Ophiuroid 7.905 (0.265) 9.551 (0.332) 7.352 (0.327) ***

Ascidiacea sp. 1 0.009 (0.003) 0.010 (0.003) 0.002 (0.002) •

Ascidiacea sp. 2 0.007 (0.004) 0.006 (0.003) 0.001 (0.001) •

Total 8.105 (0.265) 9.706 (0.344) 7.456 (0.337) ***

•p > 0.05. *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001.

TABLE 4 | Characteristics of transects on Schulz Bank.

Site Transect Total average density (individuals m−2) S mean (SE) H′ mean (SE) 1-D mean (SE) J′ mean (SE) E mean (SE)

Summit West 34.30 15.39 (0.49) 1.42 (0.03) 0.41 (0.01) 0.52 (0.01) 0.92 (0.03)

East 34.06 15.88 (0.58) 1.55 (0.07) 0.35 (0.03) 0.56 (0.02) 1.10 (0.09)

Trawl 15.83 12.20 (0.52) 1.52 (0.04) 0.32 (0.02) 0.61 (0.02) 1.30 (0.06)

Flank West 8.42 11.70 (0.52) 1.84 (0.04) 0.24 (0.03) 0.75 (0.03) 1.93 (0.21)

East 10.04 11.67 (0.60) 1.88 (0.08) 0.23 (0.03) 0.77 (0.03) 1.99 (0.18)

Trawl 7.60 7.78 (0.40) 1.70 (0.04) 0.23 (0.01) 0.83 (0.02) 2.19 (0.10)

For each transect: density of total epibenthic megafauna, number of morphospecies present (S), Shannon Weaver diversity index (H′), Simpson’s reciprocal index (1-D),
Pielou’s evenness (J′), and evenness derived from 1/D (E).

were assessed with one-way Kruskal–Wallis tests. Statistical
analyses were performed using the computing environment R
(version 4.0.2; R Core Team, 2017).

RESULTS

Epibenthic Megafaunal Density and
Composition
The epibenthic megafaunal density and composition on the
summit and flank of Schulz Bank were visually different
(Figure 4). The average densities of morphospecies were
significantly different between transects on both the summit and
the flank (Summit: Kruskal–Wallis, chi-square = 24.76, df = 2,
p < 0.001; Flank: Kruskal–Wallis, chi-square = 16.53, df = 2,
p < 0.001). Pairwise comparisons using Dunn post hoc tests

showed that the disturbed areas of both sites had significantly
lower densities than both control areas (Figure 5).

On the summit, the average density of morphospecies (±SE)
on the disturbed site was 12.86± 1.19 individuals m−2, compared
to 26.6 ± 1.27 in the control areas. On average (± SE), control
sites had 6.90 ± 0.51 structural sponges m−2, while trawled
areas had an average of 5.18 ± 0.58 structural sponges m−2. The
most abundant structural sponges on the summit were “small
demosponges” (40% of sponges), Craniella infrequens (24%),
G. parva (6%), S. rhaphidiophora (5%), and Hexactinellida spp.
(5%). Disturbed areas had significantly less Hexactinellida spp.,
C. infrequens, Lissodendoryx complicata (Figure 6), Haliclonia
sp., and “unidentified demosponge 3” than both control areas
(Table 2). For the associated fauna, on average (±SE), control
areas had densities of 27.29± 1.33 individuals m−2, while trawled
areas had an average (±SE) of 10.65 ± 0.99 individuals m−2.
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TABLE 5 | Pairwise PERMANOVA and SIMPER results for densities on the Schulz Bank.

PERMANOVA SIMPER (% contribution)

Test R2 (P-value) #1 #2 #3 #4 #5

Summit

Trawl vs. West 0.58 (0.002) Actiniaria sp.
(27.4%)

G. rubiformis
(5.5%)

Small
demosponge

(3.5%)

C. infrequens
(2.6%)

Demosponge 1
(1.2%)

Trawl vs. East 0.42 (0.002) Actiniaria sp.
(22.2%)

G. rubiformis
(5.4%)

C. infrequens
(4.1%)

Small
demosponge

(3.4%)

Hexactinellida
spp.

