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Uncertainties from sampling biases present challenges to ecologists and evolutionary
biologists in understanding species sensitivity to anthropogenic climate change. Here,
we synthesize possible impediments that can constrain research to assess present
and future seagrass response from climate change. First, our knowledge of seagrass
occurrence information is prevalent with biases, gaps and uncertainties that can
influence inferences on species response to global change. Second, research on
seagrass diversity has been focused on species-level metrics that can be measured with
data from the present – but rarely accounting for the shared phylogenetic relationships
and evolutionary distinctiveness of species despite species evolved and diversified from
shared ancestors. Third, compared to the mass production of species occurrence
records, computational tools that can analyze these datasets in a reasonable amount of
time are almost non-existent or do not scale well in terms of computer time and memory.
These impediments mean that scientists must work with incomplete information and
often unrepresentative data to predict how seagrass diversity might change in the future.
We discuss these shortfalls and provide a framework for overcoming the impediments
and diminishing the knowledge gaps they generate.

Keywords: marine macrophytes, sampling biases, computational infrastructure, Alismatales, biodiversity
shortfalls, climate change

INTRODUCTION

Human activities, through fossil fuel emissions and widespread deforestation, have contributed
to increased global temperature above pre-industrial levels (IPCC, 2018). As a consequence,
global increases in temperature and atmospheric carbon dioxide can influence species by
altering their growth rates, physiological functions, sexual reproduction, distribution, community
composition, and primary productivity (Short and Neckles, 1999; Campbell et al., 2006).
Such changes in environmental climate outside species’ tolerable thresholds will cause
some species to relocate in order to stay within their tolerance zones (Bradshaw and
Holzapfel, 2001; Parmesan, 2006; Miller-Rushing and Primack, 2008; Anderson et al., 2012;
MacLean et al., 2018). For instance, species on land generally ascend to higher elevations
or latitudes as temperatures warm, but may run out of room, which can lead to local
extirpation (Parmesan et al., 1999; Freeman et al., 2018). The sensitivity and responsivity of
seagrasses or other marine species, whose distributional ranges lie at the land-sea margin and
with very different evolutionary histories may show different responses to climate change.
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Seagrasses are a major vascular plant clade of about 70
species belonging to the Alismatales, an order that includes
∼4,000 other non-marine species (Berry, 2019). They are widely
distributed across marine coastlines or estuarine environments,
often growing submerged in marine water (Hemminga and
Duarte, 2000). Seagrasses display a wide variety of morphological
diversity including turtlegrass (Thalassia testudinum) which
forms long and jointed rhizomes, rhizome matts in Posidonia,
ribbonlike leaves in eelgrass (Zostera marina), and paddle-
shaped leaves in paddle grass (Halophila decipiens) (Figure 1).
They play key ecosystem roles including primary productivity,
nutrient cycling, and carbon sequestration (Hemminga and
Duarte, 2000; Duarte, 2002; Les et al., 2002; Orth et al.,
2006a,b; McGlathery et al., 2007; Nordlund et al., 2018).
Seagrass meadows are an important nursery ground for many
invertebrates and fishes (Beck et al., 2001), and directly provide
food for marine herbivores including manatees, dugongs, and
green sea turtles (Green and Short, 2003; Larkum et al., 2006).
As threats from global climate change intensify, the impacts
across seagrass communities are mixed. Some studies have
found a decline in seagrass habitats especially in Australasia
with decline rates of about 110 km2 per year (Waycott et al.,
2009). This pattern is not true in North America and Europe
where seagrass communities are no longer in decline, but in
fact show positive trajectories in some cases (de los Santos
et al., 2019), perhaps as a result of the proliferation of seagrass
monitoring and conservation programs such as Seagrass-Watch1

and SeagrassSpotter.2 Indeed, the vulnerability to the impacts of
climate change on seagrass communities may be scale or context
dependent (Day et al., 2008).

A number of studies indicate that global climate change
can impact seagrass communities in a variety of ways. Short

1https://www.seagrasswatch.org/
2https://seagrassspotter.org/

and Neckles (1999) reviewed the potential effects of climate
change on seagrass growth rates, reproduction and spatial
distributions; Duarte et al. (2018) explored relationships between
climate change and phenotypic variation in seagrasses (including
physiological variation, propagation success, and herbivore
resistance); whereas Erry et al. (2019) used a mesocosm
experiment to assess response of a multi-trophic seagrass
ecosystem to several global change factors. The findings
overwhelmingly demonstrated that these factors in unison could
lead to deleterious effects on seagrass ecosystems if they are
unable to rapidly adapt to changes in climate. Similar trends
have been observed for specific seagrass locations e.g., Great
Barrier Reef (Waycott et al., 2007), Mediterranean (Pergent et al.,
2014), tropical Pacific Ocean (Waycott et al., 2011), and Western
Australia (Arias-Ortiz et al., 2018; Strydom et al., 2020); or
in selected species (e.g., Chefaoui et al., 2018). Other threats
to seagrass populations can be attributed to overexploitation,
physical modification, nutrient and sediment pollution, and
introduction and spread of invasive species (Zieman, 1976; Ralph
et al., 2006; Moksnes et al., 2008; Bryars et al., 2011; Dewsbury
et al., 2016). By contrast, research to elucidate effects of global
climate change on seagrass meadows and how to improve the
prediction of future risks under varying scenarios of climate
change have received less attention (Pernetta et al., 1994; Bijlsma
et al., 1995; Short and Neckles, 1999).

