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Ecological restoration is emerging as an important strategy to improve the recovery of

degraded lands and to combat habitat and biodiversity loss worldwide. One central

unresolved question revolves around the optimal spatial design for outplanted propagules

that maximizes restoration success. Essentially, two contrasting paradigms exist: the

first aims to plant propagules in dispersed arrangements to minimize competitive

interactions. In contrast, ecological theory and recent field experiments emphasize

the importance of positive species interactions, suggesting instead clumped planting

configurations. However, planting too many propagules too closely is likely to waste

restoration resources as larger clumps have less edges and have relatively lower spread

rates. Thus, given the constraint of limited restoration efforts, there should be an optimal

planting distance that both is able to harness positive species interactions but at the same

time maximizes spread in the treated area. To explore these ideas, here we propose

a simple mathematical model that tests the influence of positive species interactions

on the optimal design of restoration efforts. We model the growth and spatial spread

of a population starting from different initial conditions that represent either clumped or

dispersed configurations of planted habitat patches in bare substrate. We measure the

spatio-temporal development of the population, its relative and absolute growth rates

as well as the time-discounted population size and its dependence on the presence of

an Allee effect. Finally, we assess whether clumped or dispersed configurations perform

better in our models and qualitatively compare the simulation outcomes with a recent

wetland restoration experiment in a coastal wetland. Our study shows that intermediate

clumping is likely to maximize plant spread under medium and high stress conditions

(high occurrence of positive interactions) while dispersed designs maximize growth under

low stress conditions where competitive interactions dominate. These results highlight

the value of mathematical modeling for optimizing the efficiency of restoration efforts and

call for integration of this theory into practice.

Keywords: restoration, restoration design, optimality, Allee effect, diffusion, mathematical modeling, coastal

wetlands
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1. INTRODUCTION

Over the past century, many ecosystems worldwide and the
valuable services they provide have been lost and degraded
as a result of anthropogenic stressors, such has habitat loss,
over-exploitation, and climate-change (Leemans and De Groot,
2003). Coastal habitats are especially threatened natural systems
and have drastically declined in coverage and condition across the
globe (Worm et al., 2006; Halpern et al., 2008). The magnitude
of ecosystem degradation and the associated loss of biodiversity
and ecosystem functions, such as the protection of shorelines
from flooding and storm events in coastal systems (Barbier
et al., 2011), generated a pressing need for conservation strategies
that actively combat this decline. Ecological restoration is one
conservation intervention used to combat habitat loss. It aims
to repair or otherwise enhance the structure and function
of an ecosystem that has been impacted by disturbance or
environmental change. In recent years, restoration has emerged
as an important conservation tool for improving the recovery
of degraded lands and to counteract habitat and biodiversity
loss (Jordan et al., 1990; Dobson et al., 1997; Young, 2000;
Young et al., 2005; Suding, 2011). As restoration resources are
economically limited, it is of utmost importance to guarantee the
efficiency of ecological restoration (Aronson et al., 2006; Suding,
2011; Zhang et al., 2018).

One central aspect influencing the efficiency and success
of restoration projects is the spatial design of the outplanted
propagules. The long-held paradigm in restoration projects

has been to plant propagules in dispersed arrangements to
minimize competitive interactions. In contrast, ecological theory

emphasizes the importance of positive species interactions,
such as facilitation, for ecosystem stability, expansion, and
recovery from disturbance. According to the stress-gradient
hypothesis (Bertness and Callaway, 1994; Stachowicz, 2001;
He et al., 2013; Silliman and He, 2018), positive interactions
are particularly important and are measurably more influential
in situations of high physical stress, such as the recolonization
of bare substrate. In the case of high physical stress, positive
interactions help lessen abiotic stress by making the local
habitat more suitable. For example, salt marshes plants with
neighbors do better in high flow and oxygen stressed areas, as
neighbor plants help ameliorate wave stress and low oxygen in
soils (Silliman et al., 2015). These ideas would suggest using
clumped restoration designs that maximize positive interactions,
in particular in situations of high physical stress (Halpern et al.,
2007; Gedan and Silliman, 2009; Renzi et al., 2019).

These ideas were confirmed in recent field experiments
which showed that the restoration success can be significantly
enhanced in planting configurations that place propagules next
to, rather than at a distance from, each other. For salt marshes,
for example, an experiment by Silliman et al. (2015) found
that in coastal wetland restoration clumped configurations are
more favorable than dispersed configurations. Planting seedlings
in tight rather than loose clusters while keeping the initial
number of propagules constant led to higher survival rates and
densities, more biomass and increased expansion rates. Similar
results were found in mangrove restoration where a clumped

design resulted in significantly lower mortality when compared
with a uniform design (Bakrin Sofawi et al., 2017). Further,
incorporating positive interactions enhances the plant growth
in seagrass restoration (Valdez et al., 2020). Clumped planting
arrangements are also beneficial for the restoration of woodland,
for example planting designs for eucalypts where conspecifics
are close to each other improved seed production (McCallum
et al., 2019). These experimental studies confirmed that small
adjustments in restoration design that harness positive species
interactions result in significantly enhanced restoration success
with no added cost.

