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Identifying population structure and boundaries among communities of wildlife exposed
to anthropogenic threats is key to successful conservation management. Previous
studies on the demography, social and spatial structure of Indo-Pacific bottlenose
dolphins (Tursiops aduncus) suggested four nearly discrete behavioral communities in
Perth metropolitan waters, Western Australia. We investigated the genetic structure
of these four communities using highly polymorphic microsatellite markers and part
of the hypervariable segment of the mitochondrial control region. Overall, there was
no evidence of spatial genetic structure. We found significant, yet very small genetic
differentiation between some communities, most likely due to the presence of highly
related individuals within these communities. Our findings of high levels of contemporary
migration and highly related individuals among communities point toward a panmictic
genetic population with continuous gene flow among each of the communities. In
species with slow life histories and fission-fusion dynamics, such as Tursiops spp.,
genetic and socio-spatial structures may reflect different timescales. Thus, despite
genetic similarity, each social community should be considered as a distinct ecological
unit to be conserved because they are exposed to different anthropogenic threats and
occur in different ecological habitats, social structure being as important as genetic
information for immediate conservation management. The estuarine community, in
particular, is highly vulnerable and appropriate conservation measures are needed in
order to maintain its connectivity with the adjacent, semi-enclosed coastal communities.

Keywords: bottlenose dolphins, population structure, microsatellites, mtDNA, gene flow, conservation,
management units, relatedness

INTRODUCTION

Social structure can play a critical role in the conservation of wildlife as it underpins the
demography and behavior of a population and influences processes such as habitat use and dietary
specialization (Snijders et al., 2017; Louis et al., 2018). Complex social structure and localized
specialization are expected to promote isolation, which may create conservation challenges for
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communities (i.e., sets of individuals that are behaviorally
discrete from neighboring communities and within which most
individuals associate with other members of the community,
Wells et al., 1987) or populations unable to adapt to rapid
environmental changes, notably human impacts in urbanized
areas (Barragan-Barrera et al., 2017). Reduced intra-group social
cohesion, for instance, appeared to affect the recovery of small
populations of killer whales (Parsons et al., 2009; Williams et al.,
2009). On the other hand, long-term social affiliations may
contribute to natal site fidelity, potentially resulting in reduced
gene flow among social groups and thereby shaping genetic
variability within and between populations (Krützen et al., 2004;
Möller and Beheregaray, 2004; Litz et al., 2012; Pratt et al., 2018).

The low cost of locomotion, high dispersal capabilities and
lack of geographic barriers in the marine environment were
thought to promote high levels of gene flow, but many taxa
reveal surprising structuring even at small spatial scales (e.g.,
Palumbi, 1992; Taylor and Hellberg, 2003; Sellas et al., 2005).
Genetic differentiation among communities and populations can
result from recent divergence with no ongoing gene flow or
long-term separation with low recurrent gene flow (Nielsen and
Wakeley, 2001; Palsbøll et al., 2004). Discriminating between
these scenarios has important implications for conservation, as
isolated communities or populations may require management
measures that are dependent upon their demographic patterns,
ecological and social organization, as well as their levels
of exposure to anthropogenic stressors (Yannic et al., 2016;
Crawford et al., 2018).

Population genetic data have been increasingly used to
delineate populations or communities of cetaceans into separate
management units for the purposes of meeting conservation
objectives (Taylor and Dizon, 1999; Palsbøll et al., 2007). Many
of the coastal cetaceans lend themselves to such analyses as
they tend to occur as genetically discrete population units, with
differentiation being detected at small spatial scales relative
to the distances over which they are capable of dispersing
(e.g., spinner dolphins Stenella longirostris, Andrews et al.,
2010; common dolphins Delphinus delphis, Möller et al., 2011;
Bilgmann et al., 2014; Australian snubfin Orcaella heinsohni
and humpback dolphins Sousa sahulensis, Brown et al., 2014;
bottlenose dolphins Tursiops spp., Hoelzel et al., 1998b; Krützen
et al., 2004; Fernández et al., 2011; Ansmann et al., 2012).
Population differentiation of these species has been associated
with habitat complexity, i.e., estuaries or bays versus open
coastline (e.g., Möller et al., 2007), as well as resource or habitat
specializations (e.g., Krützen et al., 2014; Louis et al., 2014;
Giménez et al., 2018). While geographic isolation-by-distance
results in differences between populations (e.g., Allen et al.,
2016; Parra et al., 2018), genetic differentiation on particularly
small spatial scales has also been attributed to factors pertaining
to behavioral variation, including social structure and local
philopatry (e.g., Wiszniewski et al., 2009; Andrews et al., 2010;
Kopps et al., 2014; Van Cise et al., 2017).

