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Nitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance.
Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater
and marine environments are still lacking, challenging inter-comparability efforts. Here
we present detailed protocols currently used by leading experts in the field to
measure water-column N2O production and consumption rates in both marine and
other aquatic environments. We present example 15N-tracer incubation experiments
in marine environments as well as templates to calculate both N2O production
and consumption rates. We discuss important considerations and recommendations
regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen
and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-
tracer addition, and (4) the choice of a fixative. We finally discuss data reporting
and archiving. We expect these protocols will make 15N-labeled N2O transformation
rate measurements more accessible to the wider community and facilitate future
inter-comparison between different laboratories.

Keywords: nitrous oxide, 15N-tracer incubations, production, consumption, rates, water-column, greenhouse gas

INTRODUCTION

Nitrous oxide (N2O) is a greenhouse gas with a 300 times higher warming potential than carbon
dioxide (Myhre et al., 2013) as well as the dominant stratospheric ozone-depleting substance
(Nevison and Holland, 1997; Ravishankara et al., 2009). One third of global natural N2O emissions
to the atmosphere are from marine environments, yet N2O production and consumption in
productive coastal waters are still not well quantified (e.g., Nevison et al., 2004). It is also unclear
how N2O cycling will respond to ongoing expansion of marine oxygen (O2) deficient zones
(Stramma et al., 2008) and climate change.

N2O production rates are estimated by tracking the transformation of a 15N-labeled
substrate (15N-NH4

+, 15N-NO2
−, or 15N-NO3

−) to the N2O product. N2O is produced by
aerobic nitrification [by either hydroxylamine oxidation, nitrifier-denitrification or a hybrid
mechanism (Trimmer et al., 2016; Stein, 2019)] or denitrification under low-O2 conditions. N2O
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consumption rates are estimated by tracking the transformation
of 15N-labeled N2O to the N2 product under anaerobic
conditions (Figure 1). N2O production during water-column
denitrification is mostly performed by prokaryotic microbes
(Prosser et al., 2020). However, eukaryotes (such as fungi, protists,
benthic foraminifera, and gromids) also contribute to N2O
production in sediments and soils (Piña-Ochoa et al., 2010;
Huang et al., 2017), but their roles in water-column processes
remains to be confirmed. Fungi have been specifically proposed to
be involved in the generation of hybrid N2O (Shoun et al., 2012).

Despite the urgent need to better constrain N2O
transformations in both marine and freshwater systems, clear
step-by-step protocols are lacking. This issue was recently raised
during the “Oceanic Methane and Nitrous Oxide Workshop:
The present situation and future scenarios!” at Lake Arrowhead
in October 2018 (Wilson et al., 2020), motivating the writing
of standard operating procedures that would facilitate future
inter-comparison efforts between different laboratories.

The Lake Arrowhead workshop was instrumental in
connecting us with people with relevant expertise in the
field. Researchers with relevant expertise were contacted and
invited to contribute to this manuscript. We also reviewed
current literature using 15N-labeled compounds to measure
N2O production and consumption rates to get an overview
of existing techniques. As part of this process, we realized
that the methodologies used are influenced by several factors,
such as specific research questions, studied ecosystems, or
available analytical equipment. Hence, we concluded that there
is not one “best method,” but several acceptable methods,
with generally only slight procedural differences. Finally,
we present techniques used by six laboratories working
in freshwater and marine environments (Michigan State
University, Princeton University, Stanford University, University
of Basel, University of South Carolina and University of

FIGURE 1 | Processes producing (in blue) and consuming (in red) N2O in the
water-column. N2O is produced from hydroxylamine oxidation (1) or
nitrifier-denitrification (2) under oxic or low-O2 conditions. Under low-O2 or
anoxic conditions, N2O is produced by denitrification (3). N2O consumption
(4) only occurs during denitrification under anoxic conditions. In the
water-column, all these processes are primarily mediated by
ammonia-oxidizing microbes and denitrifying bacteria. Figure 2 shows N2O
production by a hybrid mechanism as suggested during archaeal ammonia
oxidation (Kozlowski et al., 2016).

Southern Denmark). A draft of this manuscript was also
disseminated to the broader scientific community before
publication, including experts who could not attend the
Lake Arrowhead workshop. Our goal is to provide detailed
and community-reviewed protocols to measure water-
column N2O production and consumption rates using
15N-tracer incubations in marine and freshwater environments.
This synthesis is indispensable for new researchers trying
to reproduce these experiments but also represents the
first step toward a thorough inter-comparison of these
protocols between labs.