On the other hand, planting propagules in too large clumps
may waste restoration resources because restoration efforts are
concentrated in smaller spatial localities. At some point the
benefits of having larger and larger clumps should be outweighed
by the slower and slower spread of those clumps at their edges,
as the growth rate of clumps is directly related to their edge
to area ratio. Thus, given the constraint of limited restoration
efforts there should be an optimal planting distance that both
is able to harness positive species interactions but at the same
time is maximally spreading out the treated area. In this study,
we propose to apply mathematical modeling to explore these
questions quantitatively.

Mathematical models have proven to be useful tools to assess
the impact of restoration efforts on the ecosystem state and
biodiversity (Dobson et al., 1997). To date, modeling of ecological
restoration has mostly focused on quantitative models and on
matching the behavior of a selected species or ecosystems, for
example using agent-based models (e.g., Sleeman et al., 2005
for coral reef restoration) or data-driven forecasting models
(e.g., Benjamin et al., 2017 also for corals). However, a simple
conceptual modeling study that explores the joint effect of
different initial planting configurations and growth functions is
still missing.

Here, we develop a simple mathematical model in the
form of a reaction-diffusion system to investigate the optimal
design in spatial habitat restoration. We model the growth and
spatial spread of a single population starting from different
initial conditions that represent clumped and dispersed planting
configurations and consist of one or more patches of maximal
population density, surrounded by bare substrate. We study
the spatial coverage of the recovering ecosystem from the
different initial conditions and investigate how it is influenced
by positive species interactions, which are incorporated into the
model in form of a weak or strong Allee effect (Courchamp
et al., 1999). Using the developed model, we assess whether
clumped or dispersed configurations perform better in our
models and qualitatively compare the simulation outcomes with
the experimental results in a coastal wetland from Silliman et al.
(2015).

Our main finding is that restoration efficiency crucially
depends on the assumed time horizon, that is, on whether
or not traveling fronts starting from initial plantings have
already merged. When competition was the only interaction
in our model, that is when using logistic growth, dispersed
configurations always performed better for short time horizons.
In contrast, when the model included an Allee effect (i.e.,
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positive species interactions) we observed that intermediate
density is optimal for planting configurations. This supports
the experimental results that dispersed configurations are not
favorable when interactions other than competition are present.
Our study provides new avenues for improving the efficiency of
restoration campaigns and highlights the value of mathematical
modeling for optimizing the configuration of habitat restoration.

2. METHODS

2.1. Diffusive Single-Species Model
We model the growth and spatial spread of a population of
organisms planted at the start of the restoration process in a
one-dimensional habitat. The dynamics are captured in form
of a basic reaction-diffusion model (Murray, 1993; Ryabov and
Blasius, 2008)

u̇ = f (u)
︸︷︷︸

reaction

+ D1u
︸︷︷︸

diffusion

, (1)

where u = u(t, x) is the population density at time t and location
x, the “reaction” f (u) describes the population growth at a specific
location and the “diffusion” 1u = ∂2xu(t, x) models the dispersal
from and to this location with diffusion strength D.

We compare two conceptual growth functions: logistic
growth, capturing the effect of intraspecific competition among
planted individuals,

fL(u) = ru(1− u), (2)

as well as a growth function including an Allee effect, which we
consider as a proxy for additionally positive species interactions
(Courchamp et al., 1999),

fA(u) = ru(u− a)(1− u). (3)

Implicitly, the carrying capacity of the population density was
set to K = 1, meaning that u is expressed in fractions of the
carrying capacity. Further, the intrinsic growth rate r as well as
the diffusion constant D are set to 1, non-dimensionalizing the
equation and justifying the omission of units. The parameter a
is the Allee threshold; population densities below the threshold
have negative growth rates (Supplementary Figure 1). Setting
a = 0 gives a weak Allee effect and a > 0 results in a strong
Allee effect. We chose a = 0.1 in the latter case. Note that
several growth function definitions exist to model a weak and
strong Allee effect (Courchamp et al., 1999). We merely chose
a simple function that exhibits small values close to u = 1 and
small (even negative in the case of the strong Allee effect) values
close to u = 0. We expect that similar results will be obtained for
qualitatively similar growth functions.

Since u is a density, the total population size Pt at time t is
computed by integrating over the whole area. We used a one-
dimensional area, −L ≤ x ≤ L, representing for example the
coastline in a marine restoration project. Consequently, the total
population size is

Pt =
∫ L

−L
u(t, x)dx.

At the border of the simulated area we use Neumann (no-flux)
boundary conditions

∂xu = 0 for x = ±L.