Genetic structure in dolphins of the genus Tursiops is
often highly habitat dependent. While there is relatively little
differentiation for both nuclear and mitochondrial DNA markers
in pelagic bottlenose dolphin populations (e.g., Hoelzel et al.,
1998b; Quérouil et al., 2007; Louis et al., 2014), stronger

differentiation on markedly smaller spatial scales has been
described in coastal populations (Krützen et al., 2004; Sellas
et al., 2005; Möller et al., 2007; Rosel et al., 2009; Tezanos-Pinto
et al., 2009; Urian et al., 2009; Mirimin et al., 2011). Variation
in oceanographic conditions such as salinity and temperature
gradients, habitat type, as well as differences in prey preference
and foraging specializations, have also been invoked to explain
such fine-scale genetic differentiation (Natoli et al., 2005; Kopps
et al., 2014; Krützen et al., 2014; Gaspari et al., 2015).

In the Perth metropolitan area, Western Australia, Indo-
Pacific bottlenose dolphins (Tursiops aduncus, “bottlenose
dolphins” hereafter) inhabit coastal, embayment and estuarine
waters (Chabanne et al., 2017a). The population is exposed to
year-round anthropogenic activities, including dredging, pile-
driving, recreational and commercial shipping and fisheries, and
environmental contaminants (Donaldson et al., 2010; Salgado
Kent et al., 2012; Paiva et al., 2015; Cannell et al., 2016;
Marley et al., 2017). Previous behavioral research recognized four
well-defined communities with limited interactions, identified
as Gage Roads (GR), Swan Canning Riverpark (SCR), Owen
Anchorage (OA), and Cockburn Sound (CS) (Chabanne
et al., 2017a,b). Three of these communities form relatively
stable, cohesive units with long term residency in the area,
occupying coastal embayment and estuarine habitats. The fourth
community occurs along open coastline and appears structurally
different, being much less socially cohesive and appearing to
consist of more transient individuals (Chabanne et al., 2012,
2017a).

We investigated the extent of genetic structure and the degree
of gene flow occurring among the four communities in Perth
metropolitan waters using several genetic marker systems. We
considered the well-documented social and spatial segregation
of the four behaviorally defined communities when formulating
conservation measures.

MATERIALS AND METHODS

Genetic Sample Collection
During systematic (Chabanne et al., 2017a) and opportunistic
photo-identification surveys, we collected biopsy samples
from Indo-Pacific bottlenose dolphins (T. aduncus) in Perth
metropolitan waters, Western Australia (Figure 1), between 2007
and 2015 using a PAXARMS remote biopsy system (Krützen
et al., 2002). Calves less than 2 years old (based on body length
and approximate date of birth) were not sampled. Tissue samples
were preserved in saturated NaCl 20% dimethyl sulfoxide (Amos
and Hoelzel, 1991) until DNA extraction.

DNA Extraction and Sexing
We extracted genomic DNA from skin samples using the Gentra
Puregene Tissue Kit (Qiagen), following the manufacturer’s
protocol. We determined the sex of sampled individuals by
amplifying parts of the ZFX and SRY genes (Gilson et al., 1998)
via polymerase chain reaction (PCR) with 20–25 ng DNA, 0.15 µl
of each primer (ZFX forward and reverse and SRY forward and
reverse) and standard PCR reagents. The PCR profile consisted
of initial denaturation at 95◦C for 4 min, followed by 35 cycles of
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FIGURE 1 | Location of the sampled individuals of bottlenose dolphins associated with one of the four socio-spatial communities in Perth metropolitan waters,
Western Australia. GR, Gage Roads; SCR, Swan Canning Riverpark; OA, Owen Anchorage; CS, Cockburn Sound.

94◦C for 45 s, 50◦C for 45 s, and 72◦C for 10 min (Natoli et al.,
2004; Ansmann et al., 2012). PCR products were separated on
agarose gel to determine sex base on length differences.

