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We present a skillful deep learning algorithm for supporting quality control of ocean

temperature measurements, which we name SalaciaML according to Salacia the roman

goddess of sea waters. Classical attempts to algorithmically support and partly automate

the quality control of ocean data profiles are especially helpful for the gross errors in the

data. Range filters, spike detection, and data distribution checks remove reliably the

outliers and errors in the data, still wrong classifications occur. Various automated quality

control procedures have been successfully implemented within the main international

and EU marine data infrastructures (WOD, CMEMS, IQuOD, SDN) but their resulting

data products are still containing data anomalies, bad data flagged as good and

vice-versa. They also include visual inspection of suspicious measurements, which is

a time consuming activity, especially if the number of suspicious data detected is large.

A deep learning approach could highly improve our capabilities to quality assess big

data collections and contemporary reducing the human effort. Our algorithm SalaciaML

is meant to complement classical automated quality control procedures in supporting

the time consuming visually inspection of data anomalies by quality control experts. As a

first approach we applied the algorithm to a large dataset from the Mediterranean Sea.

SalaciaML has been able to detect correctly more than 90% of all good and/or bad data

in 11 out of 16 Mediterranean regions.

Keywords: deep learning, Keras, quality control, SeaDataNet, ocean data view, ocean temperature profiles

1. INTRODUCTION

The training and evaluation of our deep learning (DL) algorithm SalaciaML is based on ocean
temperature profiles provided by the SeaDataNet (SDN) data infrastructure1, whichmanages ocean
data from more than 100 data centers in Europe. The SDN infrastructure content consists of
approximately 2 million temperature and salinity datasets, which contain about 9 million ocean
profiles2.

A crucial and time demanding pre-processing of the data before inclusion into the SeaDataNet
collections is the quality control (QC) of the data. SeaDataNet ocean experts have established

1https://seadatanet.org
2https://cdi.seadatanet.org/search
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sophisticated semi-automated workflows for the QC that
comprise e.g., classical range and distribution checks (Simoncelli
et al., 2018b, 2019). The Instituto Español de Oceanografía
(IEO) has implemented a sophisticated QC procedure as an
online service3. However, the SDN central QC is still done
manually/visually by using the Ocean Data View (ODV) software
(Schlitzer, 2002). The data within the SDNdatabase have a quality
flag assigned by the data provider, that applies QC procedures
following the SDN guidelines. SDN regional data managers
perform an additional QC at basin scale for the EU marginal seas
and releases regional data collections. These quality flags will be
the labels in our supervised deep learning approach.

The visual QC is highly time consuming and with respect to
the development of more efficient and automated measurement
devices and sensors, this manual QC approach will become
critical in the future. Additionally, the SDN consortium is
planning to merge SeaDataNet data with World Ocean Database
(WOD) data (Boyer et al., 2018). In terms of consistency,
the SeaDataNet QC procedures have to be applied to the
merged WOD data, which will not be feasible without a skillful
algorithmic support. Hence the urgent need for support and
automated QC.

A large number of classical attempts to support and automate
the QC exists (e.g., Behrendt et al., 2018; Simoncelli et al.,
2018b; Bushnell et al., 2019; Gourrion et al., 2020 or the IEO
CTD Checker) and in the framework of IQuOD4 new AI
methods have been developed (Castelao, 2020). A collaboration
with the IQuOD team is ongoing in order to advance jointly
at international level on marine data quality and consequent
ocean knowledge.

A classical attempt comes from Behrendt et al. (2018) that
tried to develop a fully automated QC approach based on
sophisticated classical statistical methods like range checks,
spike detection, moving windows, robust statistics (median) etc.
Finally it turned out that a fully automatic application was not
feasible, because too many good data were removed to reach
an acceptable detection rate of the bad data, meaning that the
algorithm was too sensitive. In the end, Behrendt et al. (2018)
had to visually inspect most of the profiles to create their high
quality dataset. Similarly, Gronell and Wijffels (2008) developed
the Quality-controlled Ocean Temperature Archive (QuOTA), a
framework for semi-automatic QC. The application of the pure
automatic algorithm in Gronell and Wijffels (2008) removed
95.5% of all profiles containing bad data. The “cost” for this
accuracy for finding bad data was that the algorithm classified
17% of good profiles wrongly bad. Finally the algorithm classified
in total 32% of the data as bad, which would had needed to
undergo a visual post-QC to filter out the “real” bad. Based
on the QuOTA data, the IQuOD community is currently in
the process of performing a skill assessment using the CoTeDe
package (Castelao, 2020).