Here, we argue that the extension of research agenda to assess
seagrasses’ response to climate change may be constrained by at
least three factors. First, our knowledge of seagrass occurrence
information is widespread with biases, gaps and uncertainties
that can influence downstream inferences. Second, most of the
research on seagrass diversity has been focused on species-level
metrics (e.g., species richness, endemism or threat) that can be
measured with data from the present – but rarely accounting
for the shared phylogenetic relationships and evolutionary
distinctiveness of species. Species are not independent units but

FIGURE 1 | Morphological diversity of selected species of seagrasses. (A) Thalassia testudinum (turtle grass) bed with view of jointed rhizomes, San Salvador Island,
Bahamas. (B) Posidonia oceanica (Neptune grass) meadow with view of rhizome matts, Portofino, Italy. (C) Zostera marina (eelgrass) with ribbon-like blades. (D)
Halophila decipiens (paddle grass) with paddle-shaped blades. (https://commons.wikimedia.org and https://calphotos.berkeley.edu/).
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are lineages that evolve and diversify from shared ancestors
(Diniz-Filho et al., 2013). Third, compared to the mass
production of species occurrence records, computational tools
that can analyze these datasets in a reasonable amount of time
are almost non-existent or do not scale well in terms of computer
time and memory. These impediments mean that scientists must
work with incomplete information and often unrepresentative
data to predict how seagrass diversity might change in the future.
These shortfalls need be carefully recognized and remedied.
The objectives of this review are therefore to first identify the
knowledge gaps to understanding seagrasses’ response to climate
change, and secondly propose strategies and tools to overcome
these impediments.

KNOWLEDGE GAPS IN SEAGRASS
SAMPLING PRACTICES

Global change has become a central focus of modern ecology.
Yet, our knowledge of how anthropogenic drivers affect seagrass
evolutionary diversity is limited by a lack of biological data
spanning the Anthropocene that equally represents all seagrass
species. We define the Anthropocene as a period of profound
human impact on biodiversity, characterized by widespread
migration by humans as initiated by the Columbian Exchange
circa 1492 (Nunn and Qian, 2010). The vast amounts of
specimens of seagrasses deposited in herbaria can serve as a
historical lens into the ecological processes by which present-
day seagrass diversity arose, are maintained, and may evolve in
the future. However, occurrence records archived in herbaria
and museums are non-randomly collected over space and time,
and thus present biases and uncertainties that can complicate
ecological inferences (e.g., Boakes et al., 2010; Meyer et al., 2016;
Daru et al., 2018; Dias Tarli et al., 2018). As a consequence, the
use of occurrence records has not fully permeated the field of
global change biology. The gap between specimen availability
and use is widening as hundreds of thousands of specimens are

being mobilized through massive digitization efforts worldwide.
We argue that sampling biases in seagrass occurrence records
can manifest in at least three ways: geographic, taxonomic,
and temporal biases (Figure 2). We distinguish between the
biases and describe how these limitations can inhibit progress in
understanding seagrass response to global change.

Biases in Geographic Sampling
Geographic bias is the disproportionate sampling of a species
in some regions of its range relative to others (Meyer et al.,
2016; Stropp et al., 2016; Daru et al., 2018; Menegotto
et al., 2019). Seagrass geographic data is commonly available
as point records or polygons. Point records are commonly
derived from major data hubs such as the Global Biodiversity
Information Facility (Edwards et al., 2000; GBIF.org, 2020),
United Nations Environment World Conservation Monitoring
Centre (UNEP-WCMC, and Short, 2020) or Ocean Biodiversity
Information Facility (OBIS) whereas polygons are derived
from the International Union for the Conservation of Nature’s
(IUCN) spatial database and United Nations Environment
World Conservation Monitoring Centre (Green and Short,
2003; UNEP-WCMC, and Short, 2020). Despite the fundamental
importance of occurrence data for species distribution modeling,
the sampling of seagrasses across most of their ranges are
underrepresented in collections (Green and Short, 2003). For
instance, extensive spatial gaps exist across regions that harbor
high concentrations of seagrass diversity, especially in Western
and Central Indo-Pacific, whereas Europe and North America
are well sampled (Figure 3) (see Methods and Source Data file in
Supplementary Material for details). This pattern is consistent
with previous studies. For example, Waycott et al. (2009) found
wide sampling gaps in West Africa, northeast South America,
and the northwest Pacific area of the United States, most of
which correspond to seagrass areas of endemism. Moreover,
since biogeographic patterns are scale dependent, varying along
spatial grains, geographic extents and taxonomic treatments