Genotyping and Validation of
Microsatellites
We successfully genotyped 87 non-duplicated samples for 32
microsatellite loci: DIrFCB4, DIrFCB5 (Buchanan et al., 1996),
LobsDi_7.1, LobsDi_9, LobsDi_19, LobsDi_21, LobsDi_24,
LobsDi_39 (Cassens et al., 2005), SCA9, SCA22, SCA27 (Chen
and Yang, 2008), TexVet5, TexVet7 (Rooney et al., 1999),
KWM12 (Hoelzel et al., 1998a), EV37 (Valsecchi and Amos,
1996), MK3, MK5, MK6, MK8, MK9 (Krützen et al., 2001),
Tur_E12, Tur4_66, Tur4_80, Tur4_98, Tur4_105, Tur4_108,
Tur4_111, Tur4_117, Tur4_128, Tur4_132, Tur_142, Tur4_153,
and Tur4_162 (Nater et al., 2009). We amplified the loci
following the PCR method described in Frère et al. (2010) and
in Marfurt (2019). Single stranded PCR products were run on
an ABI 3730 DNA Sequencer (Applied Biosystems). We scored
microsatellite alleles using GENEIOUS 9.11 (Kearse et al., 2012)
with the microsatellite plugin 1.4 (Applied Biosystems). Our
genotyping error rate based on 11 individuals scored twice was
estimated to be 0.27%, i.e., one incorrect genotype out of 360
scored. Although dolphin calves were not sampled, our study
was sufficiently long for some individuals to be sampled when
older. All scored individuals were cross-checked for eventual

1http://www.geneious.com

duplicates not initially identified (i.e., misidentification due to
change of the dorsal fin). To minimize biases associated with first-
order (parent–offspring, full-siblings) related individuals when
assessing genetic structure, we removed any known offspring and
juveniles from our dataset (n = 9 individuals). Later, we also
calculated the relatedness between all possible dyads using the R
package “related” (Pew et al., 2014) using the TrioML estimator
and tested differences within and between communities using a
Mantel test and 104 permutations.

After checking for null alleles and scoring errors due to
stuttering or large allele dropout using the software Micro-
Checker 2.2.3 (Van Oosterhout et al., 2004), we removed four
microsatellite loci (SCA27, TexVet5, MK8, and Tur4_80). No
deviation from Hardy-Weinberg equilibrium (HWE) and no
evidence of linkage disequilibrium (LD) were detected between
the remaining loci and across communities using the Markov
chain randomization in the package “genepop” (Rousset, 2008,
2020) with 105 dememorizations, 103 batches, and 104 iterations
and the Bonferroni correction (Rice, 1989).

Mitochondrial (mt) DNA Sequencing
We amplified a 412-bp mitochondrial fragment using the primers
dlp1.5 (5′-TCA CCC AAA GCT GRA RTT CTA-3′) and dlp5
(5′-CCA TCG WGA TGT CTT ATT TAA GRG GAA-3′) (Baker
et al., 1993) and following the PCR conditions described in
Bacher et al. (2010). We successfully obtained mtDNA sequences
for 73 out of the 78 samples used in the nuclear analyses after
manually edited them in GENEIOUS 9.1.
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Genetic Diversity
We assessed the genetic diversity based on microsatellite alleles
within each of the four communities by calculating the number
of alleles (Na), effective number of alleles (Ne), private alleles
(NPA), observed (HO) and expected (HE) heterozygosities in
GenAlEx (Peakall and Smouse, 2012), and allelic richness (AR)
using FSTAT 2.9.3 (Goudet, 2001). We estimated inbreeding
coefficient (FIS) for each community separately and pooled as
one population in Arlequin 3.5 (Excoffier and Lischer, 2010)
testing for significance with 104 permutations. We also evaluated
the possibility of inbreeding using INEST 2.2 (Inbreeding/Null
Allele Estimation; Chybicki and Burczyk, 2009) and taking into
account the estimated null allele frequencies considering null
alleles (Chybicki, 2017). For mtDNA, we identified the number
of haplotypes (NH), and estimated haplotype (h) and nucleotide
(π) divergence using DnaSP 5.10 (Librado and Rozas, 2009).

Genetic Differentiation
We estimated pairwise genetic differentiation of microsatellite
alleles (FST) (Weir and Cockerham, 1984) and mtDNA 8ST
(Tamura and Nei, 1993) among communities using Arlequin
3.5 (Excoffier and Lischer, 2010). For mtDNA, the choice of
the model used was made after computing several nucleotide
substitution models in jModelTest 2.1 (Posada, 2008). Although
the minimum corrected Akaike Information Criterion (AICc
used for small sample size) suggested Hasegawa-Kishino-Yano
(Hasegawa et al., 1985) as the best model, this one was unavailable
in Arlequin, and therefore we used the Tamura-Nei model (TrN,
Tamura and Nei, 1993) as the next best model (1AICc < 2).
All pairwise comparisons were testing for significance with
104 permutations.

