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Benthic fauna form spatial patterns which are the result of both biotic and abiotic
processes, which can be quantified with a range of landscape ecology descriptors.
Fine- to medium-scale spatial patterns (<1–10 m) have seldom been quantified in deep-
sea habitats, but can provide fundamental ecological insights into species’ niches and
interactions. Cold-water coral reefs formed by Desmophyllum pertusum (syn. Lophelia
pertusa) and Madrepora oculata are traditionally mapped and surveyed with multibeam
echosounders and video transects, which limit the ability to achieve the resolution
and/or coverage to undertake fine-scale, centimetric quantification of spatial patterns.
However, photomosaics constructed from imagery collected with remotely operated
vehicles (ROVs) are becoming a prevalent research tool and can reveal novel information
at the scale of individual coral colonies. A survey using a downward facing camera
mounted on a ROV traversed the Piddington Mound (Belgica Mound Province, NE
Atlantic) in a lawnmower pattern in order to create 3D reconstructions of the reef with
Structure-from-Motion techniques. Three high resolution orthorectified photomosaics
and digital elevation models (DEM) >200 m2 were created and all organisms were
geotagged in order to illustrate their point pattern. The pair correlation function was used
to establish whether organisms demonstrated a clustered pattern (CP) at various scales.
We further applied a point pattern modelling approach to identify four potential point
patterns: complete spatial randomness (CSR), an inhomogeneous pattern influenced
by environmental drivers, random clustered point pattern indicating biologically driven
clustering and an inhomogeneous clustered point pattern driven by a combination of
environmental drivers and biological effects. Reef framework presence and structural
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complexity determined inhabitant distribution with most organisms showing a departure
from CSR. These CPs are likely caused by an affinity to local environmental drivers,
growth patterns and restricted dispersion reproductive strategies within the habitat
across a range of fine to medium scales. These data provide novel and detailed
insights into fine-scale habitat heterogeneity, showing that non-random distributions are
apparent and detectable at these fine scales in deep-sea habitats.

Keywords: cold-water coral, point pattern analysis, structure from motion, spatial patterns, photomosaic,
landscape ecology, NE Atlantic

INTRODUCTION

Aggregations of animals and single celled organisms have
been recognised and studied for some time (Allee, 1927), in
both mobile (e.g., Parrish and Edelstein-Keshet, 1999) and
sessile species (e.g., Condit et al., 2000). Aggregations may be
driven by environmental heterogeneity (geological, physical, and
chemical) and biological factors (behaviour, dispersion method,
and reproduction), with different drivers affecting spatial patterns
at different temporal and spatial scales (Levin, 1992). Through
careful observation and quantification of faunal spatial patterns,
insights can be obtained into the underlying ecological processes
that influence the fine-scale dispersion of species. A range of
first and second order statistical tests have been developed to
assess spatial patterns as being clustered, randomly or over-
dispersed distributions (Baddeley et al., 2015). These types of
analyses using discrete point data have typically been applied to
terrestrial systems, for example, to understand tree distributions
in forests (Condit et al., 2000; Woodall and Graham, 2004; Law
et al., 2009), plant distribution in deserts (Eccles et al., 1999),
deer distribution (Plante et al., 2004), and bird nest distributions
(Melles et al., 2009; McDowall and Lynch, 2017). However, in the
marine environment, quantifying spatial faunal patterns remains
more challenging due to the technical difficulties of collecting
precise positional data of biological observations.

Recently, point pattern analyses (PPAs) have gained traction
in the study of intertidal and subtidal marine habitats, in
tandem with advancing technologies and survey capabilities. For
example, the use of image mosaicing and 3D photogrammetry
[Structure from Motion (SfM)] in subtidal and intertidal
waters has become more widespread, based on a range of
camera platforms deployed by SCUBA diving (Burns et al.,
2015), snorkelling (Leon et al., 2015; Pizarro et al., 2017),
remotely operated vehicles (ROVs) (Robert et al., 2017; Price
et al., 2019; Lim et al., 2020), autonomous underwater vehicles
(AUVs) (Friedman et al., 2012; Ling et al., 2016), unmanned
aerial vehicles (UAVs) (Casella et al., 2017; Murfitt et al.,
2017), and unmanned surface vehicles (USVs) (Raber and
Schill, 2019). The use of image mosaicing and SfM has
improved our ability to accurately register each organism’s
relative position. Using these imaging techniques, we can
assess the habitat distribution with full coverage and carry
out a census of all organisms present, which is required to
undertake PPA. PPA, for example, has been used to quantify
and characterise species-host relationships and clustering of

host sponges and associated Goby species in shallow-water
coral reefs (Lesneski et al., 2019). On an even finer scale,
single images were used to identify clustering patterns of
the acorn barnacle, Semibalanus balanoides, which was driven
by life history and competition (Hooper and Eichhorn,
2016). Edwards et al. (2017) used image mosaics to identify
various spatial patterns of scleractinian coral on a shallow-
water coral reef, citing inter-specific reproduction methods
that contributed to the observed clustered patterns (CPs). In
deep-sea environments, whilst aggregations of mobile benthic
organisms (e.g., Morgan and Baco, 2019), and sessile organisms
(e.g., Xavier et al., 2015) have been observed, quantified fine-
scale knowledge derived from PPA is lacking, owing to the
challenge and expense of collecting image mosaic datasets of
high enough quality and resolution. However, more recent
research projects using AUVs and ROVs have applied image
mosaicing techniques to assess species spatial patterns over
hectares of hydrothermal vent, sponge reef and polymetallic
nodule field habitats (Thornton et al., 2016; Meyer et al.,
2019; Simon-Lledo et al., 2019). Each of those studies revealed
species density changes and broad aggregation within the study
sites which were attributed to local environmental factors such
as mechanical disturbances, physical gradients, and geological
processes. Recently, the application of SfM has enabled the
quantification of spatial patterns in deep-sea sponges, ophiuroids,
and gorgonians, utilising PPA (Prado et al., 2019, 2020;
Mitchell and Harris, 2020).