(1.6%)

Flank

Trawl vs. West 0.29 (0.002) S. borealis
(14.3%)

Actiniaria sp.
(10%)

C. infrequens
(5%)

Asteroidea sp.
(3.2%)

Small
demosponge

(2.9%)

Trawl vs. East 0.31 (0.002) S. borealis
(14.1%)

Actiniaria sp.
(8.7%)

Small
demosponge

(5%)

Lycopodina sp.
(3.6%)

Asteroidea sp.
(3.6%)

“SIMPER (% contribution)” are ordered by importance (#1 being the most important morphospecies driving differences between transects).

TABLE 6 | Expected versus observed changes on the Schulz Bank.

Summit Flank

Expected Change Observed Change Expected Change Observed Change

Density West v Trawl Decrease Decrease Decrease Decrease

East v Trawl Decrease Decrease Decrease Decrease

Taxonomic Richness (S) West v Trawl Decrease Decrease Decrease Decrease

East v Trawl Decrease Decrease Decrease Decrease

Diversity West v Trawl Decrease Decrease Decrease No change

East v Trawl Decrease No change Decrease No change

Evenness West v Trawl Increase Increase Increase No change

East v Trawl Increase Increase Increase No change

PERMANOVA West v Trawl Strong separation Strong separation Strong separation Strong separation

East v Trawl Strong separation Strong separation Strong separation Strong separation

Sizes of large sponges West v Trawl Smaller size No change N/A N/A

East v Trawl Smaller size No change N/A N/A

Substrate cover West v Trawl Less spicule mat Less spicule mat N/A N/A

East v Trawl Less spicule mat Less spicule mat N/A N/A

Changes are what we expected/observed to happen in trawl marks compared to the controls.

Trawled areas had significantly less “unknown demosponge 1,”
G. rubiformis, Actiniaria sp., and ascidians than both control
areas (Table 2). The encrusting sponge H. dedritifera covered
an average of 2% of the area covered on Control West transect
but covered significantly less on Control East and trawled
transects (Figure 6).

On the flank, the average density of morphospecies (excluding
ophiuroids) on the disturbed site was 0.26 ± 0.02 individuals
m−2 (±SE), compared to 0.52 ± 0.06 individuals m−2 (±SE)
in the control areas. On average (±SE), control areas contained
0.32 ± 0.05 structural sponges m−2, while trawled areas had an
average (±SE) of 0.14 ± 0.02 structural sponges m−2. Trawled
areas had significantly less S. borealis, “small demosponges,” and
“large demosponges” than both control areas (Table 3). Control
areas contained an average (±SE) of 8.91 ± 0.31 associated
individuals m−2, while trawled areas had an average (±SE) of
7.46 ± 0.34 associated individuals m−2. The most abundant

associated fauna was ophiuroids, which averaged 8.72 ± 0.30
individuals m−2 (±SE) in control areas and 7.35 ± 0.33
individuals m−2 (±SE) in trawled areas. Ophiuroids comprised
98% of all associated individuals, followed by Actiniaria sp. (1%).
Trawled areas had significantly less Actiniaria sp. than both
control areas (Table 3).

Taxonomic Richness and Diversity
Summit
The number of different morphospecies present (S) significantly
differed between summit transects (Kruska—Wallis; chi-
square = 17.01, df = 2, p < 0.001). There were significantly
less morphospecies in the trawled area. On the summit,
the trawled area had an average (±SE) of 12.20 ± 0.52
morphospecies present, while control areas had an average
(±SE) of 15.65 ± 0.54 morphospecies present. Simpson’s
Diversity index (1-D) differed between summit transects
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FIGURE 4 | Stills of the epibenthic communities on Schulz Bank; (A) summit control, (B) summit trawl mark (note the exposed soft sediment), (C) flank control, and
(D) flank trawl mark.

FIGURE 5 | Boxplots of the density of all megafauna found on the summit (A)
and the flank (B) of Schulz Bank. Means are noted by diamond shapes.

(Kruskal–Wallis; chi-square = 12.61, df = 2, p < 0.01). In the
trawl and Control East areas, there was a lower probability that
two random individuals belonged to different morphospecies,
indicating lower diversity than in the Control West area.
Evenness (E) also differed between transects on the summit
(Kruskal–Wallis; chi-square = 18.63, df = 2, p < 0.001).
Trawling significantly increased the evenness of summit
morphospecies (Table 4).