FIGURE 2 | Interactions between sampling biases indicating the extent of influence of each bias on the others. Taxonomic bias affects all other biases whereas
arrows indicate direction of influence between the other two. However, all three types of biases ultimately reflect the personal preferences, biases, and proclivities of
collectors.
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FIGURE 3 | Gaps in geographic sampling of seagrasses. (A) Seagrass
occurrence records showed strong density of sampling in temperate regions,
while sampling within the tropics was generally low. (B) Geographic
distribution of seagrass known species richness based on expert delineated
polygons. Source data are provided as a Source Data file.

(Jarzyna and Jetz, 2018; Daru et al., 2020a; GBIF.org, 2020),
the extent to which geographic biases in seagrass sampling
vary with spatial extent, grain size and taxonomic treatment
remains poorly explored. However, it has been predicted that as
grain size decreases, the knowledge gap in geographic sampling
correspondingly increases (Hortal et al., 2015).

The mismatch between observed seagrass diversity and maps
of survey efforts can be attributed to several factors: (1) knowing
data exists in the first place and where it is, (2) harvesting
data collected in native languages not common to science, (3)
getting permission to access data collected under commercial
license or from uncooperative governments, (4) validating data
both spatially and taxonomically, (5) the difficulty in sampling
specimens especially species in remote and inaccessible waters
e.g., Halophila decipiens occurring >70 m deep in the Central
Indo-Pacific (Short et al., 2007) or large parts of Northern
Australia that are only accessible by helicopter, (6) lack of reliable
research infrastructure e.g., West Papua and Papua New Guinea,
(7) un-inhabited reef lagoons in large parts of the tropics and
Western Pacific, (8) the cost of gathering long-term data (Wolfe
et al., 1987), (9) perhaps a reversing trend of seagrass loss in
Europe, North America, and subtropical Atlantic, e.g., increasing

population trends in Cymodocea nodosa (Schäfer et al., 2021),
Zostera marina and Zostera noltei (de los Santos et al., 2019;
Guerrero-Meseguer et al., 2021), and (10) budget constraints for
seagrass research. If seagrass species observations are made near
accessible areas e.g., seaports, harbors or marine research stations,
their application in analysis of species distribution modeling can
compromise model performance (Kadmon et al., 2004; Lobo and
Tognelli, 2011; Bystriakova et al., 2012; Kramer-Schadt et al.,
2013; Varela et al., 2014). In practice, this means that most
observations only reflect the climate space of accessible areas
(e.g., Daru, 2021), and correspondingly areas of human activities
where surface temperatures are higher than in surrounding
natural areas (Kalnay and Cai, 2003). Additionally, regions
known to contain seagrass meadows (e.g., Canada, Indonesia,
and Russia) have inadequately mapped distributions, while other
currently mapped regions most likely only represent a small
portion of seagrass diversity (McKenzie et al., 2020). Targeting the
places that are underrepresented in future collecting expeditions
could remedy these limitations and aid in evaluating how
species are responding to recent and future environmental
change across biomes.

Biases in Temporal Sampling
The sampling of seagrasses can manifest as temporal bias –
the unbalanced collecting of specimens in some years or parts
of a given year. This can influence conclusions drawn from
analyses of such non-randomly sampled collections records
(Syfert et al., 2013). Temporal data is increasingly used in
a wide range of applications in ecology and evolutionary
studies including tracking changes in phenology – the timing
of seasonal events such as flowering, leafing, and fruiting –
and monitoring the spread of invasive species (Iler et al.,
2013; Veeneklaas et al., 2013; Daru et al., 2019; Meerdink
et al., 2019). Yet, while there is general agreement that climate
change can influence phenological patterns by disrupting the
timing of life cycle events and consequently drive changes in
fitness and population demography (Ovaskainen et al., 2013;
CaraDonna et al., 2014; Thackeray et al., 2016; Kharouba
and Wolkovich, 2020), most have been observed in terrestrial
species and to a lesser extent in marine flowering plants. In a
meta-analysis of GBIF occurrence records over the course of
250 years (1770–2020) to understand the nature and evolution
of seagrass sampling (GBIF.org, 2020), sparser records were
observed in earlier years and high collection densities between
the 1900s and present-day (Figure 4). Although over the 250-
year time span, occurrence data was absent for a total of
131 years. Seasonally, seagrass specimens were overwhelmingly
biased toward spring and summer months (regardless of
hemisphere location) for most marine ecoregions including
Temperate Southern Africa, Temperate Australasia, Temperate
Northern Pacific, and Temperate Northern Atlantic (Figure 5;
see Methods and Source Data file in Supplementary Material).
Interestingly, these periods are spanned by comprehensive time
series data of ocean climate including sea temperature and
salinity (Benway et al., 2019). This means that the time series
of changes in seagrass communities across years or seasons
are fewer than the available climate records (cf. Duarte, 1992).
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FIGURE 4 | Temporal sampling of seagrasses reveal drastic increases midway
throughout the 18th century. Temporal data from seagrass records over the
course of three centuries (roughly 1700–2000) display dense amount of
sampling records accumulating after 1850. Each dot represents an
occurrence record of a seagrass in Julian day of year format, with the color
gradient representing recent years with colder color tones, and older years
represented by warmer color tones. These data also support the previously
identified global trend of increased sampling occurring predominantly within
the summer months (early June through early October). Source data are
provided as a Source Data file.