Comparable studies of cold-water coral reef habitats focusing
on aggregations and fine-scale spatial patterns are so far rare (e.g.,
Conti et al., 2019). Cold-water corals are ecosystem engineers
and can form ecologically important biogenic reefs influencing
local biodiversity (Jensen and Frederiksen, 1992; Mortensen et al.,
1995; Costello et al., 2005; Purser et al., 2013; Henry and Roberts,
2017) by providing hard substrate and 3D structural complexity
(Buhl-Mortensen et al., 2010; Price et al., 2019). Understanding
ecological processes of cold-water coral reef habitats is important
as they are classified as “vulnerable marine ecosystems (VME)”
(United Nations General Assembly Resolution 61/105; FAO,
2009), and are sensitive to anthropogenic impacts such as fishing
(Wheeler et al., 2005a; Davies et al., 2007; Jackson et al., 2014;
Huvenne et al., 2016) and ocean acidification (Turley et al., 2007;
Hennige et al., 2015). Whilst broad-scale spatial ecological niche
analyses have been used in species distribution modelling to
interpolate and extrapolate observations over scales of metres
to 100 of kilometres (Davies et al., 2008; Dolan et al., 2008;
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Davies and Guinotte, 2011; Ross and Howell, 2013; De Clippele
et al., 2017; Bargain et al., 2018; Lo Iacono et al., 2018; Barbosa
et al., 2019; Pearman et al., 2020) linking the coral presence to
their environment, finer scale full-coverage studies have seldom
been undertaken on cold-water coral reef habitats. The scarcity
of such fine-scale data is partly due to the high flow velocities,
turbidity and complex terrain associated with cold-water coral
reefs, which make it difficult for survey platforms such as ROVs
and AUVs to navigate and collect suitable full-coverage imagery.

Nevertheless, photomosaics and 3D reconstructions have been
used to visualise and characterise scleractinian cold-water coral
habitats (Wheeler et al., 2005b,c; Lessard-Pilon et al., 2010;
Vertino et al., 2010), derive their geomorphic properties (Robert
et al., 2017, 2019; Price et al., 2019), detect colony size (Fabri
et al., 2019) and create substrate/coral cover maps (Lim et al.,
2017, 2020; Conti et al., 2019). However, so far these datasets have
not been analysed with PPA, and thus relatively little is known
about fine scale spatial organisation of reef building coral and
reef inhabitants. PPA and 1-D second order clustering statistics
of azooxanthelate corals have been undertaken, detecting CPs of
soft corals and the scleractinian reef builder Madrepora oculata
(Orejas et al., 2009; Gori et al., 2011; Prado et al., 2019) over
of tens of metres. However, these studies lacked quantitative
sub-metric information of their local spatial environment and
thus the reasons for the observed clustering, such as substrate
availability, hydrodynamics and food availability could only
be inferred. Furthermore, it is unknown how the two main
cold-water coral reef building species [Desmophyllum pertusum,
synonym: Lophelia pertusa (Addamo et al., 2016) and M. oculata]
in the NE Atlantic are organised on a fine scale. Whilst their broad
scale distributions differ slightly, their ecological niches overlap
in the NE Atlantic region and they are often found developing
reefs together and occasionally demonstrating the ability to form
“false chimaeras” and “twin colonies” (Arnaud-Haond et al.,
2017; Corbera et al., 2019). However, it is unknown how the two
species are distributed within a reef biogenic structure. Overall,
little is known about how and if organisms found in association
with reefs cluster within, toward or away from reef structures.

We addressed these knowledge gaps by applying SfM methods
to create high-resolution 3D reconstructions and orthomosaics
of a cold-water coral reef, in order to apply landscape ecological
descriptors and statistics, based on PPA. We aimed to identify
whether organisms within cold-water coral framework habitat
demonstrate a random distribution, or if local scale habitat
variation and biological clustering drives aggregation patterns.
The Piddington Mound (NE Atlantic) was chosen for this study
and the mound is dynamic having shown signs of change in
terms of coral cover over 4 years (Lim et al., 2018a; Boolukos
et al., 2019). This reinforces the urgency to fully understand these
habitats so that we can better discern and quantify human-related
degradation, due to the habitats’ vulnerability to anthropogenic
impacts, distinctly from natural variation. We tested four
complementary hypotheses (1) higher densities of associated
species are found within the reef substrate area compared to
the surrounding habitat; (2) D. pertusum and M. oculata occupy
different parts of the reef; (3) organisms biologically cluster
within habitats, in addition to environmentally driven clustering;

(4) organisms occupying the coral framework specifically cluster
in the more structurally complex areas of the reef.

MATERIALS AND METHODS

Location
The Piddington Mound is a small cold-water coral mound
(60 × 40 m laterally, 12 m in height) found in the Belgica
Mound Province (BMP) in the Porcupine Seabight, NE Atlantic
(Figure 1). The region contains many mound structures and
reefs formed by D. pertusum and M. oculata (De Mol et al.,
2002; Wheeler et al., 2007), including numerous mini-mounds,
known as the Moira Mounds (Wheeler et al., 2005b; Foubert
et al., 2011; Wheeler et al., 2011). The mini-mounds range in
height from 3 to 15 m and local currents are estimated to
reach between 34 and 40 cm s−1 (Dorschel et al., 2007; Lim
et al., 2018b), with a south to north prevailing current. The
Piddington Mound was chosen for this study as it (and the local
area) has been extensively studied, mapped and monitored at
scales from metres to centimetres (Lim et al., 2017, 2018a,b;
Conti et al., 2019). This work was undertaken as part of the
VENTuRE survey in Wheeler and Shipboard Party (2011), and
the mound was photomosaiced using a scale invariant feature
transformation algorithm (SIFT), to create a high-resolution
habitat map classified into the categories “hemipelagic sediment”,
“hemipelagic sediment with dropstones”, “live coral framework”,
“dead coral framework” and “coral rubble” (Lim et al., 2017).