Genetic Population Structure
Given the challenges associated with the inference of the most
likely number of distinct genetic clusters (K) in a population
(Guillot et al., 2009), we assessed K in Perth metropolitan waters
based on the microsatellite loci using four approaches to ensure
the robustness of the results: (1) a Bayesian clustering algorithm
implemented in STRUCTURE 2.3 (Pritchard et al., 2000), (2) a
least-squares optimization approach taking into account spatial
autocorrelation based on tessellation (Caye et al., 2016) with the
R package “tess3r” (Caye et al., 2017), (3) a discriminant analysis
of principal components (DAPC) that allows to maximize the
differences between groups while minimizing variation within
groups (Jombart et al., 2010) using the package “adegenet”
(Jombart and Ahmed, 2011), and (4) a three-dimensional
factorial correspondence analysis (FCA) that seeks to identify
genetic affinities between individuals and alleles and performed
in GENETIX (Belkhir et al., 2004).

In STRUCTURE, we conducted the analysis without and with
LOCPRIOR models that assigned samples to their respective
socio-spatial community, as defined in Chabanne et al. (2017a).
Using a LOCPRIOR model improves clustering when the signal
is weak without spuriously inferring structure (Hubisz et al.,
2009). We performed the analysis using the admixture model
with correlated allele frequencies (Falush et al., 2003), using

a burn-in of 106 Markov Chain Monte Carlo (MCMC) steps
followed by 107 MCMC steps. We repeated each run 10 times
for K varying from one to six (K = 5 and 6 being used to enable
calculation of 1K). The most likely value of K was determined
by averaging the log probability LnP(D) among runs for each
K value, and selecting the highest mean LnP(D) (Pritchard
et al., 2000). Individual genetic cluster assignment estimates (i.e.,
individual ancestry proportions) were generated for each set for
K varying from two to four, using the web service software
CLUMPAK (Kopelman et al., 2015). The TESS analysis included
the GPS coordinates (latitude and longitude, WGS84) of the
sampled individuals as a priori information (Durand et al., 2009).
We replicated ten runs for each K value varying from two to
six. The most likely number of genetic clusters was identified
by plotting the scores of a cross-validation with the best K
value corresponding to a plateau before generating a q matrix
containing individual admixture coefficients (Frichot et al., 2015).
We then performed the DAPC analysis following Jombart and
Collins (2015) with the maximum number of clusters set to six.
The most likely number of genetic clusters was identified by
the lowest Bayesian Information Criterion (BIC) value. Finally,
we also assessed the structure with an FCA without a priori
community information. The 3D FCA representation was carried
out using the R package “scatterplot3d” (Ligges et al., 2018).

Assessment of Gene Flow
Using GENECLASS 2.0 (Piry et al., 2004), we looked for
possible first-generation migrants (referred to as the likelihood
of migrant detection L) among the communities following the
Bayesian computation criteria of Rannala and Mountain (1997).
This analysis was based on the likelihood of an individual’s
genotype arising from the communities where the individual
was sampled given the observed set of allele frequency (LHOME)
and the highest likelihood value among all potential source
communities (LMAX), including the home community where the
individual was sampled, such as L = LHOME/LMAX . Significance
of the assignment of individuals was assessed with MCMC
resampling of 104 individuals and a threshold of 0.05 (Paetkau,
2004). This analysis was repeated using L = LHOME as the
likelihood computation to account for the uncertainty that all
source populations were sampled (Piry et al., 2004). We then
estimated the effective numbers of migrants per generation
between communities based on the Mutual information (SHua)
calculated in GenAlEx 6.5 (Peakall and Smouse, 2012). We also
used equations 10b and 10c (Sherwin et al., 2006), allowing
us to estimate the effective number of individuals exchanged
per generation (Nem) with and without Ne known, respectively.
Given the small population size here, we estimated Ne as the
sum of the samples available for the communities for which the
migration rate was calculated.

RESULTS

Genetic Diversity
Autosomal levels of genetic diversity were significantly higher
in CS than in other communities, with more than two thirds of
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TABLE 1 | Genetic diversity measures (SE) for bottlenose dolphin socio-spatial communities using microsatellite loci (n = 28) and mtDNA.