As a consequence, the non-random sampling of seagrasses in
some years or parts of a year could mean that occurrence
records are not reliable sources of phenological change driven
by climate or population demography. If seagrasses are collected
only when it is climatically convenient coupled with lack of
reproductive structures on most specimens (Pearson et al.,
2020), botanists may miss important phenological events such
as winter bud formation, which protects the embryonic shoot
of species during development and elongation (van der Schoot
et al., 2013). Similarly, climate change can influence population
demography through range change (Hunter et al., 2010; Dalgleish
et al., 2011; Hugo, 2011; Gaillard et al., 2013; Selwood et al.,
2015) or facilitate the spread of invasive species (Hellmann
et al., 2008; Clements and Ditommaso, 2011; Vicente et al.,
2013; Hou et al., 2014; Thapa et al., 2018). However, the
skewed sampling of seagrass occurrence data suggests that
the data is insufficient to track demographic changes or
monitor spread of invasive species. We recognize that several
aspects can influence seagrass sampling across years or seasons.
For instance, some seagrass species are annuals, completing

their life cycle within one growing season (e.g., Halophila
decipiens). Other reasons include inaccessibility to most sites
in the West Indo-Pacific during monsoon times, resulting
in overrepresentation of specimens during maximum growing
season/flowering season.

Biases in Taxonomic Sampling
The sampling and collection of seagrass data may be
disproportionately higher in some taxa over others (Hortal,
2008). Taxonomic bias can manifest as phylogenetic bias and
be assessed by testing for phylogenetic signal in collection
frequency. A strong phylogenetic signal – closely related species
share similar collecting frequency – would suggest phylogenetic
bias in collections (Daru et al., 2018). Phylogenetic bias can
hamper prospects of identifying species that are climate change
indicators and those most likely to be affected by future climate
change, especially given that species’ response to climate change
tends to be phylogenetically non-random (Willis et al., 2008;
Davis et al., 2010; Davies et al., 2013). A phylogenetic analysis
of long-term monitoring data in Concord Massachusetts, for
instance, revealed a strong association between change in
abundance with flowering time response such that the response
traits are shared among closely related plant species (Willis
et al., 2008). However, taxonomically non-random collection
may mask such patterns and therefore bias conclusions of
seagrass response to climate change. These data limitations
may result from a research focus on specific seagrass lineages
over other groups or simply lack of data on some species.
For example, Coyer et al. (2013) estimated divergence times
in 20 species in the family Zosteraceae at 14.4 Ma, whereas
Dilipan et al. (2018) assessed phylogenetic relationships by
focusing on only family Hydrocharitaceae. Not only do these
clade-based approaches point to different divergence times, but
the phylogenetic reconstructions also used different gene regions
with likely different rates of evolution. Seagrass occurrence
data on GBIF tends to display a weak phylogenetic signal in
the tendency of closely related species to be sampled similarly;
with an average of ∼9 specimens per species representing most
Halophila, and ∼6–9 specimens per species representing most
Zostera, whereas Halodule and Posidonia had far fewer records
(Figure 6; see Methods and Source Data file in Supplementary
Material for details).

Another factor that can induce taxonomic bias is the lack
of comprehensive phylogeny for seagrass species. Inferring
evolutionary patterns based only on phylogeny of the taxa
within the community of interest without fully accounting
for the overall phylogenetic diversity of the entire lineage
can potentially lead to spurious results (Park et al., 2018).
The available DNA sequences of seagrasses in GenBank/EBI
are sufficient to construct a molecular phylogenetic tree for
only 55 (of 72) species (Daru and le Roux, 2016). The 17
species without available DNA sequences are often manually
grafted to the molecular tree in a multichotomy to the node
of their close relatives using a Bayesian framework (Thomas
et al., 2013). Such incomplete sampling or misplaced taxa
on the phylogeny can influence the final tree topology and
compromise rates of evolution (Nee et al., 1994; FitzJohn
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FIGURE 5 | Temporal trends in seagrass sampling are not consistent across seasons within marine ecoregions of the world (MEOWs). Temporal data from seagrass
occurrence records were converted into Julian day of year format in order to analyze trends in the monthly sampling of seagrasses for all MEOWs. The blue line
around each temporal sampling plot represents seagrass sampling density in monthly intervals over an extensive time period (1770–2019), with corresponding
temporal sampling plot for each MEOW. Seagrass sampling rates increase during summer seasons associated with northern and southern hemispheres. The central
plot provides a reference for the geographic location of each MEOW included in the analysis. Source data are provided as a Source Data file.