The limitations of classical algorithms are understandable due
to the high spatial and temporal variability of temperature data
as the result of a complex interplay of many forcing factors

3http://ctdcheck.ieo.es/
4http://www.iquod.org/

(i.e., heat and momentum transfer at the air-sea interface, ocean
currents, wind, and tidal effects). Although ocean temperature
profiles follow certain patterns, every profile is different. Deciding
on the quality of the data and detecting outliers requires deep
knowledge and experience with the data and in oceanography.
Hence, manual/visual QC by human experts still yields the best
results in detecting outliers and cleaning the data. Taken all this
into account it is reasonable to explore the feasibility of learning
algorithms for this task, such as AI algorithms. We are dealing
with a complex pattern or classification problem, no profile looks
like the other one, but still there are rules and physical constrains.
This has much in common with typical AI applications like e.g.,
face recognition, where those systems can identify a face from a
photo even if it has never seen this face. The system has “learned”
what a face looks like. Similarly, our SalaciaML algorithm has
“learned” how an ocean temperature profile looks like. We
understand our approach as complementary to already existing
algorithms. Instead classifying full profiles we concentrate on the
single samples within a profile. Thus the aim of SalaciaML is to
support the QC experts during the visual inspection e.g., during
a post-QC after removing gross errors, and giving hints to
potentially bad samples.

The development of an AI algorithm for ocean data QC was
possible thanks to the availability of a large quality assessed data
collection, in which each measurement has an associated Quality
Flag (QF)5, first assigned by the data provider and further verified
by the experts. Validated temperature measurements from the
SeaDataCloud Mediterranean Sea data collection (Simoncelli
et al., 2018b) have been used to train the algorithm so that
it could “learn” the features of good and bad data (Simoncelli
et al., 2018a). The original QFs have been then used to assess
the skill of the SalaciaML algorithm by comparing them with the
predicted results.

2. DATA AND QC

Validated, aggregated datasets for all EU marginal seas (Arctic,
Baltic, North Sea, North Atlantic, Mediterranean, and Black
Sea) have been delivered in the framework of the SeaDataCloud
project in the ODV collection format6. The here presented
first version of the deep learning algorithm SalaciaML is
developed for the Mediterranean region. The Mediterranean
Sea Temperature and Salinity data collection (Simoncelli et al.,
2018b) contains all open access temperature and salinity in situ
data retrieved from the SeaDataNet infrastructure at the end of
October 2017 (Simoncelli et al., 2018a). The Product Information
Document contains a detailed description of the dataset.

For this first application we considered a subset of
9, 293 temperature profiles comprising 2, 080, 698 samples
(measurements within a profile). Figure 1 shows the data subset
(both, good and bad data) distribution map and the temperature
scatter plot, in which the inlay depicts the samples density
distribution. Very few gross outliers (points outside the cloud)
can be seen and easily detected. The vast majority of “outliers” fall

5https://odv.awi.de/fileadmin/user_upload/odv/misc/ODV_QualityFlagSets.pdf
6https://www.seadatanet.org/Products/
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within the data cloud and their detection might be challenging.
The highlighted profile (red line) is shown as an example profile,
which includes good as well as bad flagged data.

Due to the overlapping, good and bad data cannot be separated
in a two dimensional depth-temperature scatter plot as shown in
Figure 1. The reason, why good and bad data samples overlap
is that we are looking on data from different locations and
environmental conditions, like for instance being close to the
coast or in open waters. Further, we are looking on data from
different seasons like summer and winter.

A high dimensional space is needed to distinguish the good
and bad data. Ocean experts do not only inspect the depth-
temperature space as seen in Figure 1, but they perform the
analysis by sub-regions, depth layers or time periods to reduce
the range of temperature variation. The experts analyze also
water salinity and density distributions and evaluate different
statistics. Another important feature to identify erroneous data
is the temperature gradient, i.e., the change of temperature with
depth (Simoncelli et al., 2018b). This is what we are exactly going
to mimic with our DL algorithm.