Microsatellites mtDNA

N Nf Nm NA Ne NPA AR HE HO FIS (FSTAT) n NH h π

(INEST)

Overall 78 38 40 4.955 3.119 − 4.422 0.589 0.621 −0.020NS 73 5 0.581 0.013

(0.247) (0.149) (0.362) (0.020) (0.022) 0.008 $ (0.047) (0.002)

GR 11 4 7 4.607 3.122 2 4.401 0.572 0.603 −0.006NS 8 4 0.750 0.020

(0.458) (0.330) (0.427) (0.043) (0.049) 0.012 (0.139) (0.007)

SCR 18 10 8 4.643 3.045 6 4.111 0.581 0.596 0.006NS 16 3 0.425 0.018

(0.466) (0.302) (0.369) (0.040) (0.042) 0.026 $ (0.133) (0.005)

OA 15 8 7 4.679 2.965 1 4.139 0.590 0.627 −0.029NS 15 3 0.629 0.022

(0.418) (0.253) (0.326) (0.035) (0.041) 0.006 (0.086) (0.004)

CS 34 16 18 5.893 3.346 23 4.415 0.611 0.656 −0.059** 34 3 0.533 0.004

(0.601) (0.316) (0.396) (0.041) (0.045) 0.004 (0.042) (0.002)

n, number of samples; Nf, number of females; Nm, number of males; NA, mean number of alleles; Ne, mean effective number of allele; NPA, number of private alleles; AR,
mean allelic richness; HE , expected heterozygosity; HO, observed heterozygosity; FIS, Inbreeding coefficient (NS; Non-Significant P > 0.05); NH, number of haplotypes; h,
Haplotype diversity; π, nucleotide diversity. GR, Gage Roads; SCR, Swan Canning Riverpark: OA, Owen Anchorage; CS, Cockburn Sound. Inbreeding significant smaller
than observed **P-value < 0.01 (Bonferroni correction), NSNon-significant, $ important component based on INEST best model.

TABLE 2 | Pairwise comparison between the four socio-spatial communities for
28 microsatellite loci (FST , above diagonal) and for mtDNA (8ST , below diagonal).

Community GR SCR OA CS

GR – 0.007 0.010 0.021**

SCR 0.000 – 0.021* 0.018***

OA 0.000 0.000 − 0.019**

CS 0.168 0.190 0.280* −

GR, Gage Roads; SCR, Swan Canning Riverpark; OA, Owen Anchorage;
CS, Cockburn Sound. P-value *<0.05; **<0.01; ***<0.001 after sequential
Bonferroni correction.

the private alleles identified in CS (Table 1). Other communities
showed similar genetic diversity (Table 1). For mitochondrial
DNA, we found a total of 20 polymorphic sites, defining five
haplotypes (Table 1). In contrast to autosomal data, haplotype
diversities were significantly lower in CS and SCR.

Genetic Differentiation
For autosomal markers, the CS community showed small albeit
significant levels of differentiation from all other communities,
which was also the case for SCR and OA (Table 2). To verify
the accuracy of the significant values of FST reported here, the
simulation run in POWSIM indicated that we would be able to
detect an FST of 0.018 and above with 100% confidence, 0.010
with 99.40% confidence, and 0.007 with 93.90% confidence, while
the type I error probability was lower than the expected rate
of 5%. For mtDNA (8ST), significant differentiation was found
between OA and CS only (Table 2).

Genetic Structure
Based on the highest mean of the estimated posterior
probabilities [LnP(D)], the STRUCTURE analyses suggested
K = 2 to be the most likely number of genetic clusters, while
DAPC analysis suggested no clustering (Supplementary

Figure 1). The cross-validation from the TESS method did
not exhibit a minimum value or a clear plateau to identify
the most likely number of genetic clusters K (Supplementary
Figure 1). Both the OA and CS communities appeared to contain
individuals belonging to one of the identified clusters or were
admixed (Figure 2). Clustering assignment for individuals from
GR and SCR contrasted between the results from STRUCTURE
and TESS, with the former suggesting that the majority of the
individuals were assigned to the same cluster (minimum of 82%
and 78% with q > 0.8 in GR and SCR, respectively), while the
latter indicated many individuals to be admixed (Figure 2).

The 3D FCA showed no clustering (factors 1–3 explaining
only 13.98% of the variation, Figure 3) and samples were
generally scattered.