Video Survey
The data were acquired during the QuERCi cruise (Wheeler
and Shipboard Party, 2015), undertaken in 2015 on RV Celtic
Explorer with the Holland 1 ROV. A 36-h ROV dive was
undertaken in order to collect HD video over the same area
presented in Lim et al. (2017) in a lawn-mower pattern. The
ROV was equipped with a vertical-downward facing HD camera
(Kongsberg Maritime OE14-502a HDTV inspection camera
recording at 1080 p) mounted to the front of the ROV frame.
The ROV was also fitted with 8× variable intensity 250 watt
halogens, 2× 400 watt DSPL CARC2 HMI and 2× 25,000 Lumen
APHOS LED lights (Cathx Ocean) to illuminate the seafloor and
2 red lasers spaced 10 cm apart to provide scale marks in the
imagery. The ROV was manoeuvred at a low altitude using a
Tritech altimeter to maintain the ROV approximately 2 m above
the seafloor and ensure organisms were observed from a constant
distance to make sure that species observed were of a consistent
minimum resolvable size throughout the survey. The survey lines
were oriented north to south where the ROV camera position
would be spaced ˜40 cm apart to collect >60% image overlap
required for SfM processing. Currents and turbidity reduced our
ability to image the entire mound and instead three areas were
mapped. Site A was located on the NE part of the mound and
spanned coral reef and sandy habitats (Figure 1D). Site B was
located on the north of the mound and spanned the flank from
the base to the top (Figure 1D). Site C was SE of the mound and
consisted predominantly of sand with some coral rubble found at
the base of the mound (Figure 1D).
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FIGURE 1 | Location map: (A) Bathymetry (contour interval 1 m) of Moira Mound region showing Piddington Mound (within black square). Black square represents
panel (C,D); (B) Regional map. Red star indicates the Location of Moira Mound region. (C) Substrate map, contour interval: 1 m (data from Conti et al., 2019);
(D) Photomosaic of Piddington Mound (data from Lim et al., 2017), with Site A, B, and C showing the areas of interests for the current study.

Structure From Motion
One image per second was extracted from the video using the
3D computer graphics software Blender (V2.78) to create a ∼2
megapixel image sequence. Images were enhanced in Photoshop
CS6, by de-interlacing and raising the shadow values to increase
exposure in the shaded areas on the periphery of the lighting and
camera field of view, improving the 2D mosaic visuals. Agisoft
Metashape (version 1.5.2; previously known as Photoscan) was
chosen to create 3D models of the reef as it has been used in
several marine habitat studies (Burns et al., 2015; Leon et al.,
2015; Bennecke et al., 2016; Robert et al., 2017; Young et al.,
2017; Bayley et al., 2019; Price et al., 2019; Lim et al., 2020),
proving to be reliable and accurate software (Burns and Delparte,
2017). High image alignment accuracy was chosen to utilise
the full resolution image. Where alignment produced artefacts
between the different survey lines, alignment was reset and added

sequentially, i.e., line by line. Once aligned, dense point clouds
were created, using low quality settings, as well as digital elevation
models (DEM) and orthomosaics. The low quality setting was
deemed sufficient as a DEM of 6–7 mm per pixel was produced.
A minimum of 25 scaling points were distributed across each of
the models based upon the laser scales (10 cm). Additionally,
several georeferencing points were added by feature matching
with the mosaic created by Lim et al. (2017) and a high resolution
multibeam echosounder dataset (Lim et al., 2018b). This method
was chosen as the navigation for this dive proved unreliable
and accumulation of positioning errors tended to occur along
each line as observed by Price et al. (2019). The models were
then optimised, and the dense clouds recreated. Finally, the
orthomosaics and DEMs were exported as geotiffs (Table 1). An
outer boundary was used to create a window for each site within
which all further analysis would be undertaken by excluding dark
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edges of the mosaics and areas where transect lines did not link
well enough. The DEMs and orthomosaics were generated at the
highest resolution (pixel size: 6–9 mm; Table 1).

Substrate Map
The orthomosaics and DEMs were projected to UTM 29N,
Datum WGS84, and derived terrain variables [vector ruggedness
measure (VRM), slope and aspect] were generated in ArcMap
10.4.1. Using the estimation scale parameter (ESP) tool in the
eCognition software (Dragut et al., 2010), a scale parameter of
300 was identified as the optimum scale value for segmentation.
The data were segmented using a multi-resolution segmentation
algorithm which merges pixels into “objects.” These objects
are created through merging of neighbouring pixels with
similar spectral properties in each of the input data layers
until a homogeneity threshold, or the value of the scale
parameter, is reached.

To classify the objects within the segmented map, two
classifiers were chosen: reef (substantial skeleton cover) and
non-reef, rather than the detailed facies classified by Lim et al.
(2017) and Conti et al. (2019). The reef class was not split
into further classes such as reef rubble and 3D framework
(as per Lim et al., 2017) due to the subjectivity of this
classification. Instead these gradations were later visualised by the
continuous rugosity measure of the VRM with a neighbourhood
of ˜10 cm, of the coral framework. Also, no differentiation
between live or dead coral was made for the classification as
live coral was manually delineated for subsequent PPA. The
segmentation layer was inspected and 150 training samples,
visually identified, were chosen for each class in each site, spread
equally across the segmented area, similar to Conti et al. (2019).
Shape (border index, area, and roundness) and pixel (mean,
maximum difference, and standard deviation of pixel values
within the objects) values for each of the layers (Red, Green, Blue,
DEM, VRM, slope, and aspect) within individual objects were
calculated. The eCognition Nearest Neighbour classification tool
was applied, which classified all objects based on their closeness
to the training samples from the values defined in the Nearest
Neighbour feature space. The classified objects were exported as
a single substrate shapefile. Using the outputs from the substrate
map in polygon format, reef and non-reef areas were isolated
and frequency histograms were generated to demonstrate the
different rugosity values in the form of VRM.

Annotation
Organisms (Table 2) were geotagged in Agisoft Metashape using
the orthomosaic unless obscured (stitch distortion, blur or high
ROV altitude), in which case the original images were used
to identify the specific location of the organism. The selection

of organisms analysed in this study were chosen based on
their abundance to ensure a statistical robustness and on the
annotators’ capability to consistently identify them (Table 2).
Some species were either too small and/or featureless (Hexadella
sp.), too mobile (fishes) or rare to consider for spatial pattern
analysis (e.g., Porania cf. pulvillus, Ceramaster sp., and Phelliactis
sp.). The minimum resolvable organism size was 20 mm. The
point of substrate attachment was chosen to geotag elongate
organisms such as Stichopathes sp., Callogorgia sp., Alcyonacea
spp., and Aphrocallistes sp. with an elongate morphology. Live
D. pertusum and M. oculata were identified by observing
extruded polyps or if the tissue was orange or white; a polygon
was drawn around the colony and the centre of the colony
tagged to utilise as point data (Edwards et al., 2017). Creating
a point pattern from these polygons was valid as all living
coral patches were small and collectively cover less than 5% of
Piddington Mound (Boolukos et al., 2019; Conti et al., 2019).
Finally, Acanthogorgia sp. and Plexauridae sp. were concatenated
to Alcyonacea spp., as the image quality and angle was not
conducive to a consistent identification between the two species.