However, the precise boundary conditions are not of great
importance since the habitat size was always chosen large enough
so that the population did not reach the boundaries within the
simulated time frame. The models were numerically solved with
the Matlab pdepe solver.

2.2. Initial Conditions
To represent the initial plantings, we used step functions that at
each location x take either the value u(x) = 0 (bare substrate) or
u(x) = 1 (carrying capacity of the population density), as shown
in Figure 1.

2.2.1. Single-Patch Set-Up
We started by examining the behavior of a single patch of
propagules planted at the center of the habitat. Formally, this is
the initial condition

u0(x) = u(0, x) =
{

1, − S
2 ≤ x ≤ S

2

0, elsewhere
, (4)

where S is the initial width of the patch. Thus, the initial total
population size equals P0 = S. For the simulations of a single
patch system we varied the patch widths in the range 0.05 ≤ S ≤
10 and we used the habitat size of L = 50 throughout.

To evaluate the influence of the initial width S on the
development of the patches, we defined the absolute and relative
growth rate. The absolute growth rate until time t is

gabs(S, t) =
Pt − S

t
. (5)

If the absolute growth rate is positive, it describes how much
larger the total population has become from the start until time t.
If it is negative, it describes how much the population has shrunk
until time t. We deliberately chose the slightly cumbersome term
“absolute growth rate” to distinguish it from more common
notions of growth rate and especially the relative growth rate.

The relative growth rate accounts for the fact that resources
are limited in restoration projects due to the initial effort.
It divides the absolute growth rate by the initial width
(corresponding to the initial population size), that is

grel(S, t) =
Pt − S

tS
. (6)

For example, if two patches increased by the same amount within
a given time frame, the patch with the smaller initial population
size (and therefore fewer used resources) would have a higher
relative growth rate.

2.2.2. Multi-Patch Set-Up
Next, we generalized our model to a configuration with multiple
patches of initial plantings (Figure 1). We designed the planting
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FIGURE 1 | Sketch of the modeled restoration design for a multi-patch set up of n = 2 (A) and n = 5 (B) patches. Initial conditions of planted propagules are shown

in cyan. Patches are distributed equidistantly with inter-patch distance dn. With increasing number of patches we reduce both the patch width Sn, keeping the initial

total population size nSn constant, and the distances between the patches dn, ensuring that edges of the outer patches remain at the same locations ±B for all

configurations. The solid, dashed, and dotted lines show simulated spatial profiles of the growing and expanding population at subsequent time points.

configuration in such a way that the invested restoration
resources (the total initial population size P0) were fixed and
divided equally into n equidistant initial planting patches of
width Sn = P0/n. As a second constraint, in the multi-patch
setting we kept the outer borders of the initial restoration region
(−B,B) fixed. Single patches (the case n = 1) were placed at the
center of the domain as described before. For n ≥ 2, the patches
were placed such that the outer edges of the patches furthest left
and right were at position x = −B and x = B. Hence, the distance
between two patches is always given as dn = 2·B−P0

n−1 and thus,
both the initial patch width Sn and the inter-patch distance dn
are decreasing functions of n. This set-up allows to mimic the
clumped and dispersed configuration as described in the field
experiment by Silliman et al. (2015).

Comparing different numbers of patches n, we denoted the
total population size at time t by Pt(n) to emphasize the
dependence on the different initial configurations. As parameter
values in the multi-patch set-up we used an initial total
population size of P0 = 10 and an initial restoration region of
B = 100 throughout, varied the number of patches from n = 1
to n = 15 and increased the total habitat size to L = 250 so that
edge effects did not play any role.

Note that the total population size Pt(n), and thus the
simulated planting success, always depends on the chosen time
horizon t. In order to measure the efficiency of the restoration
efforts in a time-independent fashion, we also computed the
discounted total population size. Discounting is often used
in economics and describes that yields in the future are less
valuable than present yields. It is computed in the form of a
population-size weighted time integral

Pρ(n) =
∫ ∞

0
e−ρtPt(n)dt.

Here, ρ is the discounting factor which can be understood as a
“negative interest rate”. The larger ρ, the more the population
size in the beginning is weighted and the less the population size
in the end influences Pρ(n). The discounted population size only
depends on the number n of patches in the initial conditions and
thus indirectly on the initial planting distance. We chose ρ = 0.1
and ρ = 0.5. To make the results for the different discounting
factors comparable we used the discounted sizes relative to the
configuration with one patch, i.e., Pρ(n)/Pρ(1).