MATERIALS AND METHODS

The following section will explain the workflow protocols
for N2O production (Part A) and N2O consumption
(Part B) in detail. Part B is further divided into
methods #1 and #2.

Part A: N2O Production During Aerobic
Nitrification and Denitrification
Different treatments are used to measure N2O production
during aerobic nitrification (Table 1 and Figures 1, 2). Figure 3
shows the workflow for 15N-NH4

+ incubation experiments,
which could be done with or without a headspace. The
same workflow would apply for 15N-NO2

− incubations and
experiments targeting denitrification (15N-NO3

−). Adding a
headspace is strongly recommended if O2 concentrations are to
be manipulated during the incubations, by either purging the
liquid phase with inert gas to remove remnant O2 or by adding
O2 (Ji et al., 2015; Frame et al., 2017) via additions of air saturated
in situ seawater, air or pure O2 gas. Different O2 treatments
should be implemented immediately after creating a headspace.
It is also practical to add a headspace if samples are degassed
directly from the bottle during Isotope Ratio Mass Spectrometer
(IRMS) analysis (e.g., Ji et al., 2015). If O2 manipulations or
anoxic experiments are performed (Figure 3A), purging the
liquid phase (to remove O2) will also remove in situ N2O. Thus
the addition of N2O at natural abundance is highly recommended
to increase N2O concentrations above the detection limit of GC-
IRMS (typically 1–5 nmol). However, no headspace is necessary
if the O2 concentrations are not manipulated for the different
treatments and if seawater is first transferred from the bottle
to an extractor and then degassed before purge and trap and
IRMS analysis following the protocols by McIlvin and Casciotti
(2010) or Bourbonnais et al. (2017).

TABLE 1 | Different 15N-labeled substrate additions to measure N2O production
during aerobic nitrification and denitrification.

Process Treatment

Hydroxylamine oxidation 15N-NH4
+

Nitrifier-denitrification 15N-NO2
−

Hybrid 15N-NH4
+
+

14N-NO2
− or 15N-NO2

−
+

14N-NH4
+

Denitrification 15N-NO2
− or 15N-NO3

−
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FIGURE 2 | Production of 46N2O and 45N2O during 15N-labeled incubations
with 15N-NH4

+ or 15N-NO2
− (Table 1), focusing on hybrid N2O production.

Modified from Frey et al. (2020).

Supplies
Note: Items that can be substituted by other brands are marked
with a ∗.

Chemicals/Gases
- 15N tracer (>98%): NH4Cl (98.5% 15N), NaNO2 (99.2%

15N), and NaNO3 (98.5% 15N) salts∗ (NLM-467, NLM-658,
and NLM-157, Cambridge Isotope Laboratories)

- Non-labeled NH4Cl and NaNO2 salts
- Solutions of saturated HgCl2 or 50% w/v ZnCl2

- He and N2 tanks (UHP 5.0 to 4.6 grade) for purging
the liquid phase

- 1,000 ppm N2O gas at natural abundance (add only if
purging the liquid phase – see section “Purging the Liquid
Phase With He or N2 Gas”)

- O2 (UHP, 4.4 grade) gas for O2 manipulation experiments

Other Supplies
- Serum glass bottles (60–125 mL) with a 20 mm opening

diameter [Wheaton #223746 (60 mL) or #223748
(125 mL)]∗
Note: The volume of the bottles reported by the vendor
differs from the actual volume as it does not include the
neck of the bottle. For instance, the measured volume for
the 125 mL bottles is about 160 mL.

- 1 M HCl acid bath
- MilliQ water supply
- Muffle furnace
- Disposable gloves
- Plastic volumetric flasks, pipettes and pipette tips to prepare

15N-tracer solution at sea
- Glass beads (about 1 mm diameter)

Note: These are only needed for headspace-free
incubations.

- Tygon tubing (approximately 1 m length) with adaptors to
fit the Niskin bottle opening

- Gray butyl septa (20 mm) (Wheaton #20-0025)
- Aluminum crimp seals (20 mm) (Wheaton #224178-01)
- Crimper for 20 mm cap
- Decrimper for 20 mm caps

FIGURE 3 | Workflow showing 15N-NH4
+ (and 14N-N2O addition) incubation experiments to measure N2O production during aerobic nitrification with a headspace

and manipulated oxygen conditions (A) and without headspace and in situ oxygen conditions (B).
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- Plastic container to hold bottles during sampling
- Various size luer-lock gas tight glass syringes for liquid

tracer addition∗ (e.g., 1 mL Hamilton gastight syringe
model 1001 TLL, #81320; 100 µL gastight syringe model
1710 TLL, #81020) with a 25G or 23G regular bevel needle