Statistics
Three methods were used to describe and quantify the spatial
point patterns of each species, using the spatstat package
(Baddeley et al., 2015) in R-3.3.2. First, we created density plots
of the organisms using a fixed-bandwidth kernel estimate of the
intensity function. A sigma value of 1 m was used to create
the kernel density plots. The density plots were visually assessed
for affinity to regions with plentiful coral cover. Secondly, an
inhomogeneous pair correlation function (PCF) (Illian et al.,
2008; Law et al., 2009) was utilised as a multiscale descriptor of
the point pattern. The PCF (g(r)) is from the first derivative of
Ripley’s K function (Ripley, 1977), a descriptor used to quantify
the number of points expected within distance r divided by
intensity λ (Eq. 1). PCF (g(r)) reduces cumulative effects of an
expanding radius, by utilising a 2-D torus shape to define a point
registration field. This analysis describes the density of the species
at increasing distance (r) from a representative focal point, thus
providing visualisation of any clustering of the animals.

K (r) =
1
λ

E (1)

where K(r) describes the point pattern characteristics across the
scales. λ is “intensity” (number of events per unit area). E is the
number of individuals within the distance r, of a randomly chosen
event. g(r) is calculated using Eq. 2.

g (r) =
K ′(r)
2πr

(2)

TABLE 1 | Meta-data of the 3D reconstructions.

Site Number of images Total area (m2) Georeferencing error (m) Scale error (mm) DEM resolution (mm/pix) Orthomosaic resolution (mm/pix)

Site A 4497 205.622 1.212 8.528 6.36 0.795

Site B 6491 242.676 1.648 10.824 6.51 0.814

Site C 5827 253.041 0.997 13.642 6.29 0.787
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where K ′(r) is the derivative of k(r) in relation to r. The PCFs were
compared to null models representing inhomogeneous point
processes. An inhomogeneous PCF approach was undertaken as
Pearson’s X2 goodness-of-fit and visualisation of the intensity
revealed broad-scale gradients of organism distribution, likely
derived from the heterogeneity of a cold-water coral reef habitat.
An inhomogeneous PCF utilises the kernel bandwidth intensity
to offset organism clusters that may be influenced by broader
environmental drivers. A sigma value of 1 was used which was
assessed visually as we have no prior knowledge of suitable values;
subsequent analyses confirmed that this scale was sufficient for
capturing pattern features. The point patterns were compared
with 999 Monte Carlo simulations of an inhomogeneous pattern
(IP), with envelopes constructed to illustrated the 25th largest
and smallest rank, thereby encompassing 95% of null model
simulations (α = 0.05). Any deviations above the envelopes would
demonstrate clustering/aggregation of the species. Deviations
below the critical band would infer that the species are over-
dispersed, indicating their distribution is more dispersed than
expected. As the point pattern process is generated within a
defined region of interest, an edge correction is required to avoid
biases in the PCF outputs. The command “best” implemented
by spatstat was used to test each method (such as Ripley’s
isotropic edge correction and translation) to identify the most
statistically robust correction (Baddeley et al., 2015). The PCF was
undertaken for species of which more than 70 individuals were
counted within a study site.

Point pattern modelling (PPM), was deployed to quantify
clustering derived from underlying environmental parameters
and biological mechanisms, following the outline provided by
Edwards et al. (2017). We compared four species distribution
patterns: (1) complete spatial randomness (CSR), (2) organism
distribution and clustering driven by habitat availability and
suitability creating an IP, (3) biologically driven clustering

TABLE 2 | Organism densities from Site A, B, and C.

Individuals
per m2 (count)

at Site A

Individuals
per m2 (count)

at Site B

Individuals
per m2 (count)

at Site C

Alcyonacea spp. 0.31 (64) 0.21 (52) 0.06 (14)

Aphrocallistes sp. 4.36 (896) 6.15 (1493) 0.38 (96)

Anthomastus sp. 0.15 (31) 0.06 (15) 0.04 (11)

Callogorgia sp. 0.11 (22) 0.09 (22) 0.00 (1)

Cidaris cidaris 0.20 (41) 0.23 (56) 0.10 (26)

Desmophyllum
pertusum

1.37 (282) 1.46 (355) 0.06 (15)

Galatheoidea sp. 0.48 (99) 0.40 (98) 0 (0)

Gracilechinus sp.
“green”

0.1 (21) 0.09 (22) 0.10 (26)

Gracilechinus sp.
“pink”

0.13 (26) 0.11 (27) 0.01 (3)

Madrepora oculata 0.38 (78) 0.75 (181) 0.07 (17)

Psolus sp. 0.06 (13) 0.01 (2) 0.98 (249)

Stichopathes sp. 0.03 (6) 0.29 (70) 0 (0)

Zoanthidae sp. 0.22 (46) 0.27 (65) 0.02 (5)

Ordered alphabetically.

influenced by biotic processes that limit or steer dispersion,
e.g., fragmentation, leading to a homogeneous CP, and
(4) a combination of clustering driven by biological and
environmental factors leading to an inhomogeneous clustered
pattern (ICP). The four species patterns considered (CSR, IP,
CP, and ICP) directly test our hypotheses 3 and 4 by associating
species point pattern with biotic and abiotic distribution drivers.
PPMs are analogous to generalised linear models (GLM), and
input variables (environmental drivers and clustering) can be
used to improve the model where suitable. Environmental drivers
were derived from the entire DEM and classification outputs.
VRM, a known influencer of cold-water coral reef communities
(Price et al., 2019), was calculated at two scales (1) 7 mm pixel
with a 15 pixel neighbourhood size and (2) 50 cm pixel with a 3
pixel neighbourhood size, in order to account for any differences
related to the scale of rugosity (Richardson et al., 2017). Substrate
classification was used as another layer to identify if organisms
clustered toward reef substrate. Depth was used to identify if
the vertical position on the mound had an influence on point
patterns. Northness and eastness was calculated at 50 cm pixel
as a measure of aspect because exposure to a particular current
direction can influence organism distribution, especially for
groups such as suspension feeders that may rely on currents to
provide food and refresh intermediate water layers. The variables
used depended on the number of organisms available to model.
When less than 50 individuals were available, a simpler PPM
including VRM (7 mm and 50 cm), depth and substrate was used
to avoid inundating the model with too many variables. When
more than 50 individuals were counted for a specific species at
a specific study site, all variables were utilised in the model. For
D. pertusum and M. oculata point patterns, the VRM at 7 mm
pixel with 15 pixel neighbourhood which was used to represent
fine-scale rugosity, was not considered, as the rugosity was
formed by the living coral themselves. The VRM calculated at
50 cm pixel was retained to account for the possibility that wider-
scale underlying rugosity is likely to influence habitat suitability
for live patches of reef-building coral, by baffling current velocity
(Mienis et al., 2019), a known influencer of feeding efficiency and
polyp behaviour (Orejas et al., 2016). The model input variables
considered are summarised in Table 3. The models were then
treated with a stepwise, drop one procedure to identify the model
with the lowest Akaike information criterion (AIC) value, which
was used to represent an IP driven by environmental variables.