The median-joining network using mtDNA revealed no
clear clustering based on socio-spatial communities with most
of the haplotypes being shared between communities, despite
showing two main ancestral groups of haplotypes separated
by at least 15 mutational steps (Figure 4). However, most
samples were represented in one matriline group with haplotype
H3 found in the majority of the samples (57, 75, 53, and
50% for GR, SCR, OA, and CS, respectively). The low level
of nucleotide diversity found in CS (0.004 and Table 1) is
consistent with all but one sample (WOL with H1) having
haplotypes from the same ancestral matriline group (H2 and H3,
Figure 4) and separated by a maximum number of mutations
(n = 17).

Contemporary Dispersal
The assignment/exclusion test in GENECLASS2 indicated that
only 59% of the individuals were correctly assigned to their
respective socio-spatial communities and detected 17 first-
generation migrants in all directions, except from CS to SCR
(Supplementary Table 1). Based on the estimated mutual
information (SHua, Supplementary Table 2), we estimated the
effective number of individuals exchanged per generation (Nem)
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FIGURE 2 | Assignment probabilities of individual bottlenose dolphins based on 28 microsatellite loci and inferred for K = 2 using methods implemented in
STRUCTURE (A) without LOCPRIOR, (B) with LOCPRIOR), and (C) in TESS. Each vertical line represents one individual, with the colors indicating the membership
proportions (q) to each of the genetic clusters. Individuals are grouped by socio-spatial communities (GR, Gage Roads; SCR, Swan Canning Riverpark; OA, Owen
Anchorage; CS, Cockburn Sound).

varying from 2.33 to 4.97 and from 4.90 to 8.69 when Ne was
estimated based on the number of samples available for each
community pair (Table 3).

Relatedness
Comparison of intra- and inter-community relatedness indicated
significantly higher values within communities than between
communities (Mantel test, r = 0.1327, and P-value < 0.001).
Notably, individuals related at the first-order level (parent-
offspring, full-siblings; for the purpose of this study defined
by having a pairwise relatedness value of 0.3811 or larger, the
lowest value observed from a known mother-calf pair in this
study) were found primarily within communities rather than
between (Figure 5). Half-siblings (r > 0.25) were roughly equally
represented within and between communities with 4.6 and 2.4%
of the pairs, respectively (Figure 5). Removing at least one
individual from each first-order pair had no bearing on genetic
differentiation and genetic structure analyses (Supplementary
Table 3).

DISCUSSION

Overall, we found evidence for one panmictic bottlenose
dolphin population with continuous gene flow. Analyses of
both microsatellites and mtDNA markers revealed no conclusive
structure, despite using various clustering algorithms that can
produce different solutions due to differences in the underlying
models and prior assumptions (Francois and Durand, 2010), and
only low nuclear differentiation (FST < 0.021) among the four

socio-spatial communities. This may be due to the presence of
highly related individuals in our data, mirroring family structures
present within each community (Latch et al., 2006; Anderson and
Dunham, 2008; Pritchard et al., 2010). The post hoc removal
of highly related individuals leading to even lower levels of
differentiation (results in Supplementary Table 3) supports
this hypothesis.

The disconnect between genetic and behavioral structures is to
some extent unexpected. Other studies comparing communities
of T. aduncus (e.g., Möller et al., 2007; Wiszniewski et al., 2010)
and its congener T. truncatus (e.g., Mirimin et al., 2011; De
Los Ángeles Bayas-Rea et al., 2018) detected fine-scale genetic
structure at a similar geographic scale. The presence of genetic
structure may indicate limited gene flow between communities,
perhaps due to behavioral specializations or environmental
discontinuities (Wiszniewski et al., 2010). The permanent
dispersal described here, with the detection of first-generation
migrants and high migration rates among communities, could
reduce inbreeding within communities (Mills and Allendorf,
1996; Perrin and Mazalov, 1999; Faubet et al., 2007).

The low travel costs associated with short distances between
the communities in Perth metropolitan waters provide the
potential for reproduction outside social groups (Connor, 2000)
without the necessity for individuals to permanently leave
them. Killer whales, for example, live in permanent social
groups from which males temporarily emigrate to mate with
females from other groups (Pilot et al., 2010; Martien et al.,
2019). In our study, some SCR resident males were observed
herding reproductive females from OA into SCR (data not
published), with females returning to their community core
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FIGURE 3 | Factorial correspondence analysis (FCA) three-dimensional plots of microsatellite variation of bottlenose dolphins based on 28 microsatellite loci and
without a priori information on socio-spatial communities. Each dot represents one individual, with the color/shape indicating its designated socio-spatial community
(GR, Gage Roads; SCR, Swan Canning Riverpark; OA, Owen Anchorage; CS, Cockburn Sound). The percentage of variation explained by each of the first three
factors are given in parentheses.

area afterward, a behavior recorded elsewhere for this species
(Tsai and Mann, 2013; Wallen et al., 2016) and supported by
the presence of a few highly related pairs of individuals from
different communities.