3. DEEP NEURAL NETWORK DESIGN

Our used data is extremely irregular. Data acquired in a single
cruise are correlated in space and time, moreover our data set
is characterized by different cruises or monitoring arrays, due
to the combination of different types of measurements from
different instruments. Our data vary in a 4D space (longitude,
latitude, depth, and time). Thus there are measurements, which
are very close in e.g., longitude, latitude, and depth, but one has
been taken in winter, one in summer, or in different years. This
yields also for the other dimensions, where we can have e.g.,
two measurement close in time, but at different locations. On
top of this heterogeneity, the 4D space is irregularly sampled
and profiles consist of different numbers of samples. Hence
we decided to use a fully connected Multi-Layer-Perceptron
(MLP) network architecture, because it is the most flexible and
simultaneously simplest first approach, which can be applied to
single samples making minimal assumptions on the data and
the underlying mappings from input to output. Other neural
network architectures exist, e.g., recurrent neural networks
(RNN) or convolutional neural networks (CNN) and exploring
their applicability to our problem is envisaged for the future,
but beyond the scope of this work. The MLP is a deep learning
neural network architecture consisting of an input layer including
the so-called features, several hidden layers, each containing
a certain number of nodes and the output layer, which in
our case, for a binary classification problem consists of two
output nodes.

Regarding the mentioned heterogeneity of the data one might
argue that it would make sense to cluster the data into collections
with similar features, e.g., a cluster containing only summer data
at a specific location and depth, and then create AI algorithms
specifically for all these clusters. While this is true to some
degree, the problem is that we would have too few data in these
clusters to train networks robustly. The training of one single

network with all data yields the most robust and skillful results,
thus we preferred generality over specificity, less accuracy but
more robustness.

One of the most important aspects in machine learning
are the input features for the algorithm, i.e., the information
about our data we feed into the model. In our case we have
started with the most basic and informative features listed in
the following:

• Depth: The depth data.
• Temperature: The raw temperature data.
• Longitude: The longitudinal position.
• Latitude: The latitudinal position.
• Season: Month.
• Temperature gradient: The change of temperature with

depth.
• Temperature gradient above: The gradient from the above

sample.
• Temperature gradient below: The gradient from the below

sample.

The temperature gradient is an important metric, because it
gives additional information about the succession of the data
and is sensitive to jumps or spikes in the data. After deciding
to use the MLP approach and defining the input features, the
size or complexity of the network has been chosen. In terms
of hyper-parameter optimization (many different architectures
have been tested) we found the best performance by using a
fully connected network of 2 hidden layers with 128 and 64
nodes. This architecture fits well to the size of our dataset, the
number of input features (8), the binary classification task and the
complexity of the problem. Above we mentioned the flexibility
of the MLP, however one important requirement to the MLP
is that we need existing input features for each sample. Thus,
at the boundaries of the profiles (top and bottom) we have no
“Temperature gradients above/below” thus we used fill values in
these cases.

4. TRAINING AND TUNING THE NETWORK

For the training of the network we use computing resources from
AWI and TU Dresden and we use the Keras libraries7 for the
implementation of the algorithm. For the sake of increasing the
computational speed during the training phase we sub-sampled
from the dataset all temperature profiles with at least one bad
sample. Additionally we excluded profiles with more than 100
bad samples, which we consider as gross errors, which is not
the target of SalaciaML. Thus, we reduced the dataset to 9, 293
profiles containing in total 2, 080, 698 samples. Regarding the
dimensions of our fully connected network (2 hidden layers, 128
and 64 nodes each), with in total 128 ∗ 64 = 8, 192 parameters
(weights), we are dealing with a quite small network compared
to the data, while often deep artificial neural networks have more
parameters than data to be trained on, and still are skillful and
generalize well (details e.g., in Zhang et al., 2016).

7https://keras.io
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FIGURE 1 | The data subset from the SeaDataCloud Mediterranean Sea data collection. Blue points (9, 293) on the map indicate the observed stations. The right

scatter plot shows the strongly overlapping of more than 2, 000, 000 temperature measurements. The red line depicts a typical profile in the cloud containing good as

well as bad data. The bottom right inlay figure shows the density of the samples.