Flank
The number of different morphospecies present (S) significantly
differed between transects on the flank (Kruskal–Wallis; chi-
square = 16.66, df = 2, p < 0.001). There were fewer
morphospecies within trawled areas. Control transects had an
average (±SE) of 11.69 ± 0.56 morphospecies present while the

trawled area had an average (±SE) of 7.78± 0.40 morphospecies
present. Simpson’s Diversity index (1-D) did not differ between
flank transects (Kruskal–Wallis; chi-square = 1.07, df = 2,
p > 0.5). Evenness (E) also did not differ between flank transects
(Kruskal–Wallis; chi-square = 1.22, df = 2, p > 0.5). The
morphospecies on the flank were more even than those on the
summit (Table 4).

Multivariate Community Analyses
Summit
For the summit, the nMDS plot showed strong separation
between megafaunal communities in trawled and control areas
(Figure 7). Pairwise PERMANOVA tests revealed significant
differences between the transects, with trawling explaining
42% of the variation between Control East and Trawl
transects, and 58% of the variation between Control West
and Trawl transects (Table 5). SIMPER results revealed that
the dissimilarity in community composition between Control
and Trawl transects was principally driven by Actiniaria
sp., G. rubiformis, C. infrequens, “small demosponges,” and
Hexactinellida spp. (Table 5).

Flank
For the flank, the nMDS plot also showed a strong difference
between megafaunal communities in trawled and control areas
(Figure 8). Pairwise PERMANOVA tests revealed significant
differences between transects, with trawling explaining about
30% of the variation between Control and Trawl transects
(Table 5). On the flank, dissimilarity was driven by S. borealis,
Actiniaria sp., C. infrequens, “small demosponges,” Lycopodina
sp., and Asteroidea sp. (Table 5).
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FIGURE 6 | Mean percentage cover of H. dedritifera and L. complicata on the summit of Schulz Bank.

FIGURE 7 | Non-metric Multidimensional Scaling (nMDS) of replicate
sampling units for each summit transect on Schulz Bank using Bray-Curtis
dissimilarity metric. Each point represents a sampling unit and each polygon
represents a transect. Morphospecies abundance values were standardized
to individuals m−2.

Size of Large Sponges
Overall, the sizes of the largest sponge morphospecies (G. parva,
Hemigellius sp., Hexactinellida spp., “large demosponges,” and
S. rhaphidiophora) did not differ between control and trawled
transects on the summit. However, Dunn post hoc tests did
reveal that G. parva in Control East were significantly larger
than those within the trawl mark, and S. rhaphidiophora in
Control East were larger than those in both Control West
and the trawl mark.

Substrate Cover
On the summit, substrate cover was significantly different
between control and disturbed transects (Kruskal–Wallis; chi-
square = 26.04, df = 2, p < 0.001). On the control sites,
spicule mat dominated the substrate (99.5 and 100% of
substrate), but on the disturbed site, there was significantly
higher coverage of soft sediment. On the other hand, the flank
had no significant differences in substrate type between the
disturbed and control areas, being all exclusively composed
of soft sediment.

FIGURE 8 | Non-metric Multidimensional Scaling (nMDS) of replicate
sampling units for each flank transect on Schulz Bank using Bray-Curtis
dissimilarity metric. Each point represents a sampling unit and each polygon
represents a transect. Morphospecies abundance values were standardized
to individuals m−2.

DISCUSSION

This is the first study looking at recovery of Arctic sponge
grounds following physical disturbance. Our results provide
useful insight on how the diversity and megafaunal composition
of sponge-dominated communities can be affected by
anthropogenic activities like trawling. Overall, our results
suggest that after four years, benthic communities within
trawl marks have not returned to a pre-disturbed state
(represented by the control transects) with overall densities
of epibenthic morphospecies being significantly lower in the
disturbed sites than in nearby control areas. One unavoidable
limitation of this study was our lack of true replicates for both
trawled areas, implying that are sampling units our essentially
pseudo-replicates.