TABLE 3 | The variables considered in the PPM procedures.

Variable <50 individuals >50 individuals

Substrate X X

Depth X X

VRM (7 mm) X* X*

VRM (50 cm) X X

Eastness X

Northness X

Geyer’s saturation point process X

*Except for the reef building species Desmophyllum pertusum and
Madrepora oculata.
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FIGURE 2 | Mosaics of Site A. (A) Orthorectified photomosaic; (B) Classified substrate map; (C) Digital elevation model.

Benthic organism patterns can be driven by biological factors
such as reproductive methods (Edwards et al., 2017) and
competition (Hooper and Eichhorn, 2016). To infer biologically
induced clustering, interaction terms between points (i.e., the
location of an individual organism) were specified in the form
of Geyer’s saturation process (Geyer, 1999), a modification of
the Strauss process. The inclusion of a Geyer’s saturation process
in the PPM was undertaken on species that were represented
by more than 50 individuals, as fewer data inputs led to
unclear results. This technique uses the relevant point pattern
to create a density field around a given point, to a maximum
defined distance. Parameters distance (r) and saturation needs
to be specified before use in the PPM. To detect the most
appropriate suitable parameters, a maximum pseudolikelihood
estimator approach in an incremental, standardised procedure
was undertaken. An r of 0.1–1 m with increments of 0.1 m, and
saturation of 0.001 (equivalent of CSR) and 1 to 10 in increments
of 1 were tested in all combinations. The most suitable parameters
were used, based on the lowest AIC value and implemented in
the PPMs that specify biological clustering (CP) and biological
and environmentally driven clustering (ICP). The ICP model
included the Geyers clustering and all environmental variables
outlined, with a stepwise drop one procedure used to find the
most parsimonious model.

Finally, the best of the four models (CSR, IP, CP, and ICP)
determined by AIC value, was endorsed by a likelihood ratio test
for the null hypothesis (CSR) against the chosen model, unless
the CSR model was considered the best. The outputs provide
evidence for if organism distribution is influenced by the presence

of reef substrate (Hypothesis 1), if variation within the reef habitat
drives some clustering and whether there is evidence of biological
clustering (Hypothesises 3 and 4).

To further inspect how variation in the structural complexity
of the reef influenced organismal distribution within this coral
substrate, a non-parametric curve was fitted (“rhohat”). The
non-parametric estimator computes a non-parametric smoother
estimate of function (ρ) which identifies how the intensity of
points depends on a covariate (Eq. 3).

λ(u) = ρ(Z(u)) (3)

Where λ(u) is the intensity at location u and Z(u) the spatial
covariate at location u. Aphrocallistes sp. was chosen as a model
species due to its frequent occurrence on framework and its
association with variation in structural complexity was tested
at a VRM scale across 10.5 cm (7 mm pixel with 15 pixel
neighbourhood; similar to Price et al., 2019). The dependence of
ρ on VRM was statistically tested using the Berman’s Z1 test.

RESULTS

The reconstructions of the seafloor were made and exported at
their finest resolution (Table 1). Site A contained >60% coral
reef substrate cover (Figures 2A,B) with non-reef substrate (sand
and occasional dropstones) covering the eastern-most part of the
mosaic. Coral reef cover was extensive toward the shallower part
of the mound with patches more isolated at the outer boundary of
the mound (Figure 2C). At Site B, coral reef covered more than
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FIGURE 3 | Mosaics of Site B. (A) Orthorectified photomoscaic; (B) Classified substrate map; (C) Digital elevation model.

65% of the mapped area, mostly toward the top of the mound
at the south with some non-reef sandy patches toward the north
(Figure 3). Site C was located on the south-eastern flank of the
mound and had only 14% coral reef cover with the rest consisting
of non-reef substrate made up of sand and dropstones (Figure 4).
Most VRM values of coral reef substrate typically spanned from 0
to 0.6 at Sites A and B, 0–0.4 at Site C. Overall, coral reef substrate
had a greater mean VRM value at Site A and B compared to site
C (Figure 5). The highest observed VRM values were 0.8, 0.87,
and 0.76 for A, B, and C, respectively, for the coral reef substrate.
Non-reef substrate VRM represented over 80%, over 70%, and
over 80% of the pixels with VRM values between 0 and 0.05 VRM,
the lowest bin, at sites A, B, and C, respectively (Figure 5). The
majority of VRM values for non-reef substrate were below 0.1.

A total of 4,546 individuals from 13 taxa were counted and
geotagged over the three mosaiced sites (Table 2 and Figure 6).
Different densities of organisms were observed between the
mosaics (Table 2). Site C typically contained the lowest density
of species, except for Psolus sp. Site B contained nearly twice the
density of M. oculata, and 9.7 times the density of Stichopathes sp.
compared to Site A (Table 2).

A visual inspection of the density plots indicated that most
organisms showed an affinity towards the reef part of the
mosaiced areas, except for Psolus sp., which were generally low
in density at site A and B (see Supplementary Material). The
highest densities of living patches of D. pertusum and M. oculata

were located on toward the west side of the reef substrate at
Site A, toward the summit of the mound. Aphrocallistes sp. and
Alcyonacea spp. at Site A were higher in areas of coral cover
toward the west side of the site where coral reef substrate was
observed (Figure 7). Notably, typical reef associated species such
as Aphrocallistes sp. were indeed more common at the centre of
the reef, which was where the more structurally complex reef
substrate (indicated by high VRM) was located. The south part
of the reef which had low VRM, indicative of coral rubble due to
the lack of structural complexity, harboured a low density of most
species (Figure 7). M. oculata and D. pertusum appeared to have
a slightly different distribution to each other with live M. oculata
more densely aggregated toward the outskirts of the reef showing
only minor overlap with D. pertusum (Figures 7B,C). Hotspots
of Alcyonacea spp. and Stichopathes sp. were evident at Site B
(Figures 8E,F). Aphrocallistes sp. appear more spread out at site
B, though a distinct dense patch is evident at the south part
of the site (Figure 8). Like Site A, M. oculata and D. pertusum
density hotspots were generally located in different places. It
appears that D. pertusum tends to cluster toward the top of the
mound whereas M. oculata clusters toward the base. Psolus sp.
and Aphrocallistes sp. showed distinct density hotspots at Site C
with Aphrocallistes sp. showing an affinity for coral covered areas
toward the base of the mound (Figure 9).