Following the sub-sampling we divided the dataset into four
parts:

• Training data ( 55%): to be used to train the network
• Validation data ( 15%): to tune the data and avoid

under/overfitting
• Testing data ( 10%): to tune the classification thresholds
• Control data ( 20%): to assess the skill of the model

A crucial aspect for partitioning the data is to keep profiles
and distribute them into the four datasets without splitting
themselves, although the MLP approach is not based on profiles
and in the end, single data points can be fed into the model.
The reason is that if we would destroy the profiles and separate
the data samplewise, parts of a single profile can end up in all
four datasets. This means that it would happen that we train the
model with data from a certain space and time position and then
evaluate it on data from the same space and time position, i.e., the
model is trained and evaluated on the same profile. Of course it
is not the exact same data, but data, which is much to strongly
related to create a generalized model. The temperature profiles
were distributed randomly but ensuring the geographic position
to cover the whole region resembling their original distribution
in all four datasets. However, data are non homogeneous in space

and time, with more data in the northern than in the southern
Mediterranean and the data availability decreases from shallow
to the deep ocean.

The Keras library has been used for the training of the
network with the ReLU (e.g., Glorot et al., 2010) as activation
function/unit and the “Adam”8 optimizer with default settings.
During the training the cross-entropy loss between the true labels
and the predicted labels is minimized. The validation data is used
to tune the model avoiding under- and over-fitting by optimizing
the parameter called epoch number. This parameter defines the
number of Keras learning iterations on the dataset. If the epoch
number is set too low, we miss information during the training,
if it is too high we overfit the data. This means that the network
would start to misinterpret noise as a real feature, which is not
desired. Therefore, we trained the dataset using epoch numbers
from 1 to 200. Then we estimated the model loss on the “known”
training dataset and the validation dataset which has not been
used during the training, thus it is “unknown” to SalaciaML.
The model loss indicates how close the model estimations are
to the original data, thus the smaller the loss, the better the
model. Figure 2A shows the loss for the training (blue) and the

8https://keras.io/api/optimizers/adam/
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validation data (red). The longer the model learns on the training
data the better are the estimations. This is because the model
is evaluated on the same data it is trained with. The situation
is different for “unknown” data, i.e., the validation dataset (red
curves). First the loss is larger, which means that the model
is of course less skillful on unknown data. Second, the model
loss decreases (performance increases) only until approximately
125 epochs and then starts to increase again, where the model
starts overfitting the data. Normally this point defines a stopping
criterion for the training process. A common trick to increase
the model skill is to use the dropout method suggested by
Srivastava et al. (2014). The idea is a “thinning” of the network,
i.e., after every epoch we ignore a certain percentage of the
nodes randomly. Doing this, the model can learn longer without
overfitting. Sensitivity tests have shown that we reach the best
performance with a dropout of 20% and stopping the learning
after 200 epochs, as shown in Figure 2B.

Another important issue to deal with is the imbalance of
our data set, i.e., we have 99% good and 1% bad data in the
training set. The crucial point is that the Keras output layer
provides for every sample a probability between 0 and 1 being
good or bad. The default classification threshold is 0.5, which
means classifying a sample as good if the probability is smaller
than 0.5 and bad otherwise. This threshold yields very bad results
for our imbalanced data set, because it simply does not account
for the different weights of having much more good than bad
data for the network training. The following approach has been
adopted to deal with the imbalanced data. First we implemented
an oversampling technique for the bad data, which means we
exposed the bad data several times (15) to the algorithm to
increase the weight of the bad data. Additionally we used
the testing dataset (“unknown” to the algorithm) to generate
the so-called ROC curve shown in Figure 3. We perform the
classification for 6,000 thresholds between 0 and 1. For every
classification we calculate the TPR (true positive rate), i.e., the
fraction of good data classified correctly and the FPR (false
positive rate), i.e., the fraction of bad data wrongly classified
good and plot it as a blue dot in Figure 3. The area under the
curve, the so-called AUC-value yields as a criterion for the skill
of the classification with a maximum at unity. As can be seen in
Figure 3, we observed a highly skillful AUC-value of 0.952, and a
well-shaped ROC.