3. RESULTS

3.1. Single-Patch Set-Up
The spatio-temporal development of a single, newly planted
patch is illustrated in Figure 2 for different growth functions and
patch widths. In general, we can distinguish three characteristic
growth phases: 1. “flattening,” 2. “regrowth,” and 3. “traveling
fronts.” In the first (flattening) phase, the diffusion term
dominates, outweighing the local growth term f (u) due to
the sharp spatial gradient between the patch (representing the
initial planting) and the surrounding area (representing the bare
substrate). As a consequence, the population density decreases
within the patch and increases in the area close to it. In this stage,
the population either goes extinct (Ryabov and Blasius, 2008) or
it may survive the initial decline. If the planted population does
not go extinct it can enter the second and third growth phase.
In the second phase (regrowth), the spatial variations equalize
and the effect of diffusion is less intense. Consequently, the
influence of the local growth function becomes more important,
yielding a rising population density. Once the full population
density u = 1 is reached again in the center of the patch, a
traveling front is established on each side of the patch and the
third growth phase is initiated. In this phase, the population
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FIGURE 2 | Typical development of a population starting from single patch initial conditions with different widths, for logistic growth fL(u) (rows 1 and 2) and the

strong Allee effect fA(u) with a = 0.1 (rows 3–5). Plotted are the total population size over time (left), the spatio-temporal development in color coding (middle column)

and the population density in the center of the patch (right). In the case of logistic growth the population survives for all patch widths; for the strong Allee effect,

populations with a very narrow initial patch go extinct. A surviving population undergoes three characteristic growth phases: 1. flattening (red), 2. regrowth (blue), and

3. traveling fronts (gray).

spatially expands with nearly constant velocity. This spreading
velocity can be analytically described as the asymptotic speed c of
a traveling front for each of the three growth functions, yielding
c =

√
2rD for purely logistic growth and c =

√
2rD(1/2 − a) in

the presence of an Allee effect (Lewis and Kareiva, 1993; Murray,
1993; Ryabov and Blasius, 2008). Thus, the spatial spreading
velocity of the planted population is highest for a population
with logistic growth and lowest in the presence of a strong
Allee effect.

The initial patch width S plays a central role for the growth
dynamics. In particular, the duration of the first and the second
growth phase crucially depends on S. The narrower the patch,
the stronger is the influence of diffusion on both sides in relation
to the whole patch. Consequently, for smaller initial patches the
flattening happens faster and the first phase is shorter. Further,
the population density in the center of the patch decreases
more, leading to a prolonged second phase. This is illustrated in
Figure 2, first and second row.
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FIGURE 3 | Absolute (A–C) and relative (D–F) growth rates as functions of the patch width S for different time horizons. For logistic growth, the relative growth rate

decreases with the initial patch width. In the presence of an Allee effect, there is an optimal patch width of maximal relative growth which depends on the considered

time horizon. In the case of a strong Allee effect, the absolute and relative growth rates become negative for very narrow patches, leading to the extinction of the

population on those patches.

For logistic growth and the weak Allee effect (a = 0) all
populations survive the flattening growth phase irrespective of
the initial patch width. In contrast, in the case of a strong Allee
effect, a minimal initial patch width is needed for survival, while
populations on narrow initial patches go extinct (Figure 2, third
row). The patches that survive go through the three growth
phases (Figure 2, fourth and fifth row). When logistic growth is
used or a weak Allee effect is present, the local growth term f (u)
is positive as long as the population density u is positive (and
smaller than the capacity). Therefore, the strong decrease of the
population density in very narrow patches is not critical. If, in
contrast, the local growth term includes a strong Allee effect, the
growth rate f (u) becomes negative for small population densities.
For very narrow patches the population density can then fall
below the Allee threshold and consequently the population
goes extinct.

In Figure 3, we summarize the simulated population growth
rates as a function of the initial patch width S for the three
characteristic growth functions. To this end, we computed the
absolute and relative growth rates, Equations (5, 6), for a fixed
time horizon and analyzed the influence of the initial patch
width. For logistic growth, the absolute growth rate gabs is
always positive and approximately equal for all patch widths
(Figure 3A). For short time spans, e.g., t = 1, wider patches
have higher absolute growth rates than narrower ones but this
effect vanishes for longer time horizons. For t = 20, for example,
all patches wider than S ≈ 1 have almost equal values of gabs.
Since there is little variation of the absolute growth rates with
the patch width, narrower patches have higher relative growth
rates (Figure 3D). In terms of restoration efforts, narrow patches
thus give a better “return on investment” when logistic growth
is assumed.

In the presence of a weak Allee effect, the absolute growth
rate is also always positive, but the differences between
narrow and wide initial patches are more pronounced than
in the case of logistic growth (Figure 3B). Particularly,
there is an offset at very small widths before the absolute
growth rate rises for intermediate widths and becomes
constant for larger widths (Figure 3B). The offset is caused
by the shape of the weak Allee effect’s growth function
(Supplementary Figure 1B): The stronger flattening of very
narrow patches leads to small population densities u which
have comparatively lower values in the local growth term f (u).
Very similar forms of the absolute growth rate are obtained
for the case of a strong Allee effect. The main difference
is that now gabs can be negative for small S (Figure 3C),
leading to the extinction of populations on very narrow
initial patches.