- Non-gas-tight syringes∗, e.g., BD luer-lock tip 1 mL
(#309628), 3 mL (#309657), 5 mL (#309646), 10 mL
(#309604), and 50 mL (#309653)

- Various size needles∗: BD PrecisionGlide Regular Bevel
needles, e.g., 25G × 5/8′′ (#305122) or 23G × 3/4′′ (BD
#305143) and 25G× 1 1/2′′ (#305127) or 23G× 1 1/4′′ (BD
#305120) to inject isotopic tracers and HgCl2

- 18G, 6′′ stainless steel needle∗ (that reaches the bottom
of the bottle) for purging the liquid phase (e.g., Cadence
science #9860) or 21G × 4 3/4′′ (B Braun #4665643)
(depending on bottle size)

- Purging rack with Viton tubing∗ (e.g., 1/16′′ ID× 1/8′′ OD,
Fisher Scientific, #NC0511742) and Swagelok unions for
purging liquid phase

- Dual stage regulators, stainless steel or brass tubing,
Swagelok fittings, and mechanical flow controller (e.g.,
Porter, VCD-1000) for purging and gas transfer

- Fixed needle gastight glass syringes to inject gases∗: i.e.,
Hamilton, sample lock: 1 mL (#81356), 500 µL (#81256),
250 µL (#81156), and 100 µL (#81056)

- Incubator (or temperature-controlled room or container)
covering the in situ temperature range of the samples

- O2 probe/meter and oxygen sensor spots (Oxysense,
Pyroscience, or custom-made sensor spots as in Larsen
et al., 2016) for O2 monitoring during incubations

- 25 mm polycarbonate (Whatman nucleopore, 0.45 µm)
or GF/F (Whatman, 0.7 µm) filters∗ (e.g., Fisher
Scientific #09-874-64)

- Acid-washed syringe filter holder for filtration∗ (e.g., Pall
pressure syringe filter holder: #246800, Hach)

- Acid washed 15–50 mL Falcon conical tubes or high density
polyethylene (HDPE) bottles to store filtered aliquots for
nutrient and isotope analysis

- IRMS adapted for N2O isotope measurements (see McIlvin
and Casciotti, 2010)

- colored tape and Sharpies for sample labeling
- Notebook, log sheets, and pens

Preparation Before the Sampling Expedition

Acid Wash All Glassware.

Prepare 15NTracer and Non-labeled Salts. Pre-weigh 15N tracer
and non-labeled salts and store in acid washed small glass
vials with screw caps. Label properly. Fresh solution will be
prepared in the field.

Build Purging Rack. We recommend building a purging rack
using Viton tubing and Swagelok unions, similar to the racks
shown in part B, method #2 below.

Degas the Butyl Stoppers and Caps. Stoppers are degassed by
boiling them in purified water for 5 min and stored under vacuum
or He (see De Brabandere et al., 2012).

Transfer Natural Abundance N2O and O2 Gases. It is strongly
recommended to transfer N2O and O2 gases in to several
20 mL glass vials capped with butyl septa and aluminum
crimp seals to avoid unnecessarily shipping gas tanks to
research vessels. This should be done just before shipping
materials to the ship.

Sample Collection
Wheaton glass serum bottles should be acid-washed, rinsed with
MilliQ water, and heated for at least 4 h at 500◦C before sample
collection, to remove any organic material. Note that bottle size
varies among protocols, ranging from 60 mL (Ji et al., 2015) to
160 mL (Frame et al., 2017; Figure 4A). The ideal bottle size
should be selected based on the N2O detection limit of the IRMS
to be used for analysis.

Sample collection is done using the same procedure as for N2O
concentrations (see Wilson et al. (2018) for more detail). Briefly,
each 160 mL glass serum bottle is filled from a Niskin bottle
or pump profiling system using Tygon tubing, which is inserted
all the way to the bottom of the bottle and allowed to overflow
the bottle volume several times. The flow from the Niskin bottle
must be reduced while filling the bottles to avoid splashing. After
filling, the bottle is capped, bubble-free, with a gray butyl stopper
and aluminum seal.

For headspace-free incubations, a small glass bead (1 mm
diameter) is added to the glass serum bottles before sampling as it
facilitates mixing of the tracer at the start and preservative at the
end of the incubations.