Although many structural sponge morphospecies found on
the summit were significantly less abundant within the trawl
mark than in control areas, we still observed some large sponges
in the disturbed area (Table 6). It is likely that these individuals
survived the Agassiz trawl in 2014 and are unlikely to be
new growth since deep-sea sponges typically have slow growth
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rates (Leys and Lauzon, 1998; Fallon et al., 2010). Fallon et al.
(2010) found that Antarctic deep-sea hexactinellid sponges have
extremely long life expectancies (∼440 years). Similarly, Leys
and Lauzon found longevities of another deep-sea hexactinellid
(Rhabdocalyptus dawsoni, Lamb 1892) to be over 200 years
old. Bottom trawls are not 100% selective and occasionally
bounce off the seabed, explaining the presence of such large
individuals within the trawled area. Moran and Stephenson
(2000) studied the effects of otter trawling on macrobenthic
invertebrates (>20 cm) and found that a single trawl pass
reduced density by only 15.5%. In a similar study, Wassenberg
et al. (2002) quantified the direct effects of experimental bottom
trawls on sponges and found that selectivity varied based on
sponge morphology and size. They found that 30% of large
(>500 mm high) globular sponges and 60% of large branched
sponges survived trawling. Sainsbury et al. (1992) found that
a single trawl pass removed 90% of large sponges. Looking
at these studies, the catchability of large sponges by bottom
trawls is highly variable, so it is not surprising that we found
occasional large sponges in the disturbed area even though
Agassiz trawls are among the most efficient types of trawls
for sampling benthic communities. Another explanation for the
presence of large sponges in the disturbed area comes from
video observations obtained from a benthic lander on a Scotian
Shelf sponge ground during severe hydrodynamic ’storm’ events
revealing that large Hexactinellid sponges can be dislodged
and transported by currents (Hanz et al., 2020). The Schulz
Bank summit is made dynamic by strong internal waves at the
water mass boundary (Roberts et al., 2018) perhaps capable of
rolling sponges around.

We observed a decrease in the density of many associated
fauna in the disturbed area, either due to direct removal (Grassle,
1977; Clarke, 1982) or indirectly by the loss of biogenic habitat
provided by the sponges (Klitgaard, 1995; Barrio Froján et al.,
2012). Associated fauna have been demonstrated to be more
abundant and diverse in and around large and structurally
complex sponges compared to nearby areas without sponges
(Wendt et al., 1985; Kunzmann, 1996). Sponges serve numerous
functional roles which benefit other species (Bell, 2008; Buhl-
Mortensen et al., 2010). Sessile invertebrates on the summit,
which are abundant in control areas, like anthozoans and
ascidians, were found in low abundances four years after
disturbance, possibly due to the loss of preferred settlement
substrate. On our summit trawl mark, where we found a
significant reduction of spicule mat compared to control areas,
a full recovery for many associated fauna and sponge species
probably relies on sponge growth and formation of a dense
spicule mat (Bett and Rice, 1992). Spicule mats likely take
generations of sponges to accumulate and are known to influence
macrofaunal community structure and diversity (Barrio Froján
et al., 2012; Beazley et al., 2013). Roberts et al. (2018) suggested
that the summit of Schulz Bank had provided suitable substrate
for sponge settlement and, since initial recruitment, a 20 cm
thick spicule mat has been deposited, which is also likely to
be beneficial to the formation of a diverse benthic community.
Because structure-forming sponges create important biogenic
habitat, the loss of these large sponge species can lead to a
decrease in biodiversity and changes in community structure

(Tissot et al., 2006; Buhl-Mortensen et al., 2010; Beazley et al.,
2013; Maldonado et al., 2017).

It is important to highlight that the observed differences in
spicule mat cover between the disturbed site and control transects
should also explain why we found some sponges at a higher
or similar abundance inside the trawl mark compared to the
control transects. Meyer et al. (2019) noted that demosponges
within the spicule mat can appear hidden. Therefore, in such
a dense community, it is likely that we were unable to detect
all of the demosponges within the spicule mat, thus leading to
underestimation of sponges in the control transects.

Overall, the flank has lower megafaunal density than the
summit because as depth increases, the benefits brought by
the water mass boundary and internal waves near the summit
decrease (Roberts et al., 2018), however the effect of trawling was
similar. Like the summit, four years after disturbance, epibenthic
megafaunal densities on the flank were significantly lower within
the trawl mark than in control areas. Compared to the summit,
structural sponges on the flank seemed sparse, with only a few
large sponges every 100 m2 of seafloor. A closer look showed
that the flank is dotted with many small structural sponges (e.g.,
Stylocordyla borealis, C. infrequens, Lycopodina sp.). Although
this habitat is clearly less diverse and dense, it supports sponge
species not seen (or rarely seen) on the summit, like Lycopodina
sp. and Geodia hentscheli. Trawling significantly reduced the
overall abundance of structural sponges at this site, where they
will likely take decades to recover due to their life history traits
(Leys and Lauzon, 1998; Gatti, 2002; Fallon et al., 2010). The
most abundant sponge, S. borealis, has relatively slow growth
rates with average individuals being about 10 years old and the
oldest individuals reaching 170 years (Gatti, 2002).