The optimum of the ROC is a point at TPR = 1, FPR =

0, AUC-value = 1, which means all good are flagged correctly
and there are no bad flagged wrongly, which in turn means
that all bad are correctly flagged. Every blue point of the curve
in Figure 3 is related to a classification threshold, thus we can
select the classification threshold corresponding to a ROC value
as close as possible to the top left corner, which represents an
objective optimum. However, other subjective choices can make
sense, depending on the application of the classification method.
There are two extremes of the ROC, i.e., the top right and the
bottom left. If we select a classification threshold, which yields a
ROC in the top right corner it means that we flag simply most
data as good, which yields a very high TPR, but we are making
a large error in flagging many bad falsely as good. In contrast
a classification threshold, which gives a ROC in the bottom left

corner means that we flag most of the data as bad, i.e., all bad
data are truly flagged bad, but unfortunately also many good are
flagged bad. Thus, the ROC metric can be used as a guideline
to tune the algorithm to find the best compromise between TPR
and FPR, i.e., correctly identifying as most as possible good, while
making the smallest possible error in classifying bad as good by
choosing the classification threshold yielding to the top left point
of the ROC curve, which is for our data at 0.20 instead of the
standard 0.50.
Summarizing we used the training dataset for the SalaciaML
learning procedure, i.e., tuning the network weights. We used
the validation dataset to find an optimum learning duration
regarding under- and overfitting and we used the testing

dataset to adjust the classification threshold to account for
the imbalanced number of good and bad data. Additionally
we used the dropout technique during the learning to increase
the learning phase as well as an oversampling procedure to
account for the imbalanced data. Accordingly we have tomeasure
the skill of the tuned model with completely unseen data, the
control dataset.

5. RESULTS AND INTERPRETATION

To assess the skill of the model we use the control dataset
(415, 961 samples), which again is “unknown” to SalaciaML.
Figure 4 shows the obtained results. The top left panel of
Figure 4 depicts the real bad data, i.e., the original truth from
the control dataset. The top right panel shows the bad data
classified by SalaciaML. The two bottom panels show the
real (left) and predicted (right) good data. The color scale
indicates the density of the samples, where each panel presents
different axes ranges. Thus, the density pattern of good and
bad can be compared visually. The shape and density of
the estimated flags agree astonishing well with the original
patterns. While the absolute numbers of the good flags are very
similar for the original and estimated flags, SalaciaML finds
10 times more bad classifications than actually existing in the
control dataset.

The skillful classification strength of SalaciaML applied to the
Mediterranean Sea is substantiated by the estimated confusion
matrices9 in Table 1.

The table on the left of Table 1 depicts the absolute numbers
of true positive estimates (TP), false positives (FP), true negatives
(TN), and false negatives (FN), while the right table shows
the true positive rate (TPR), i.e., the fraction of good data
classified correctly, the true negative rate (TNR), i.e., the fraction
of bad data correctly classified, the false positive rate (FPR)
which is the fraction of bad data wrongly classified good and
the false negative rate (FNR) describing the fraction of good
data wrongly classified as bad. The confusion matrices indicate
a high overall skill of SalaciaML detecting most good and
bad samples. However, the imbalance of the data, i.e., much
less bad than good data, should be kept in mind for real
applications of SalaciaML. Considering the results in Table 1

one possible option for real QC applications could be that

9https://en.wikipedia.org/wiki/Confusion_matrix
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FIGURE 2 | Loss plot with overfitting. Tuning the model by optimizing the epoch number. Blue curves: model evaluation on training dataset, red curves: evaluation on

validation data. After each learning iteration (epoch) the model loss is reduced, i.e., the model learns: (A) Loss plot with overfitting. (B) Loss plot without overfitting.

Using dropout for “thinning”.

FIGURE 3 | ROC diagram used to tune the classification threshold for our imbalanced dataset. The TPR and FPR of the model have been evaluated for 6,000

classification thresholds from 0 to 1 and the model skill is represented by the blue curve. The blue dot is the optimal classification threshold, found by maximizing the

TPR and minimizing the FPR.
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FIGURE 4 | SalaciaML results: (top left) the original bad flagged samples; (top right) the estimated bad samples; (bottom left) the original good samples; (bottom

right) the estimated good. The color scale indicates the density of the overlapping samples.

the QC experts accept the good flagged data and perform a
post-QC, visually on the bad flagged data, which represent
only ca. 11% of the data, i.e., (43, 884 + 3, 635)/415, 961 =

0.114 to create a highly correct data product. However,
the discussion on operational applications of SalaciaML is
beyond the scope of this study and will be left to follow
up projects.