et al., 2009), especially when biases are also geographically
non-random (Daru et al., 2018). Even with complete DNA
sequences for all seagrass species, there are large uncertainties in
the estimation of divergence times, and unknown evolutionary
models linking phylogenies to underlying ecological traits and
life history variation (Diniz-Filho et al., 2013). Moreover, the
polyphyletic nature of seagrasses, drawing from several lineages
within the Alismatales, might also compound our understanding
of phylogenetic sampling biases.

The aforementioned sampling biases can combine with
each other in several ways (Figure 2). Taxonomic bias can
influence all other biases because it reflects knowledge gaps
on the fundamental unit of ecology and evolutionary biology.
Geographic bias is strongly influenced by temporal bias as limited
accumulation of data over time can alter accurate estimations
of species’ range size or population demographic history (Pybus
et al., 2000; Drummond et al., 2005). Similarly, geographic bias
can compromise estimates of species’ phenological response
to climate change or demographic change, owing to lack of
geographical coverage in many regions (Poelen et al., 2014).
Ultimately, these sampling biases are human artifacts such that

any personal preferences, biases, and proclivities of collectors can
greatly skew our understanding of seagrass diversity.

GAPS IN KNOWLEDGE OF SEAGRASS
EVOLUTIONARY DIVERSITY

Understanding what drives variation in the distribution of
biodiversity can provide insights into the ecological and historical
processes underlying community assembly (Cavender-Bares
et al., 2009) and for prioritizing conservation (Kreft and Jetz,
2010; Holt et al., 2013; Daru and le Roux, 2016). However,
data gaps in the sampling of seagrasses (as outlined above)
can influence estimates of broad-scale patterns and underlying
processes (e.g., extinction, speciation and niche conservatism).
Traditionally, identifying broad-scale patterns in seagrasses has
been based on species-level metrics (e.g., species richness, and
endemism) (Short et al., 2007; Mtwana Nordlund et al., 2016;
Duffy et al., 2019). Although indispensable in providing baseline
biodiversity knowledge, these metrics alone fail to detect the
substantial evolutionary and conservation implications captured
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FIGURE 6 | Phylogenetic bias in seagrass sampling. Phylogenetic distribution of the number of specimens sampled per seagrass species to assess the tendency of
closely related species to be similarly collected. No statistically significant phylogenetic signals were detected, although there was slight favoring for sampling of the
Thalassia, Enhalus, and Halophila genera over other seagrass genera. Source data are provided as a Source Data file.

by the shared phylogenetic relationships and evolutionary
distinctiveness of species (Mace et al., 2003; Redding and
Mooers, 2006; Cadotte, 2013). Recent approaches harmonized
metrics that consider evolutionary components, for example,
phylogenetic diversity (Faith, 1992), evolutionary distinctiveness
(Redding and Mooers, 2006), phylogenetic endemism (Rosauer
et al., 2009), or a combination of these metrics. As pressures
from climate change induced by anthropogenic activity mount,
we will eventually observe range shifts and losses that can
erase unique evolutionary history (Waycott et al., 2009).
There is some evidence that evolutionarily distinct temperate
seagrass assemblages might be disproportionately at risk of
extinction (Daru et al., 2017a), which could elevate losses of
phylogenetic diversity (Redding et al., 2008). However, the
associated directionality of species’ responses to climate change
and impact on phylogenetic diversity under a scenario of non-
random extinction is unclear (Purvis et al., 2000). This means that
as global temperatures increase, tropical seagrass species might
be capable of expanding their distributions (Beca-Carretero
et al., 2020) into regions traditionally utilized only by temperate
seagrass species. This can induce selection pressures on temperate
species that can result in the loss of distinct evolutionary
diversity of seagrasses as the available climate space for temperate
species is reduced by warming temperatures. Such pressures
would inhibit our ability to understand the evolutionary history
of seagrasses, as evolutionarily distinct species are lost or
greatly reduced.