The second row in Figure 3 depicts the dependence of the
relative growth rate grel on the initial patch width S. While for
logistic growth grel is always decaying with S, in the case of
a weak and strong Allee effect we obtain pronounced peaks
of grel at intermediate values of S, indicating optimal patch
widths. This optimal patch width Sopt depends on the considered
time horizon. For example, for the time points t = 5,
t = 10 and t = 20 in the case of a weak Allee effect
we find Sopt(t = 5) = 1.8, Sopt(t = 10) = 1.3, and
Sopt(t = 20) = 0.9, while for a strong Allee effect we obtain
Sopt(t = 5) = 2.3, Sopt(t = 10) = 2.0, and Sopt(t =
20) = 1.5. Notice that the optimal width decreases with the
time horizon for both weak and strong Allee effect, i.e., when
longer time spans are considered narrow patches are recovering
and the lower initial effort (that is, the initial patch width)
is paying off.
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FIGURE 4 | Typical development in configurations starting with multiple initial patches for logistic growth fL(u) (rows 1 and 2) and the strong Allee effect fA(u) with

a = 0.1 (rows 3–5). We plot the total population size over time (left) and the spatio-temporal development in color coding (right). In the case of logistic growth, the

population survives for all spatial configurations. In contrast, for a strong Allee effect, populations starting from a configuration with many and therefore very narrow

patches go extinct. A surviving population undergoes four characteristic growth phases: 1. flattening of each patch (red), 2. regrowth of each patch (blue), 3. traveling

fronts for each patch (gray), and 4. expansion of the merged patch (green).

3.2. Multi-Patch Set-Up
The spatio-temporal development of a multi-patch set-up is
illustrated in Figure 4 for different growth functions and patch
numbers. As in the case of a single-patch set-up, also for a
configuration withmultiple initial patches the planted population
can always survive in a system with logistic growth or weak
Allee effect, but may go extinct in the case of a strong Allee
effect. This is explained by the fact that the initial width
of each patch decays as Sn = P0/n with the number of

patches. We already found in the single-patch set-up that
populations do not survive on narrow initial patches when a
strong Allee effect is present. This translates into the extinction
in configurations with many, and therefore narrow, patches. A
main point to keep in mind is that the total initial population
size P0 is fixed. The extinction of configurations with many
patches is thus primarily caused by the patch widths Sn
being too narrow and is only indirectly linked to the number
of patches n.
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FIGURE 5 | Time dependence and growth dynamics in a configuration with multiple initial patches for logistic growth (left), weak Allee effect (middle), and strong Allee

effect (right). (A–C) Temporal development of the total population size for different numbers n of initial patches, with a fixed total initial population size P0 = 10. A kink

in the growth curves indicates the point of merging. (D–F) Total population size after a fixed time horizon in dependence of the number of initial patches. For each

model, only time horizons up to the merging of the configuration with two patches are selected. (G–I) Discounted population size relative to the discounted population

size for one initial patch in dependence of the number of patches, shown for two discounting rates.

As shown in Figure 4, surviving populations go through four
growth phases. At the start, the n patches develop separately
from each other and we re-encounter the three growth phases
1. “flattening,” 2. “regrowth,” and 3. “traveling fronts” for each
patch. In the third growth phase, the system now consists of 2n
traveling fronts, which continue to spread until they eventually
merge into one big patch with only two fronts remaining. This
starts the fourth growth phase “expansion of the merged patch.”
Due to the reduction from 2n traveling fronts to only two
traveling fronts, after the transition to the fourth growth phase
the speed of the population growth, i.e., the changing rate of the
total population size Pt(n), is strongly reduced (left column of
Figure 4).

Figures 5A–C shows the time dependence of the total
population size Pt(n) for several configurations. While all
configurations begin with the same initial population size P0,
the total population size as well as the speed of growth start
to differ quickly. However, once the patches have merged, the
further growth of the total population size Pt is independent of
the number of initial patches n. This holds for all three growth
functions. For each configuration, the transition into the fourth

growth phase is clearly visible as a kink (a sudden change of the
graph’s slope) in the respective growth curve. Note that due to
the different asymptotic propagation speeds of traveling fronts,
the time span needed to reach the fourth growth phase differs
between the growth functions f (u). For logistic growth, the fronts
asymptotically travel faster, hence themerging occurs earlier than
for the weak and strong Allee effect.

In Figures 5D–F, we plot the total population size Pt(n) as a
function of the number of initial patches n at selected time points.
Thereby, it becomes transparent that for each growth function
f (u) we considered, there are two stages in the growth dynamics:
before the merging (short-term behavior) and after the merging
(long-term behavior).