For measurement of N2O production via aerobic nitrification,
some protocols call for sampling water from the Niskin bottles
directly into bigger containers if O2 contamination is not an
issue (e.g., 3–10 L LDPE or HDPE containers; Frame et al.,
2017). Subsampling is then done into glass serum bottles
after 15N-tracer addition. This method has the advantage of
homogenizing the seawater as well as the added 15N tracer
for each treatment, thus decreasing the standard deviation of
replicate measurements. The disadvantage is, that this procedure
introduces O2 into the samples and should not be used in low-
O2 environments.

Since seawater samples are not filtered, some particles may
be contained within incubation bottles. However, it is unclear
from studies conducted to date if particle associated activity is
adequately accounted for during the incubations (Ganesh et al.,
2014; Fuchsman et al., 2017).

Sufficient numbers of bottles should be filled at each station
and depth to enable at least duplicate measurements of each
treatment and time point (see section “Incubation” below).

Record metadata, such as Niskin bottle sampled, depth,
location, as well as a few basic data (salinity, temperature,
time bottle closed) in order to be able to directly link these
samples to databases of hydrographic data from the sampling
expedition in repositories such as BCO-DMO (Biological
and Chemical Oceanography Data Management Office). In
addition to metadata, samples should be collected from all
incubation depths for measurements of relevant geochemical
(and microbiological) parameters of the sampled water (see
section “Data Reporting and Archiving”).
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FIGURE 4 | Headspace-free filled 160 and 60 mL glass serum bottles (A), creating a headspace with a low He flow (up to 10 mL/min) (B), and 20 mL headspace in
160 mL serum bottles (12.5% headspace) and 5 mL headspace in 60 mL serum bottles (8% headspace) (C).

Headspace Introduction
If O2 concentrations need to be controlled during treatments,
a He or N2 headspace (5–25% of the bottle volume) is created
(Figures 4B,C), e.g., 3–10 mL for 60 mL bottles (Ji et al., 2015)
or 10–40 mL for 160 mL bottles (Frame et al., 2017). However, in
fully oxygenated waters a He headspace can lead to a drawdown
of O2 due to diffusion from the liquid into the headspace.
Hence, in oxygenated waters an air headspace is preferable. The
headspace is added by either flushing a 5 mL or 60 mL syringe
several times with He before injecting the desired amount of He
or N2 in the bottles using a 23G× 1 1/2′′ needle and a vent needle
(23G × 3/4′′) or by directly adding He or N2 gas with a low flow
(up to 10 mL/min) using a long needle (23G × 1 1/2′′) attached
to a 10 or 50 mL syringe as the outlet (Figure 4B).

Purging the Liquid Phase With He or N2 Gas
For incubations of anoxic waters or O2 manipulation
experiments, purging the liquid phase with He or N2 gas
prior to incubations is strongly recommended. In situ N2O is
also completely removed during this process if the volume of
the serum bottles or exetainers is exchanged 100-times (Frey
et al., 2020). In most systems, N2O production rates are not
high enough to produce sufficient N2O over a 24-h incubation
to be above detection limit of GC-IRMS analysis (typically
1–5 nmol). N2O consumption could further reduce N2O
concentrations in incubations of anoxic waters. If samples are
purged, a non-labeled (i.e., at natural abundance) N2O carrier

gas should be added back into the serum bottles to (1) lower the
15N enrichment to be within the range that can be measured by
the mass spectrometer and (2) to assure sufficient quantities of
N2O for analysis on the IRMS.

For incubations of anoxic waters or O2 manipulation
experiments, it is highly preferable to purge the liquid phase to
remove O2 introduced during sampling. For anoxic incubations,
60 mL bottles are purged with a He flow of 0.4 L/min for
15 min, exchanging the volume 100-times. 160 mL serum bottles
should be purged for 30 min at a He flow of 0.6 L/min. If a
different flow or bottle size is used, the length of purging the
liquid phase should be tested with an O2 optode and should
be adjusted accordingly. For anoxic incubations, O2 should be
removed as O2 in the nanomolar range has been shown to
influence N2O production and consumption rates (Dalsgaard
et al., 2014). Inflow needle should reach to the bottom of the
serum bottle, vent needle only needs to reach into the headspace.
Although not always possible, it is preferable to do all these
manipulations under in situ conditions i.e., in situ temperature,
and under red light (if the samples were collected from below
the euphotic zone).