The global decline of seagrasses along a latitudinal gradient
is imbalanced, with greater declines documented in temperate
than tropical regions, requiring urgent conservation action
(Hauxwell et al., 2001; Orth et al., 2006a,b; Moksnes et al., 2008;
Bryars et al., 2011; Erry et al., 2019). The recent finding that
temperate seagrass assemblages tend to be those that are most
evolutionarily unique also warrants concern given that their
extinction would result in a greater loss of phylogenetic diversity
(Daru et al., 2017a). In this regard, the familial membership
of threatened seagrass species across marine ecoregions (see
Methods and Source Data file in Supplementary Material)
showed a tendency of threatened species in the Temperate
Northern Pacific and Tropical Eastern Pacific clustering within
similar families (Figure 7). This phylogenetic and taxonomic
structuring suggests that evolutionary history is an important
predictor of species decline, possibly reflecting a non-random
pattern of extinction risk (Purvis et al., 2000). Van Allen et al.
(2012) demonstrated the importance of life-history traits for
predicting how natural assemblages are likely to be impacted
by anthropogenic and climatic disturbances using modeled
declines in population growth rates under simulated stochastic
disturbance. With regard to species extinctions and extinction
risk, an important link has been identified between the loss of
species and the loss of unique evolutionary history (National
Research Council [NRC-US], 2008). Furthermore, the extinction
of evolutionarily distinct or paleoendemic species can elevate
losses of evolutionary history (Veron et al., 2015; Daru et al.,
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FIGURE 7 | Correlations of family ranks possessing threatened seagrass species across marine ecoregions of the world (MEOWs). The pairwise correlational
analysis assigned values based on the level of overlap of seagrass families across MEOWs that possessed seagrass species classified as threatened by the
International Union for Conservation of Nature. Low correlation values were generally reported between temperate and tropical MEOWs, indicating that the
threatened seagrass species in these regions are unique to those areas. Source data are provided as a Source Data file.

2017b). These patterns might be indicative that seagrasses
are characterized by species that subtends longer phylogenetic
branches perhaps representing once diverse clades that have been
lost through historical extinctions.

As seagrasses are increasingly threatened along their
taxonomic structure spanning several marine ecoregions, we
argue that seagrass extinctions are unlikely to be random.
Previously, Short et al. (2011) determined that roughly 14% of
seagrass species were at an elevated risk of extinction based on
the IUCN’s Red List of Threatened Species criteria. Currently,
the IUCN indicates that 31% (22 out of 72) of seagrass species
are in global decline, and 22% lack information for proper
assessment of conservation status (IUCN, 2020). Therefore, the
question of why some species persist while others decline across
regions will require an understanding of the shared evolutionary
history underlying changes in species richness and composition
(Waycott, 1999; Arnaud-Haond et al., 2010; Massa et al., 2013).
With many species’ ranges greatly reduced or unknown, it is
even more challenging to track patterns in seagrass population

successes or failures that could be indicative of their resilience
to climate change. In the absence of these key insights for the
adaptive potential of seagrass species, we are unable to fully
predict how individual species of seagrasses will respond to
drastic, widespread environmental changes.

In order to facilitate effective conservation action, it is
important to accurately determine which species are currently
at the greatest risk for extinction, and which species will be
at risk in the future. One successful approach has been to
collect expert opinion data to prioritize seagrass management
actions at regional scales (Grech et al., 2012) for species
that may be unequally impacted. To this end, phylogenetic
information can be very useful for predicting vulnerabilities
at individual or familial levels (Gallagher et al., 2015). For
example, families with a high proportion of species in global
decline include Zosteraceae, Hydrocharitaceae, Posidoniaceae,
and Cymodoceaceae; with Zosteraceae contributing about half
of the total number of species in decline (Figure 8). Therefore,
Zosteraceae and other evolutionarily similar families may
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FIGURE 8 | Taxonomic distribution of extinction risk in seagrass. Population
status of seagrasses were assessed using the classifications set forth by the
International Union for Conservation of Nature. Proportion of threatened
species was assessed as number of threatened species in a family divided by
the total number of species assessed within that family. When comparing the
proportions of threatened species per family to the calculated 95% confidence
interval, three families were significant: Zosteraceae, Posidoniaceae, and
Hydrocharitaceae. Source data are provided as a Source Data file.

possess a phylogenetic signal for extinction pressures. Families
with seagrasses having unknown population trends include
Hydrocharitaceae, Cymodoceaceae, Ruppiaceae, Posidoniaceae,
and Zosteraceae according to the IUCN (see Methods and Source
Data file in Supplementary Material for details). These groups
are of high conservation concern given that species associated
with these families may be currently threatened or already in
decline without notice. Such population trends, or lack thereof,
imply that certain species of seagrasses may be too heavily
impacted in the future to prevent complete losses or extinctions
given the rapid pace of climatic change.

SHORTFALLS IN COMPUTATIONAL
TOOLS FOR ASSESSING SPECIES
RESPONSE TO CLIMATE CHANGE

It is possible that the aforementioned impediments can be solved
by increasing biological knowledge and computational capacity.
However, compared to the mass production of occurrence
records and climate data, tools that can analyze these datasets in
a reasonable amount of time are almost non-existent or do not
scale well in terms of computer time, memory, or other resources.
This is particularly true for seagrasses that have wide geographic
ranges, colonizing every coastline. As a consequence, ecologists
and conservationists wishing to address questions related to

seagrass response to climate change may be deterred by lack of
analytical tools.