We first study the short-term behavior. In the first three
growth phases, before the occurrence of any mergings, we can
assume that the patches develop separately from each other. Since
they all have the same width Sn, they grow with the same speed.
Hence the growth of the total population size until time t is n
times the absolute growth rate of each patch, that is n · gabs(Sn, t),
with gabs being the absolute growth rate of a single initial patch
(Equation 5). Using the relations grel(Sn, t) = gabs(Sn, t)/Sn and
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Sn = P0/n this can be rewritten as P0 · grel(Sn, t). That is, before
the merging of the traveling fronts the absolute growth of the
multi-patch configuration is proportional to the relative growth
rate, Equation (6), of a single patch system.

Assume now that the population follows logistic growth.
In the previous section we showed that in a single-patch
configuration with logistic growth narrow patches always
perform better and have higher relative growth rates, while
the absolute growth rate is more or less independent of S
(Figures 3A,D). From this we can deduce that multi-patch
configurations with a larger number of smaller patches grow
faster and initially can achieve higher total population sizes. That
is, in a system with logistic growth the total population size Pt(n)
should scale with the number of initial patches n for short time
horizons (Figure 5D).

This is quite different from the initial growth behavior
in the presence of an Allee effect. In this case we found
that a single-patch configuration exhibits a pronounced peak
of grel for intermediate values of S (Figures 3E,F). Thus,
for short time spans also a multi-patch system should
exhibit highest growth rates for intermediate initial patch
sizes and thus intermediate number of patches. This theory
is confirmed in the numerical simulations which reveal a
unimodal dependency of the total population size Pn(t)
as a function of n for time instances before the merger
of traveling fronts (Figures 5E,F). The optimal number of
patches that maximizes growth rates depends on the time
horizon and by comparison with Figures 3E,F indeed is
directly related to the optimal patch width derived in the
single-patch set-up.

Next we consider the growth behavior for larger time
horizons, in the time after the merging of initial patches. In this
regime the whole initial restoration region between −B and B
is fully populated. Thus, the further growth is only dependent
on how far the two outer initial patches have spread. This is
measured by the absolute growth rate gabs(S, t). That is, after the
merging of the traveling fronts the absolute growth of the multi-
patch configuration is proportional to the absolute growth rate,
Equation (5), of a single patch system.

Again, we first assume that the populations follow logistic
growth. In Figure 3A, we showed that the absolute growth rate
of single patch systems is almost independent of the patch
width when t is large. Therefore, the differences between the
configurations, that were present for shorter time spans, vanish;
all configurations, except the single patch, reach the same total
population size (Figure 5D). The lower values for the case n = 1
are explained by the structural disadvantage of a single patch in
the center of the simulated area in our chosen initial conditions
regarding the long-term behavior: All other configurations start
their outwards growth from two sides at x = ±B while the single
patch begins at the center.

For the weak and strong Allee effect, the configuration with
two patches performs best in the long run (Figures 5E,F) since
the absolute growth rate in a single patch system decreases
with smaller widths (Figures 3B,C). The decrease of Pt(n) with
increasing n for a fixed but large enough time point t is less
pronounced for the weak Allee effect than for the strong Allee

effect. This is a reflection of the less distinct change in the absolute
growth rate for small widths.

Regarding the discounted population size, the most dispersed
configuration performs best when using logistic growth while an
intermediate number of patches is optimal when an Allee effect is
present (Figures 5G–I). These results are in line with the short-
term behavior. This is natural since discounting puts more weight
on the beginning. While the exact time point t was relevant
in the comparison of the total population sizes Pt(n), now the
discounting factor ρ determines which configuration is optimal.

4. DISCUSSION

In this study we proposed a simple mathematical model that
predicts the success of a plant restoration based on the planting
configuration.We consider a standard logistic growth model that
inherently includes competitive interactions among individuals
and compare this to models that include positive interactions
among individuals in which the growth of neighbors promotes
the growth and survival of conspecifics. This is integrated into
the models in the form of an Allee effect which describes
an inverse, density dependence where population growth is
positively correlated with density, at least at low population
sizes like those found in the beginning of a restoration effort.
We found that the optimal planting strategy depends on the
type of interactions that take place among individuals, which in
turn are related to environmental stress. Thereby, intermediate
clumping is likely to maximize plant spread under medium and
high stress conditions (high occurrence of Allee effects) while
dispersed designs maximize growth under low stress conditions
where competitive interactions dominate.