The inhomogeneous PCF plots revealed D. pertusum clustered
between 0.1 and 0.6 m at both sites A and B (Figures 10A,B).

Frontiers in Marine Science | www.frontiersin.org 8 March 2021 | Volume 8 | Article 556313

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-556313 March 23, 2021 Time: 12:50 # 9

Price et al. Heterogeneity of Cold-Water Coral Reef

FIGURE 4 | Mosaics of Site C. (A) Orthorectified photomosaic; (B) Classified substrate map; (C) Digital elevation model.

FIGURE 5 | Histogram of all Vector Ruggedness Measure (VRM) values of all pixels in the non-reef class (grey) and coral reef class (clear) at sites A (A), B (B), and C
(C). Vertical lines indicate mean VRM values for non-reef (solid) and reef substrate (dashed).

M. oculata displayed clustered patterns up to ∼0.5 and 0.6 m
at Sites A and B, respectively (Figures 10C,D), Aphrocallistes
sp. consistently clustered at sites A and B up to approximately
0.7 m whilst clustering was restrained to approximately 0.4 m at
Site C (Figures 10E–G). There was evidence that Stichopathes sp.
clustered at site B at 0.1 to 0.4 m (Figure 10H) where it had a
greater density compared to site A (9.7 times, Table 2). Psolus
sp. strongly clustered up to ∼0.25 m with a second clustering
r of 0.4–0.7 m at site C (Figure 10I) where it was the most
abundant (Table 2).

Minor reconstruction errors on the Z axis observed at Site C
(Figure 4) where images did not stitch correctly, were amplified
when calculating environmental drivers from the DEM. Thus
for site C, only substrate and VRM at 7 mm pixel were
considered. VRM was included as the vertical errors remained
very localised and had little effect on the outputs. A total of
94 PPMs were created to represent the distribution patterns
(CSR, IP, CP, and ICP) of each species when possible (for
<50 individuals, only CSR and ICP were considered; Table 3),
with the lowest AIC scoring model displayed in Figure 11.
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FIGURE 6 | Close up of the photomosaic at Site B. Environmental drivers derived from the Digital Elevation Model of the same area: (B) depth, (C) northness, and
(D) Vector Ruggedness Measure (VRM) at 7 mm pixel with 15 pixel neighbourhood. Corresponding point patterns of species generated by geotagging each relevant
individual is depicted in panels (E–G) with their respective inset marked in red in panel (A).

An example of a single theoretical simulation of Aphrocallistes
sp. point pattern is depicted in Figure 11. Generally, most
species distributions were driven by environmental factors
independently (IP) with indication of additional biological
clustering for some organisms (ICP) (Figure 11). Anthomastus
sp. was the only organism to consistently show a CSR distribution
with no models indicating an influence of environmental factors

driving their distribution. No groups showed any evidence
of only biological clustering (CP) influencing the organism’s
distribution and aggregation patterns (Figure 11). Substrate
(reef or non-reef) was consistently included as a variable in
the most parsimonious environmental models (Figure 11),
providing statistical support for the visual observations from
the density plots that many species were attracted to reef
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FIGURE 7 | (A) Vector Ruggedness Measure values for reef facies at Site A. Kernel estimate of intensity plots (number of individuals per m2 and sigma = 1)
(B) Desmophyllum pertusum, (C) Madrepora oculata, (D) Aphrocallistes sp., (E) Alcyonacea spp., and (F) Anthomastus sp. for Site A. Note varying colour scale
between the different plots.

substrate. Secondly, VRM was considered a significant predictor
variable in the most parsimonious distribution models for most
organisms. The other environmental factors depth, northness,
and eastness were also considered significant predictors, however
their influence was inconsistent. The inclusion of Geyer’s

interactions supported the influence of biological clustering in
the ICP models for M. oculata, D. pertusum, Aphrocallistes sp.,
Alcyonacea spp., Stichopathes sp., Zoanthidae sp., Galatheoidea
sp., and Cidaris cidaris. Geyer’s interaction parameters specified
by the maximum pseudolikelihood indicated most clustering
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FIGURE 8 | (A) Vector Ruggedness Measure values for reef facies. Kernel estimate of intensity plots (number of individuals per m2 and sigma = 1) (B) Desmophyllum
pertusum, (C) Madrepora oculata, (D) Aphrocallistes sp., (E) Alcyonacea spp., and (F) Stichopathes sp. for Site B. The non-reef substrate is in grey. Note varying
colour scale between the different plots.

observed was within 1 m. The strongest clustering was observed
in Aphrocallistes sp., whereby the saturation of clustering was
specified at 7 and 6 for sites A and B. Further clustering
parameters utilised in the Geyers cluster process are outlined in
Figure 11.

The coral reef substrate with low VRM values appeared
unsuitable for Aphrocallistes sp., a species frequently found
within the coral reef substrate. Aphrocallistes sp. was positively
influenced by VRM, peaking at 0.3 and beyond, which is in the
upper regions of VRM values for coral substrate (Figure 12),
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FIGURE 9 | (A) Vector Ruggedness Measure values for reef facies. Kernel estimate of intensity plots (number of individuals per m2 and sigma = 1) (B) Aphrocallistes
sp., (C) Psolus sp. for Site C. Note varying colour scale between the different plots.

which was statistically supported by a Berman’s Z1 test (Z1 = 10.3;
p-value < 0.001). At site B, a similar pattern was observed
with the highest density of Aphrocallistes sp. occurring between
approximately 0.2 and 0.4 VRM which is near the upper end of
reef substrate complexity (Figure 12; Bermans Z1 test; Z1 = 6.5,
p-value< 0.001).

DISCUSSION

The majority of benthic organisms are aggregated on reef
structures with further clustering at scales below 1 m. Clustering
was partly influenced by the local features such as coral skeleton
presence, reef rugosity at multiple scales and other geomorphic
variables, and for some taxa partly by biological processes. This
study demonstrates a novel use of PPA in deep-sea ecology
through the utilisation of high resolution photomosaics and
DEMs created from ROV video, to map and analyse reef
heterogeneity and the spatial organisation of reef-building coral
and associated taxa. The statistics used have so far been typically
applied to terrestrial and shallow-water habitats and while
applied here in a cold-water coral environment, it is clear
that a similar approach can also be applied across a range of
marine environments.