As for associated fauna, the flank was covered with thousands
of ophiuroids and, in lower densities, other morphospecies rarely
seen on the summit, such as Umbellula sp., Bythocaris sp., and
feather stars. The overall abundance of associated fauna on the
deep flank was significantly reduced by trawling. But individually,
only Actiniaria sp. continued to be affected by trawling four years
later. The rest of the associated fauna remained unaffected by the
trawl mark, whether this was due to a full recovery or avoidance of
the Agassiz trawl is unknown. Mobile epifaunal invertebrates like
sea stars and ophiuroids are less affected by trawling, and we did
not see any recolonization by organisms taking advantage of the
empty space as is sometimes reported for areas once disturbed by
bottom contact fishing gear (Engel and Kvitek, 1998; Hixon and
Tissot, 2007).

The effect of disturbance on each morphospecies varies
depending on their individual selectivity by the gear, their size,
resilience, and life history characteristics (Thrush and Dayton,
2002; Williams et al., 2010; Clark et al., 2015). Five years after
fishery closures on Tasmanian seamounts, Althaus et al. (2009)
saw no recovery in deep coral fauna but found that some
resilient species had higher abundances than on actively trawled
seamounts. Certain traits, such as small size, flexibility, and
mass colonization potentially make some species resilient to
physical disturbance (Clark et al., 2010). For example, on the
summit, S. borealis did not significantly differ between trawl and
control transects. S. borealis is a relatively small, stalked, and
flexible species. Although not every individual morphospecies is
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negatively affected in our study, we saw a clear difference between
trawled and untrawled communities overall.

Few studies have investigated the recovery of large sponges
after trawling. Van Dolah et al. (1987) found that one year
after a single experimental trawl pass in a shallow, hard-bottom
habitat, large sponges were able to recover greater than their
pre-trawl densities. This is not the case in cold, deep-water
systems; Malecha and Heifetz (2017) found that a single trawl
pass continued to affect large sponges 13 years after disturbance
in the Gulf of Alaska (200 m depth). Their trawled sites had
31.7% lower sponge densities and 58.8% higher rates of injury
than in reference areas. Another study in Alaska by Rooper et al.
(2011) used sponge catch data and logistic population models
to estimate growth and recovery rates. They estimated that large
deep-sea sponges would take between 13 and 36 years to recover
80% of their original biomass post trawling. These studies provide
evidence for slow recovery of deep-sea sponge grounds following
physical disturbance.

Our observations and the life history strategies typical of
cold water, deep-sea fauna (Grassle and Sanders, 1973; Dayton,
1979; Clarke, 1980; Leys and Lauzon, 1998; Sarà et al., 2002;
Young, 2003; Fallon et al., 2010) suggest that four years is
not enough for a community on the Schulz Bank to recover
from a trawling disturbance. Recovery of disturbed communities
in these locations, especially on the summit, will likely take
decades to centuries.

The amount and intensity of disturbance is an important
factor influencing recovery. Multiple trawls through Schulz
Bank sites would have likely caused greater damage to the
communities, significantly delaying recovery, as seen in studies
where the indirect effects of repeated trawling continue to
influence deep benthic communities long after disturbance
(Koslow et al., 2001; Althaus et al., 2009; Williams et al.,
2010; Clark et al., 2019). In the present study, the small
disturbed area benefited from a neighboring healthy benthic
community, facilitating re-colonization, which is not the case
for large fishing grounds, where pristine populations are located
sometimes far away.

Overall, this study provides a quantitative snapshot of the
status of a sponge-dominated community of the Arctic four years
after being impacted by a bottom trawl and marks the beginning
in following its recovery trajectory. This new information, which
suggests a slow recovery rate, is important in promoting the
conservation of this diverse and sensitive ecosystem. It also
provides an evidence-based threat evaluation for a VME, of
relevance for other sponge ground ecosystems of the deep sea.
We encourage regular monitoring of the area to fully quantify
and characterize complete recovery processes of this ecosystem.
The remoteness and absence of direct human activities makes

the area a perfect case-study for the understanding of recovery
dynamics of deep-sea sponge ecosystems following impacts.
Future studies would benefit from higher resolution cameras in
combination with the collection of physical samples to enable the
quantification of small, recently settled sponges.
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