Our results coincide with the findings of a salt-marsh
restoration experiment by Silliman et al. (2015). In this
experiment only two planting arrangements were compared:
the clumped and the dispersed configuration, where the first
performed better. In our simulation, the configurations ranged
from one wide patch (very clumped) to 15 narrow patches (very
dispersed), aiming for a conceptual exploration rather than an
exact replication of the experimental results. Our analysis of
a model with logistic growth showed that the most dispersed
configuration performed best in the short run in contrast to
the experimental results. This suggests that positive species
interactions, as expressed in our model by an Allee effect, are
a crucial component to explain the findings by Silliman et al.
(2015). Using simulations that included a weak or strong Allee
effect, we found that population growth was optimized for an
intermediate number of patches. Further increases in the number
of patches, representing more dispersed configurations, only
reduced the population growth. This simulation result is in line
with the experimental finding that the restoration success was
smaller in the dispersed than in the clumped configuration.
In our simulations, the most clumped configuration yields
the highest population density for short time spans when an
Allee effect is present if the initial population size is chosen
appropriately (Supplementary Figure 2). Our observation of
reduced growth for over-clumped configurations (which was not
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investigated in the field experiment) can be explained by the fact
that spreading of planted patches is only possible from the edges
of the patch. Planting designs that were too clumped reduced the
number of patches, and thus, the spreading potential.

These results are in line with other studies from the literature,
which identified the Allee effect as an important factor for the
invasion of plants. For example, Davis et al. (2004) suggested
that an Allee effect limits the invasive spread of a salt marsh
species and a model by Murphy and Johnson (2015) associated
a reduced Allee effect with invasion success. The presence of
an Allee effect also drastically changes spreading characteristics
of invading species (Gastner et al., 2011). Finally, our results
are largely confirmed in a recent field experiment by Duggan-
Edwards et al. (2020) who investigated optimal configurations for
a salt marsh restoration.

Our findings highlight the importance of positive species
interactions for allowing establishment and maximizing
population growth from a large number of small initial
plantings—a typical configuration in restoration campaigns.
The Allee effect expresses the fact that per capita population
growth rates are reduced for small population densities. This
means that positive interactions from conspecifics are needed to
improve survival and reproductive success of an individual or
population (Courchamp et al., 1999). This state of a small initial
population density and a negative growth rate in the absence of
other positive interactions (i.e., high physical stress) is exactly the
situation that one should expect for freshly planted populations
after restoration. In contrast, competitive interactions should
become important only after successful establishment, that is,
after the restoration effort already has succeeded. There are
many examples for such facilitative mechanisms. In saltmarsh
systems, for example, there are positive interactions between
vegetation and the surrounding sediments. Plants dissipate wave
energy which helps to mitigate wave-induced erosion stress
and to shelter from destruction by storm events (Barbier et al.,
2011). The reduction of hydrological energy stimulates sediment
deposition, enhancing plant survival at higher elevations (Bouma
et al., 2009; Silliman et al., 2015; Duggan-Edwards et al., 2020).
Further positive interactions between neighboring plants can
occur due to alleviation of physical stress due to anoxia. Here
the positive feedback is provided in the form or oxygen diffusing
from shallow roots into sediments which then becomes available
to neighboring plants (Howes et al., 1986).

The Stress Gradient Hypothesis predicts that neighbors are
more likely to cooperate with each other as biotic or abiotic
stress increases in a system. This theory has been tested in
numerous field studies and there is strong support for it as
general rule in ecology (He et al., 2013). Although our model
did not include stress, we did vary the contribution of positive
species interactions by varying the strength of the Allee effect
(none, weak, and strong). Given the stress gradient hypothesis,
this can be considered as a proxy for environmental stress in
the system, with a strong Allee effect signifying high stress and
a low Allee effect low stress. With this correlation, we can then
make predictions about what type of interactions restoration
managers could expect among outplants across a stress gradient
and accordingly how to design their planting arrangements

to maximize growth rates (Figure 6). Our conceptual study
shows that under low stress managers should use fully dispersed
planting configurations while under intermediate or high stress,
i.e., when when positive interactions likely play a significant role,
managers should plant in medium sized clumps. This conclusion
is supported by field data for salt-marshes from Silliman et al.
(2015) which showed that in the high intertidal, where oxygen
is plentiful, plants did better in dispersed than in clumped
configurations. However, in the low intertidal, where flooding
impedes oxygen diffusing into soil, clumped plants grew 200%
more and expanded at greater rates since plants benefited from
neighbors oxygenating the soils via translocation of air to their
roots. Note that the nature of interactions shifts not only across
the stress gradient but also with time. That is, even under
conditions of high environmental stress, once a few years have
passed, clumps grow into large areas and the foundation species
reduces stress—the clones are likely to start to competemore than
cooperate. Key then is a new step in restoration planning where
managers map out andmodel stress and intraspecific interactions
in their system across the planting zone to determine the optimal
mixed method planting design for their area.