Since the data are non homogeneously distributed over the
Mediterranean domain, the skill of the model has been assessed
in 16 regions (Figure 5), following the approach of Simoncelli
et al. (2018b). We applied SalaciaML to 16 regional control
datasets. We must recall that our algorithm has been trained
and tuned with the full Mediterranean training/validation/testing
datasets to benefit from being robust and general. And that it
can be applied to any data from the Mediterranean, even single
profiles or single samples. As also mentioned in section 3, one
might argue that it could make sense to train and tune 16
individual networks, one for each region. However, we tested
this approach and it turned out that we have not enough data
samples in the individual regions to train and tune these models

TABLE 1 | Confusion matrices for the optimal threshold in the control dataset.

TP = 367, 847 FP = 595

FN = 43, 884 TN = 3, 635

TPR = 0.89 FPR = 0.14

FNR = 0.11 TNR = 0.86

Left: absolute numbers, right: rates. See text for more details.

robustly. Figure 5 shows the results per sea regions. The accuracy
is shown on the y-axis, while the 16 regions are indicated on the
x-axis. Green bars show the TPR, i.e., the accuracy for the good
samples and the red bars show the TNR, the accuracy for the
bad samples.

SalaciaML is both skillful and generalizes well. Most regions
show skills in the order of 80–90%, with skills larger than 90%
in 11 out of 16 regions. Especially high skill for both (good and
bad) is observed in regions 8, 9, 15, and 16. All other regions
show moderate skills between 70 and 90%, except for region
11 (Northern Adriatic), having a weak accuracy for the good
detection and region 10 (Southern Adriatic) with a weak accuracy
for the bad classification.
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FIGURE 5 | Regional skill assessment. The accuracy for the estimation of the good (green) and the bad (red) samples for 16 Mediterranean regions.

6. SIGNIFICANCE CONSIDERATIONS

Ocean data skill assessments on sample basis are rare, which
makes it difficult to compare the accuracy observed by SalaciaML
with other methods. Even for methods based on full profiles very
few skill analyses exist. One prominent study, already mentioned
in the introduction, is that of Gronell and Wijffels (2008),
who developed the QuOTA system. Their results of applying
automatic QC algorithms are not directly comparable with our
study because they classify profiles as bad if they find at least
one bad sample within the profile, but still gives a considerable
understanding of the possibilities of state-of-the-art algorithms.
Nevertheless the general behavior of QuOTA and SalaciaML is
quite similar. QuOTA finds 95.5% of all bad profiles, but at the
same time classifies 17% of the profiles wrongly bad. In relation
to these numbers we found in total a TNR = 86% and FNR =

11% (cf. Table 1). In some Mediterranean regions we even found
TNR > 90% and FNR < 10% (cf. Figure 5). Both SalaciaML and
QuOTA are quite skillful in detecting bad data on the drawback
of being too sensitive, which is understandable, because both are
trained to find those bad data. This comparison shows that both
algorithms “play in the same league,” nevertheless we have to
keep in mind the slightly different approaches of SalaciaML and
QuOTA for interpretation of the results. Regarding the fact that
SalaciaML is a first approach, where we started with a basic set of
input features and with basic model optimizations we see a strong
potential for improvements in follow up projects.
Additionally to comparisons with already existing methods it
is crucial to estimate the significance of the algorithm itself.
The main reason for that is to exclude e.g., faults in the data,

the experiment or algorithm. To make it clear we want to rule
out that our algorithm reached the observed skill by chance.
Therefore, we performed a few simple significance tests to further
assess the skill observed with SalaciaML. A typical approach in
significance testing is to set up a null-hypothesis or null-model
and the results are tested against it. We applied three different
null-models to our data and compared their skill to the one of

SalaciaML.

1. Flag all good: A naïve classification is simply to flag all data
as good. The overall accuracy is very high (99%), however this
result is trivial, because of the imbalanced data, i.e., 99% good
and 1% bad. Hence, this approach yields 100% accuracy for
the good it gives 0% accuracy for the bad. It is clear that this

approach is useless.
2. Flag all random: A very useful check of a statistical method

is to test its performance on randomized data or behavior.

This test accounts for the skill, which can be more or less
achieved by chance. We assigned the flags good and bad
simply randomly to each sample. As expected we achieve high
accuracy (> 95%) for the good, but very weak skill in the order
of 10% for the bad.