The benefit of undertaking PPA is the ability to identify how
organisms are responding to variability in their habitats. The
terrain metrics derived from SfM allowed quantification of coral
framework rugosity, provided mainly by framework-building

corals D. pertusum and M. oculata. These metrics showed a wide
variety of VRM values that captured the structural complexity of
the seafloor, including from the coral rubble to the 3D framework.
Whilst the rugosity value at which coral is considered rubble
or framework remains ambiguous, the variety of VRM values
showed that coral-related geomorphic metrics span a wide range
of values. This habitat heterogeneity was first reported by Lim
et al. (2017), who observed heterogeneity of substrate facies
across the entire mound, a variable known to drive organism
distribution (Corbera et al., 2019). Here, variability in organism
distribution was determined in the form of general density trends
and clustering, that may have been driven by both environmental
and biological processes. Furthermore, the lack of consistency
between the sites in terms of live M. oculata and Stichopathes
sp. densities (Table 2), also infers different conditions between
the northern side of the mound and the north-eastern flank of
the mound, despite being located metres away from each other,
showcasing the heterogeneity of mound habitats.

Most organisms showed an affinity for the reef substrate,
supporting our prediction (Hypothesis 1) that a higher density
of certain species are found within the reef substrate compared
to the surrounding non-reef substrate. The density plots reveal
an abrupt decrease in some species densities between these
coral- and sand-dominated habitats. The abrupt change is in
contrast to mounds the northern Ionian Sea where the changes
between macrohabitats were described as gradual (Vertino et al.,
2010), showing the natural variability of habitat provision by
biogenic reefs between regions and areas. The association with
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FIGURE 10 | Pair Correlation Function results for specific species at specific study sites. Grey area represents the simulation envelope and the dashed red line
indicates the mean of the inhomogeneous null model. (A) Desmophyllum pertusum at Site A. (B) D. pertusum at Site B. (C) Madrepora oculata at Site A.
(D) M. oculata at Site B. (E) Aphrocallistes sp. at Site A. (F) Aphrocallistes sp. at Site B. (G) Aphrocallistes sp. at Site C. (H) Stichopathes sp. at Site B. (I) Psolus sp.
at Site C.
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FIGURE 11 | Single theoretical simulation of Aphrocallistes sp. distribution from Site A assuming Complete spatial randomness (CSR), Inhomogeneous point pattern
(IP), Clustering point pattern (CP), and Inhomogeneous clustering point pattern (ICP). Kernel density is plotted in the background. The models chosen for the 13
species based on the lowest AIC score are listed in the accompanying table with environmental and Geyer’s point interaction (r = distance (m), sat = saturation
threshold) parameters specified where relevant.

coral was particularly evident for sessile organisms, with the
exception of Psolus sp. which was typically found on dropstones
at Site C and of Anthomastus sp. which displayed an apparently
random distribution. The association of species and reef substrate
is unsurprising considering many sessile organisms use the
dead coral skeleton framework as the point of attachment for
stability (Henry and Roberts, 2017). These organisms may also
benefit from the localised alteration of hydrodynamics influenced
by cold-water coral reef framework (Buhl-Mortensen et al.,
2010; Mienis et al., 2019). Mobile species such as C. cidaris
and Gracilechinus spp. (see Supplementary Material) however

displayed a slightly more cosmopolitan distribution within the
mosaics, with less robust evidence of clustering, though were still
associated with reef substrate and some environmental variables.
This less defined clustering pattern seen in the density plots
could indicate that they may move from the coral structure.
However, the three urchin (C. cidaris, Gracilechinus sp. “pink,”
Gracilechinus sp. “green”) species showed associations with
rugged parts of the reef substrate at some sites (Figure 11),
possibly utilising the 3D structure (Stevenson et al., 2015).

Further clustering was evident for the reef-building corals,
supporting our predictions that D. pertusum and M. oculata
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FIGURE 12 | Estimated function ρ(VRM) giving the estimated Aphrocallistes sp. intensity as a function of Vector Ruggedness Measure at Site A (A) and B (B). Grey
represents 95% confidence bands. Bars refers to frequency as a percentage of coral substrate VRM.

would occupy different parts of the reef (Hypothesis 2), and
that organisms biologically cluster within habitats, specifically
cold-water coral reef framework, in addition to the terrain
variable driven distribution (Hypothesis 3). Live M. oculata
and D. pertusum clusters were formed distinctly from each
other (Figures 7, 8), rather than being evenly or randomly
distributed amongst each other. This pattern is likely caused
by a combination of environmental drivers, initial settling
position, growth patterns and restrictive reproductive dispersal
such as fragmentation. Similar PPM fitting methods revealed
clustering patterns indicating spatially constrained dispersal or
fragmentation of coral in shallow-water scleractinians (Edwards
et al., 2017). However, it is also known that localised abiotic
drivers may influence shallow-water and cold-water scleractinian
distribution (Dana, 1976; Orejas et al., 2009), as also shown
by our study (e.g., currents; as indicated by the importance of
aspect variables in the PPM models). The facilitative mechanisms
behind the clustered patterns observed in this study are
ambiguous, owing to a lack of knowledge on the dominant
reproductive strategy of deep-sea coral in situ at Piddington
Mound. The growth patterns of dendritic scleractinians such as
D. pertusum and M. oculata is conducive to senescence through
abandonment of the old skeleton which can lead to separate
genetically identical colonies partitioned by dead skeleton. This
process can result in so-called Wilson rings (Wilson, 1979), and is
likely a prominent driver of the patterns in the distribution of the
framework-building corals observed in our study, as both species
tended to form clusters at distances less than approximately
0.6 m. This growth pattern could be considered a biologically
driven pattern, but sustaining living parts of the colony ultimately
relies on underlying suitable conditions not measured in this
study, such as oxygen supply, water movement, sedimentation
and food supply on a sub-metric scale. Although D. pertusum and