The occurrence data typically used for species distribution
modeling is generated from massive digitization of museum
records and citizen science campaigns (e.g., Seagrass-Watch, see
text footnote 1) and are often available as point records; whereas
global oceanographic variables are measured by instruments on
satellites daily (NOAA Climate.gov, 2020), which increase the
size of the dataset many-folds. This exponential increase in
species occurrences and oceanographic information inflate the
size of running time for modeling algorithms (Farley et al., 2018;
Allen et al., 2019), and consequently increases the challenges
for visualizing downstream patterns. In Figure 9, the number
of seagrass occurrence records in GBIF has increased over
time. Where there used to be access to only a few dozen
records, the rapid expansion of biodiversity occurrence data
has now made it common for there to be a few thousand
records per species (see Source Data file in Supplementary
Material). This poses computational challenges for researchers.
For analysis of species distribution modeling under different
representative concentration pathway scenarios, for instance,
researchers rapidly run into a spatial scale exponentiation
problem. At a spatial resolution of 0.5 degrees (equivalent to
∼50 km at the equator) covering the geographic ranges of
seagrasses, there are 201,600 possible pixels for the algorithm
to evaluate from. Computing probabilities across a 201,600-
possibility data frame is a challenge. Such large-scale analysis can
easily reach thousands of bytes and analysis using current tools
would be prohibitively expensive computationally.

Presently, the software that can facilitate analysis of species
distribution modeling of seagrasses includes maxent (Phillips
et al., 2017), dismo (Hijmans et al., 2011), biomod2 (Thuiller
et al., 2014), esdm (Woodman et al., 2019), ModEco (Guo and
Liu, 2010), SDMtoolbox 2.0 (Brown et al., 2017), ArcGIS, and
ARCMap. Several of these packages contain some statistical
capabilities by integrating occurrence information and climate
data. For instance, biomod2 facilitates species distribution
modeling by averaging across different methods including
generalized additive models, generalized linear models,
generalized boosting trees, maximum entropy, and random
forest (Thuiller et al., 2014). However, these packages differ in
their inferences, and analytical and computational capacity to
process the massively mobilized occurrence records spanning
tens of thousands of pixels across the globe (depending on the
measurement scale). Some of these packages are developed for
use in command-line while others are graphical user-interface
(GUI). Most packages are developed to address a specific
biological question and may have restricted analytical options
that can limit computational flexibility. Ultimately, scientists
wishing to address more complex hypotheses will have to use a
compilation of multiple computational workflows.

More recent approaches to scale existing software to
handle the exponential growth of biodiversity datasets include
developing parallel algorithms (McCallum and Weston, 2011)
and using modern computational architectures, such as multicore
systems, graphics processing units, and supercomputers
(Maruyama et al., 2011). The advantages of these methods are
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FIGURE 9 | Temporal change in the amount of seagrass occurrence records over time. Seagrass point records downloaded from GBIF were mapped over time
based on the chronological date listed in the occurrence data for each record to demonstrate that seagrass occurrences have greatly increased within recent
decades. This indicates that analyses with these data will be computationally expensive. Source data are provided as a Source Data file.

that they provide reproducible source codes. However, they
might require the user to have a good background in high
performance computing. These limitations should not detract
from exploring other outstanding questions that remained to
be addressed with the available tools: (1) What are the effects
of reduced area and increased isolation of marine habitats?
(2) Where will seagrass species disperse to under alternative
scenarios of climate change? and (3) How have anthropogenic
activities e.g., marine pollution, sedimentation, and coastal
urbanization changed the geography of seagrasses?

OVERCOMING THE IMPEDIMENTS

Seagrass occurrence records are increasingly being utilized
in biogeographical investigations and prioritizing conservation
(Valle et al., 2014; Chefaoui et al., 2018; Jayathilake and
Costello, 2018; Beca-Carretero et al., 2020; Heck et al., 2021).
As possible solutions for the geographic uncertainty, we suggest
enhanced funding for local, regional, and global inventories
such as SeagrassNet for seagrass habitats in the Western Pacific
(Short et al., 2006), Seagrass-Watch in Australasia (McKenzie
et al., 2000, 2009), ResilienSEA3 in West Africa, Texas Seagrass
Monitoring program,4 SeagrassSpotter (see text footnote 2) a
global tool for locating seagrasses, or Zostera Experimental
Network5 for eelgrass (Zostera marina). Overcoming gaps in
geographic sampling can also include collectors using best
practices for collecting and vouchering specimens such as
capturing accurate geolocations. It could also require the