3. Split depths: A more sophisticated null-model takes into

account prior knowledge on the QCed data and the SalaciaML
results. Most of the originally flagged bad data are located in
the upper ocean. Similarly SalaciaML flags mostly bad data in

the upper layer. Thus, regarding the fact that not much more
than flagging 10% of the whole data bad is tolerable, because

of the false negatives, we flag the upper 10% of each profile
bad and the rest good. This resembles the proportion of good
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and bad found by SalaciaML. It turned out that the accuracy
for the good is in the order of 90% and the accuracy for the

bad ranges between 20 and 50%. The example shows that this
null-model has indeed a skill, which is different from random
chance. Still the skill for the bad is not acceptable and far below
the skill provided by SalaciaML.

Our rough significance considerations show that the observed
results found by SalaciaML are far from being random or trivial.
They are even much more skillful than a null-model, which takes
into account some prior knowledge on the distribution of good
and bad data. Thus, we can clearly say that the skill of SalaciaML,
mostly between 80 and 95% for both, good and bad is significant
and cannot be achieved easily without sophisticated methods.

7. SUMMARY AND CONCLUSIONS

In the framework of the EU SeaDataCloud project we have
trained a deep learning artificial neural network with more than
2, 000, 000 temperature measurements over the Mediterranean
Seas spanning the last 100 years. The goal of the DL algorithm
SalaciaML is to support the small scale visual QC performed by
ocean experts. While semi-automated classical procedures like
range checks help to identify the gross errors in the data, not
enough skillful algorithms are available to detect erroneous small
scale features, requiring to check profile by profile and sample
by sample. SalaciaML is able to support in this difficult and
time-consuming QC task highlighting the erroneous small scale
features by assigning a bad quality flag to suspicious data. Thus,
SalaciaML gives hints to samples, which could be bad and it is
up to the QC expert to judge on these suggestions. SalaciaML
reaches high accuracies larger than 90% in identifying good or bad
data in many regions of the Mediterranean Sea, which makes it
especially useful in these regions. However, regarding the typical
imbalance of Mediterranean temperature profiles, i.e., much
more good than bad data, we recommend that the QC experts
concentrate on using only the SalaciaML bad flags as a guidance
and accept the SalaciaML good. This results in checking only
ca. 10% of the data. However, since the SalaciaML flags are widely
distributed among profiles, the QC experts have still to check
all profiles containing measurements flagged as bad. The crucial
workload reduction consists of supporting the QC by giving hints
to potentially bad data on the small scale temperature features,
which was not possible with acceptable skill until now, and might
help to find bad data, which had been overlooked otherwise.

The development of SalaciaML represents one of the first
applications of AI (together with e.g., Leahy et al., 2018;
Castelao, 2020) and deep learning for massive ocean data quality
control. We used a quite standard approach in deep learning
with a fully connected MLP architecture. To tune the network
we optimized several hyperparameters and accounted for the
imbalance of the data by oversampling and ROC classification
threshold optimization. The implemented setup, together with
the availability of a validated data collection, allowed SalaciaML
to reach satisfactory skills which make it helpful and supportive
during the QC procedure. From this experience we think
that there is quite a room for improvements, like testing

other network architectures, including more input features and
optimizing hyperparameter in more depth.

We started using the most known and available Ocean
Essential Variable, i.e., sea temperature, but it would be crucial
to test this application to other variables, such as salinity, oxygen,
nutrients like nitrate, phosphate, silicate, metals, andmuchmore.
In fact all these variables act together in complex interactions,
which involves both physical and biogeochemical processes. In
the case of a lack of certain data, promising methods exist to
estimate missing data as shown by Sauzéde et al. (2017). The
inclusion of these diversity andmanifoldness into a deep learning
system is a challenge, but the field of artificial intelligence could
be the way to handle this complexity.

Our methodology is far away from being operational and
more real applications are now needed to improve performance
and learn for an envisaged operational setup. These efforts are
now started together with the SeaDataNet QC community and
our long-term goal is to setup an operational service, providing
SalaciaML to the benefit of global ocean data and the science
community. As an additional outlook it is planned to explore
the possibilities of SalaciaML to separate “pure” good profiles
from profiles with at least one bad sample as followed by the
IQuOD community. Further hybrid approaches of combining
different SalaciaML setups or including classical pre-processing
are envisaged to be investigated in follow up projects.
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