M. oculata are successful broadcast spawners, spatially restrictive
asexual reproductive strategies in cold-water coral have been
identified, such as cloning and fragmentation (Rogers, 1999).
Dahl et al. (2012) and Le Goff-Vitry et al. (2004) demonstrated
that the predominant reproductive strategy can vary from reef
to reef and can result in a relatively high proportion of clones
within the reef. Further, it could be argued that the low coverage
of live scleractinian coral on the Piddington Mound (<5% for
the entire mound; Boolukos et al., 2019; Conti et al., 2019) is
indicative of a lack of larval supply, suitable settling sites or
survival conditions. Similar patterns of clustering were observed
in the other cold-water corals, Alyconacea spp. (“gorgonian”
octocorals) and Stichopathes sp. (antipatharian coral), at our
study site, with evidence for biological clustering at site A and
B, respectively. Comparable patterns have been noted in shallow
water gorgonians, attributed to localised environmental factors
(Yoshioka and Yoshioka, 1989). However, it is well established
that asexual reproduction is one form of reproduction (Wagner
et al., 2011) that is likely to lead to clustering, as well as philopatric
larval dispersion that has been noted in antipatharians and
gorgonians (Miller, 1998; Gori et al., 2011). Whilst localised,
favourable abiotic conditions are a prerequisite for colony
longevity and influencing fine-scale cold-water coral distribution,
it is likely growth patterns and reproductive methods are also an
underlying driver contributing to the clustering patterns of all
cold-water coral observed.

The clustering of Aphrocallistes sp., consistently observed at
all three sites, reflects previously quantified sponge hotspots on
the north, west and the peak of Piddington Mound (Conti et al.,
2019), as well as revealing finer-scale, centimetric clustering.
Similar, albeit unquantified clustering reported in previous
studies of Aphrocallistes sp. has been attributed to both asexual
reproduction and environmental drivers. Chu and Leys (2010)
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suggested that asexual budding of glass sponges and local larvae
retention may contribute to the patchy structure of sponge
reefs, although Brown et al. (2017) observed distinct, non-related
sponge colonies clustering, citing local environmental conditions
such as flow velocity and substrate availability as the drivers of
clustering, rather than cloning. We observe evidence for both
strategies whereby Aphrocallistes sp. aggregated in the more
rugged part of the coral substrate (supporting Hypothesis 4),
taking advantage of the structurally complex substrate, but the
modelling approach provided strong evidence for biologically
driven clustering as well. Several mechanisms such as enhanced
larval entrainment and settling cues in the rugged part of the
reef as well as cloning reproductive strategies may contribute
to the highly clustered patterns we observed. Aphrocallistes sp.
and colonies of scleractinians appeared to coincide with the
more structurally complex portion of the reef substrate which
may suggest a positive feedback mechanism for reef growth,
as it is likely large Aphrocallistes sp. colonies contribute to the
reef structure. Aphrocallistes sp. were found at higher densities
when the VRM was above 0.1, indicating a preference against
reef substrate with low VRM values, that likely represented reef
rubble and low-profile coral framework with minimal structural
complexity. Large colonies of Aphrocallistes sp. likely contribute
to the rugosity values observed which could not be accounted
for in the analysis, though we observed that the majority of
individuals were small in size or were not detectable in the DEM,
and likely had a limited influence. To support this observation,
we analysed lower resolution data (which smoothed the presence
of larger Aphrocallistes sp. individuals) in the same way which
yielded a similar pattern (see Supplementary Material).

Future Research
The combination of unmanned robotics and application
of terrestrial ecological analysis approaches in deep-sea
environments is progressing our understanding of fine-scale
deep-sea organism distribution. However, it must be noted that,
whilst great care was taken to avoid annotator bias, processing
of images from unmanned vehicles tends to underestimate
megafauna due to low image resolution and high camera
altitude, undermining and compromising the quality of deep-sea
datasets (Meyer et al., 2019). Further, it must be considered
that the mobile species may move between survey lines and
may have been double counted or not at all depending on the
organisms’ movement direction and speed. In fact, the ROV
light may also disperse some species and attract others directly
or indirectly to feed on light attracted prey. Future studies
should focus on collecting data for the wider area which can be
achieved by using autonomous vehicles in order to liberate the
research vessel for other valuable operations (Wynn et al., 2014),
whilst collecting hectares of photomosaics (Meyer et al., 2019;
Simon-Lledo et al., 2019) or achieving greater replication. Such
large datasets however, present challenges for the annotation
of such vast quantities of data. It is expected that machine
learning may improve our ability to rapidly generate datasets
through the annotation of images (e.g., Piechaud et al., 2019)
and the automated classification of benthic habitat, which is
becoming a more common mapping technique (Lim et al., 2021).

In addition, the mosaics presented provide an opportune dataset
for temporal studies which can inform on the natural temporal
variability of mound surface composition and coral growth
patterns. Time-scale studies are lacking in cold-water coral
habitats on a scale of years, but recent studies have shown a
decline of live coral at the Piddington Mound (Boolukos et al.,
2019) and lack of recovery following disturbance at the Darwin
Mounds (Huvenne et al., 2016).
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Supplementary Figure 1 | Images of all species. (A) Aphrocallistes sp., (B)
Desmophyllum pertusum, (C) Madrepora oculata, (D) Stichopathes sp., (E)
Psolus sp., (F) Galatheoidea sp., (G) Gracilechinus sp. “green”, (H) Anthomastus
sp., (I) Callogorgia sp., (J) Gracilechinus sp. “pink”, (K) Alcyonacea spp., (L)
Cidariscidaris, (M) Zonathidae sp.

Supplementary Figure 2 | Kernel density plots for all species at Site A.

Supplementary Figure 3 | Kernel density plots for all species at Site B.

Supplementary Figure 4 | Kernel density plots for all species at Site C.

Supplementary Figure 5 | Pair correlation function of Aphrocallistes sp. at Site A
compared to the models representing CSR, IP (Northness, Vector Ruggedness

Measure, depth and substrate), CP (Geyer’s point interaction) and ICP (Northness,
Vector Ruggedness Measure, Substrate and Geyer’s point interaction).

Supplementary Figure 6 | Pair correlation function of Desmophyllum pertusum
at Site A compared to the null models representing CSR, IP, CP, and ICP.

Supplementary Figure 7 | Estimated function ρ(VRM) giving the estimated
Aphrocallistes sp. density intensity as a function of Vector Ruggedness Measure
(VRM) at Site A. VRM was calculated at multiple resolutions and neighbourhood
scales (indicated in brackets following pixel size). Vertical solid line represents the
mean VRM value of the reef substrate.

Supplementary Table 1 | Results from chi squared goodness of fit test.
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