Theory suggests that animals forming social groups may
favor close relatives (Hamilton, 1964a,b). This appears to occur
among dolphins of Perth metropolitan waters, as we found
relatedness levels to be significantly higher within than between
communities. Additionally, we found highly related individuals
that were members of different communities. Such relatedness
structure appears to be reflected by the long lifespan and slow life
history leading to highly overlapping generations in bottlenose
dolphins (Wells and Scott, 2002), as well as fission-fusion
dynamics (Connor et al., 2000). Indeed, the maximum estimate
of residency time (i.e., site fidelity) was 18 years (Chabanne
et al., 2017a), a period considerably less than maximum life
span in this species (i.e., more than 40 years; Wang and Yang,
2009). Individuals may switch communities in response to
significant events (e.g., loss of a social partner, a new resource
becoming available). Thus, the lack of genetic structure among
social communities may mirror past and present fission-fusion
dynamics among the communities as they overlap on the edge of
their home range.

While genetic parameters do not match socio-spatial structure
in this study, other factors need to be considered for management
purposes. Over the last two decades, anthropogenic impacts
were variable between communities (Chabanne et al., 2017a).
Differences in habitat quality and population density commonly
influence dispersal between populations, with areas characterized
by lower-quality habitat and lower-density requiring an influx
of dispersing individuals from higher-quality and higher-density
areas for populations to persist (Pulliam, 1988; Figueira and
Crowder, 2006; Liggins et al., 2013; Draheim et al., 2016;
Sundqvist et al., 2016). Within Perth metropolitan waters,
environmental changes associated with anthropogenic activities
varied among the sites, requiring site-specific management
strategies. Indeed, a gradual decline of seagrass and fish
communities have been observed for the last three decades in
SCR, in addition to problems common in other urban estuaries,
such as eutrophication, deoxygenation, algal blooms, and the
presence of per- and polyfluorinated alkyl substances (PFAS), a
group of synthetic industrial chemicals (Deeley and Paling, 1998;
Nice, 2009; Kilminster and Forbes, 2014; Valesini et al., 2017).
In CS, important loss of seagrass coverage occurred between the
1960s and 1990s, with no substantial recovery of seagrasses on
the eastern shelf (Kendrick et al., 2002) as a result of remaining
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FIGURE 4 | Median-joining network of mtDNA control region haplotypes in
bottlenose dolphins in Perth metropolitan waters. The size of the circles is
proportional to the total number of individuals carrying that haplotype.
Different colors denote the four different sampled communities: GR, Gage
Roads; SCR, Swan Canning Riverpark; OA, Owen Anchorage; CS, Cockburn
Sound. The number of mutational events between each haplotype is indicated
by hash marks. The black circle indicates intermediate haplotypes not found
in our samples.

problems associated with nutrient influx from groundwater
plumes and contaminated sediments (Fraser and Kendrick,
2017). Also, changes in fish diversity were found along a gradient
north to south (Sampey et al., 2011), indicating variation in
suitable fish habitat that could result in heterogeneous dolphin
distribution. In comparison, seagrass coverage in OA has not
changed or even increased (Kendrick et al., 2000) despite
dredging occurring year-round since 1972, suggesting a better

TABLE 3 | Effective number of individuals exchanged per generation (Nem)
between communities estimated without knowledge of Ne [equation 10c from
Sherwin et al. (2006), estimates below the diagonal] and with our estimate of Ne

as the sum of the paired communities [equation 10b from Sherwin et al. (2006),
estimates above the diagonal with Ne between brackets].

Community GR SCR OA CS

GR – 5.36 (29) 4.90 (26) 8.31 (45)

SCR 2.88 – 5.37 (33) 8.69 (52)

OA 2.91 2.33 – 7.38 (49)

CS 3.45 3.04 4.97 –

GR, Gage Roads; SCR, Swan Canning Riverpark; OA, Owen Anchorage;
CS, Cockburn Sound.

habitat supporting a broad assemblage of prey species for
dolphins. Ongoing, past and future environmental impacts (i.e.,
development of an Outer Harbor in CS) described above suggest
that habitat and oceanographic characteristics, physical barriers,
and dietary specializations are all conditions that may lead to
discontinuous ecological communities, potentially representing
unique ecological units to conserve even in the absence of genetic
structure (Giménez et al., 2018). In this context, future research
may disentangle the socio-spatial structure of bottlenose dolphins
in Perth metropolitan waters.