3http://resiliensea.org/3
4http://www.texasseagrass.org/
5http://zenscience.org

digitization and mobilization of vouchered seagrass specimens
stored in herbaria and museums across the world. The iNaturalist
project is a platform for sharing species observations along
with geographic coordinates for terrestrial organisms and can be
leveraged for filling in the data gaps in seagrass sampling. Kew’s
Plants of the World Online portal (POWO) provides distribution
information on the seed-bearing plants of the world based on
level 3 of the Taxonomic Diversity Working Group distribution
scheme which corresponds to country borders (POWO, 2019)
and can be extended to cover seagrasses as well. High resolution
cameras attached to unmanned aerial vehicles can be deployed
to survey seagrasses in remote and inaccessible waters; however,
special permits can often be required to access some sites
(Johnston, 2019).

Species distribution models – the statistical estimation of
species geographic distributions based on only some known
occurrences and environmental conditions (Peterson et al.,
2011) – can also provide an unbiased and easily interpretable
estimate of improving representativeness and coverage of
seagrass distributions. For example, a recent species distribution
model predicts more than two-fold increase in the potential
global distribution of seagrasses (Jayathilake and Costello, 2018).
However, the accuracy of this prediction has attracted particular
scrutiny because of inconsistent measures and widespread
sampling gaps in seagrass occurrence records (McKenzie et al.,
2020). Additionally, modeling approaches can contribute other
useful measurements of seagrass meadows such as assessing
ecosystem services as well as estimating broad-scale seagrass
resources as was exemplified by Collier et al. (2021) who
used historical data to accurately predict the below-ground
biomass of five seagrass species. Because geographic scale is
an important consideration in ecological analyses (Jarzyna and
Jetz, 2018; Daru et al., 2020a), a multi-scale approach varying
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along spatial extents (local, regional and global) and grain
resolutions should be considered in assessing seagrass response
to global change and model testing. Temporal bias can be
diminished by carrying out new field surveys that are more
consistent and evenly distributed across seasons and years.
Collectors should use best practices such as capturing and
documenting accurate dates of collection. For the taxonomic bias:
increased support for marine plant taxonomy and advances in
taxonomic publications could minimize biases. Next-generation
DNA sequencing combined with bioinformatics (Taberlet et al.,
2012) will help diminish taxonomic bias such as sequencing
old herbarium specimens of very rare species such as Halodule
bermudensis. The rapid growth of large databases such as
GenBank,6 SeagrassDB (Sablok et al., 2018), and Treebase,7 allows
researchers to download available phylogenies or DNA sequences
to build their own (Morell, 1996; Piel et al., 2000; Page, 2007).
Taxonomic bias can also be reduced by targeting future collecting
in poorly sampled clades.

Improvement of analytical and computational tools is an
important priority for handling the analyses for large-scale
comparative analyses of seagrass species. For instance, the
US National Science Foundation-funded software BiotaPhy
facilitates integration, data collection and analysis by connecting
to existing data repositories such as the Open Tree of
Life, iDigBio, and Lifemapper (BiotaPhy, 2020), whereas
the open-source package sampbias allows quantification of
geographic sampling biases in species distribution data (Zizka
et al., 2020). The R software package phyloregion – designed
for biogeographic regionalization and macroecology – can
overcome some computational challenges (Daru et al., 2020b). It
contains tools for biogeographical regionalization, macroecology,
conservation, and visualizing biodiversity patterns, and has
potential application in diverse fields including evolution,
microbial diversity, systematics, ecology, phylogenetics, and
many others (Daru et al., 2020b). We expect that the proliferation
of more open-source analytical tools to greatly facilitate
comprehensive understanding of seagrass sensitivity to ecological
change driven by anthropogenic causes.

CONCLUDING REMARKS

Here, we outlined impediments that limit progress in
understanding seagrass sensitivity to global change induced by
human activities. These knowledge gaps are interconnected and
represent only few of the possible issues related to research in
6 http://www.ncbi.nlm.nih.gov/genbank
7 http://www.treebase.org

seagrass diversity and evolution. Taxonomic bias can influence
all other types of biases as it reflects knowledge gaps on the
fundamental unit of ecology and evolutionary biology. The
geographic and temporal biases are strongly related and capture
knowledge gaps about species distributions in space and time,
respectively. Even when the aforementioned impediments are
resolved, many of the critical questions about seagrass sensitivity
to global change, can be out of reach for scientists without the
right analytical tools. The recent development of efficient and
replicable computational tools, massive mobilization of natural
history collections, and increased funding for seagrass research
could remedy these shortcomings. Most of the management
tools designed for use in developed countries can be extended
to remote areas in developing countries where most seagrass
diversity resides e.g., the Central Indo-Pacific. Although research
on a single taxon or selected taxa is useful to a certain extent,
species are lineages that evolve and diversify from shared
ancestors, suggesting an integrative approach that accounts for
their shared phylogenetic relationships.
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