While we modeled an Allee effect with the specific growth
function, f (u) = u(u − a)(1 − u) with a = 0 and a = 0.1, we
assume that our results generally also hold for other specifications
of the weak and strong Allee effect. We were able to explain the
behavior for the multi-patch set-up in terms of the dynamics of a
single-patch system. Hence, we assume that very narrow patches
go extinct for growth functions with negative values for small
population densities, i.e., a strong Allee effect. Further, we suggest
that there is an optimal patch width, resulting in an optimal
number of patches, for all growth functions with smaller per
capita growth rates at smaller population densities, i.e., growth
functions with an Allee effect, instead of narrower patches always
performing better as it is the case for logistic growth.

We investigated a planting configuration where a fixed
amount of invested restoration resources is divided equally
among the initial planting patches. That is, our simulation
design implements an important trade-off where planting in a
clumped design will necessarily reduce the spatial extent of the
restoration as compared to planting with a dispersed design.
The potential costs of doing this must be borne by the growth
and spatial spread of the population. On the other hand, cost
may be borne primarily in the extent to which ecosystem
services are created by the restoration, e.g., if the restored habitat
enhances faunal survival or biodiversity. This relates to the more
general question of how restoration success is quantified. While
our study measures restoration success as the total restored
population size, in general, restoration success could be based
on the relative magnitude and scale of ecosystem services. This
is further complicated by the fact that restoration success also
depends on time. Our analysis shows that the total population
size reached after restoration varies with the investigated time
horizon, depending on the characteristic growth phases shown
in Figures 2, 4. In particular, growth dynamics in a multi-patch
configuration crucially depend on whether or not the traveling
fronts starting from individual patches have already merged (as
shown in Figure 5). Thus, also our estimation of the restoration
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FIGURE 6 | Conceptual visualization of the performance of clumped and dispersed restoration designs in relation to the strength of positive interactions. Green boxes

indicate surviving configurations, blue boxes indicate the most efficient method of planting for each growth function. If population dynamics follow logistic growth (no

positive interactions) optimal restoration is achieved for a dispersed planting configuration with small distances between clumps. In the presence of an Allee effect

optimal performance is obtained for intermediate clumping, while too clumped configurations yield bad restoration performance for all growth functions. According to

the Stress Gradient Hypothesis positive interactions (e.g., facilitation) become more significant with increasing physical stress. Thus, although it is not explicitly

included into our model, the strength of the Allee effect (none, weak, strong) can be considered as a proxy for physical stress, allowing us to draw conclusions on

expected restoration success in different stress regimes.

success will depend on the considered time horizon. This raises
the question how to equate restoration benefits and ecosystem
services that come in the distant future to their value in the
present. Here we follow the key paradigm in economics and cost-
benefit analysis that future goods should be counted for less than
present goods. That is, we discounted future population sizes
to present population sizes through the use of a discounting
rate, which expresses the intuitive notion that “a dollar today is
worthmore than a dollar tomorrow.” These ideas from ecological
economics are sometimes considered as being in conflict to our
desire to have restorations that are sustainable and that persist
for more than just the short term. This is a subtle and sometimes
controversially discussed issue and we refer the reader to the
excellent treatment by Broome (1994).

A diffusive single-species model is of course not a perfect
description of the environmental and ecological situations
in the restoration of ecosystems. It assumes a homogeneous
environment, neglects stochastic events and does not feature
interactions with other species, such as grazers or ecosystem
engineers (e.g., Lewis and Kareiva, 1993). Additionally, there
are many other factors that potentially contribute to restoration
success. This includes community level processes, interspecies
interactions, environmental change and disturbances, but also
possible trade-offs between planting configuration and the
potential effects of other species, or the rapidity with which
restored habitat is colonized by higher organisms. Planting
in a dispersed configuration, for example, can be seen as
a form of bet hedging under the expectation of patchy
disturbances by (e.g.,) physical disturbances, bioturbation, or

herbivory. Consideration of such processes, all of which
might be relevant for a real-world restoration scenario, is
beyond the scope of this study which applies a simple single-
population model for addressing the consequences of different
initial plantings.

Considering the above mentioned processes, our study
provides interesting new avenues for future model studies, for
example, by extending our findings to a community level.
Another interesting model extension would be to investigate
the effects of non-local species interactions. In our model we
assumed that the Allee effect acts only locally, i.e., the growth
at point x depends only on the population density at this point.
An important next step could be to include a term that measures
the population density around each point, for example by using
a convolution with a kernel. While most single species models
that use a kernel focus on density dependent competition (e.g.,
Britton, 1989; Han et al., 2016), an interesting extension could be
to use such a term to model facilitation and to explore its effect
on the behavior of clumped and dispersed initial conditions.

Recently there has been a renewed interest in the application
of optimal control theory for spatial ecology and the design
of marine reserves (Neubert, 2003; Upmann et al., 2021). Our
findings suggest that mathematical modeling and theoretical
investigations of optimality might play a similar important role
in helping to design optimal configurations and enhance the
efficiency of spatial restoration efforts. Even though we used a
simple conceptual model, our approach could easily be applied
to specific systems and calls for integration of this theory
into practice.
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