Finally, none of these communities are safe from reductions
in genetic diversity should stochastic events lead to a bottleneck
(Storz, 1999; Leffler et al., 2012; Vachon et al., 2018). The
low haplotype diversity found in CS could be suggestive of
the occurrence of an historical bottleneck event or selection
(Rand, 1996). Such scenarios are often challenging to evaluate
because of the difficulty in assessing small sample sizes or
when there is low effective population size pre-bottleneck
(Bjorklund, 2003; Peery et al., 2012; Subramanian, 2016). The
SCR lost almost 1/3 of its individuals (Chabanne et al., 2012) in
2009 from an outbreak of the cetacean morbillivirus (CeMV),
which has also affected several other dolphin populations
worldwide (Holyoake et al., 2010; Stone et al., 2011; West
et al., 2012; Casalone et al., 2014; Stephens et al., 2014;
Kemper et al., 2016). After the event, there was a noteworthy
decrease in mtDNA haplotypes from at least seven before
2010 (Holyoake et al., 2010) to only three in the SCR (this
study), with a potential loss of haplotypes at Perth population
scale, i.e., only five defined in this study, while Manlik
et al. (2019) described 10 haplotypes using a subsample of
the Perth population. Mortalities caused by viral pandemics,
environmental pollution or human activities have already
negatively affected population size and genetic diversity in other
species of dolphin (Pichler and Baker, 2000; Krützen et al., 2018).
Although more work is required to better understand possible
selection processes associated with resistance to CeMV (Batley
et al., 2019), the reduction in genetic diversity exacerbated by
the negative effects of genetic drift in small populations and
potential inbreeding, and thus lower resilience to stochastic
processes, poses an extinction risk to some cetacean populations
(Oremus et al., 2015).
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FIGURE 5 | Pairwise relatedness among and between communities using the triadic likelihood (TrioML) estimator. Outliers in orange represent first-order pairwise
defined with r > 0.3811 (percentage of those pairs respective to the number of pairs available are noted above the figure). Outliers in blue represent half-sibling order
pairwise (r > 0.25).

CONCLUSION

Our study suggests that the present socio-spatial structure of
Indo-Pacific bottlenose dolphins in Perth metropolitan waters
does not reflect a genetic structure defined by a clear separation
between communities. Managers might then consider that,
should any of these communities (CS, GR, SCR, and/or
OA) become extinct, the locality of the community would
be repopulated by members of one or more of the adjacent
communities. However, the recovery of dolphin abundance to
original numbers or the re-colonization of available habitats is
likely to be hampered if the cause of the community decline and
local extinction in the first place is not correctly identified and
managed accordingly (Irwin and Würsig, 2004; Nichols et al.,
2007). Therefore, each community should still be considered
a distinct ecological unit to conserve based on the available
information on anthropogenic stressors and that presented here,
as well as in Chabanne et al. (2017a).

The lack of fine-scale genetic structure should not lead to the
conclusion that no population structure exists [e.g., Louis et al.
(2018) and Giménez et al. (2018)]. The discrete social and spatial
parameters, the long-term residency of the communities and the
higher relatedness found within than between communities still
support community-specific management actions (Chabanne
et al., 2017a). Other extrinsic factors such as resource availability,
habitat, or foraging specializations have significant explanatory
power of socio-spatial structure in dolphin populations (Krützen
et al., 2004; Möller et al., 2007; Ansmann et al., 2012;
Kopps et al., 2014; Giménez et al., 2018; Louis et al.,
2018). Any ecological differences between communities must
therefore be considered and, in some circumstances, may be
as informative as genetic differences (Taylor, 2005; Giménez
et al., 2018; Louis et al., 2018). Until further research can
be done to better understand the consequences of high

intra-community relatedness, and despite the communities
appearing to belong to a single panmictic population, the
different anthropogenic threats support the current socio-
spatial division for practical conservation management. With
increased environmental stochasticity, even comparatively large
dolphin populations have been subject to significant negative
impacts on demographic and vital rates (e.g., Wild et al.,
2019). In particular, the estuarine SCR community in Perth
waters appears highly vulnerable to rapid environmental
change and appropriate conservation measures are needed,
in addition to maintaining connectivity between it and the
coastal communities.
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