Add natural abundance N2O to the samples. The amount of
natural abundance N2O added should be calculated based on
detection limit of the IRMS. The amount of N2O will thus need
to be adjusted for bigger bottles (or smaller exetainers) and also
depends on headspace volume. For instance, 100 µL of 1,000 ppm
N2O (in He) for a final concentration of 20 nmol/L N2O in the

Frontiers in Marine Science | www.frontiersin.org 5 April 2021 | Volume 8 | Article 611937

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-611937 April 19, 2021 Time: 7:26 # 6

Bourbonnais et al. Nitrous Oxide Transformation Rates

liquid phase is added in 60 mL serum bottles [57 mL liquid and
3 mL headspace, based on equilibrium concentration calculated
using the Weiss and Price (1980) solubility equation]. A 0.5 mL
fixed needle glass syringe with a 23G regular bevel needle is
flushed two times with the 1,000 ppm N2O (in He) and then
100 µL of the gas is added into the liquid phase of the sample.
Confirmation that the gas is successfully injected, and the needle
is not clogged, can be obtained by visual observation of bubbling.
Shake the bottle to obtain homogenization.

15N-Tracer Addition
The 15N tracer should be degassed with He or N2 gas before
being added directly to glass serum bottles. Tracer is added to
each incubation bottle using a glass gas tight syringe (50 µL to
1 mL) flushed several times with He. A small needle gauge (e.g.,
25G or 23G × 1 1/2′′) is preferred to preserve septa integrity.
A vent needle (23 G × 3/4′′) attached to a 5 mL syringe (plunger
removed) filled with seawater is used during tracer addition if
incubated without a headspace. It is preferable to use a vent
needle even for small volume additions of tracer (<100 µL) to
ensure reproducible tracer additions. The needle used for 15N-
tracer additions should be longer than the vent needle such that
the added tracer is not lost through the vent. Shake the bottle to
obtain homogenization.

At least one bottle per treatment should be immediately
sacrificed upon addition of the tracer for each treatment to
correct for abiotic labeled N2O production (T = 0), if any, due to
preservative addition and storage (e.g., see Ostrom et al., 2016).
This sample is also important for determining the fraction of
15N-labeled substrate at the start of the experiment.

Incubation
Replicate (preferably triplicate) samples per time point amended
with each 15N-tracer should be incubated at in situ temperature
and light level using at least three time points for up to a
48 h period. Incubating for more than 48 h is generally not
recommended as it is likely to result in significant changes to
the microbial community and activity known as “bottle effects”
(Garcia-Robledo et al., 2016).

Ideally, the concentration of O2 in the bottle is monitored over
time during the incubation using non-invasive O2 measurement
technology, such as Oxysense1, Pyroscience2 or custom-made
sensors (e.g., see Larsen et al., 2016). A sensor dot is attached
inside the bottle prior to filling, to ensure that the sensor dot
is located in the liquid phase. After injecting the tracer, the O2
concentration is measured continuously using a fiber optic pen.
This step is especially important during O2-sensitive treatments.
Separate bottles (at least one per treatment) should be used for
O2 monitoring. The lower detection limit is generally > 60 nmol
L−1 O2 for the Oxysense and Pyroscience sensors but the
custom-made trace sensor described in Larsen et al. (2016)
measure O2 concentrations as low as ∼5 nmol L−1. A lower
detection limit (nmol range) is preferable since oxygen at
nanomolar levels has been shown to influence denitrification
rates (Dalsgaard et al., 2014).

1http://www.oxysense.com/
2http://www.pyroscience.com/

Termination and Storage
In order to analyze the production rate of other dissolved
nitrogen compounds from the same incubation bottle (i.e., in
15NH4

+ treatments, 15NO2
− production rates can be determined

in the same time course bottles as the N2O production rates), two
strategies can be applied. The first one is, that before preserving
the sample, 10–40 mL (depending on bottle size) should be
withdrawn from at least one bottle per time point for each
treatment using a 10 or 50 mL syringe with a 25G needle, filtered
using polycarbonate membrane or GF/F filters, and stored at
−20◦C. The volume removed should be replaced with He or
N2. The second option is, that no sample is taken prior to
fixation and the dissolved fractions are analyzed after the gaseous
components are measured. Fixation agents (HgCl2, ZnCl2) do not
interfere with NOx box measurements (see Braman and Hendrix,
1989) nor the denitrifier and azide methods (Sigman et al., 2001;
McIlvin and Altabet, 2005; Weigand et al., 2016). Concentration
and isotopic composition measurements of dissolved inorganic
nitrogen (15N-labeled NH4

+, NO2
−, and NO3

−) are needed to
assess the labeled fraction of 15N-tracer substrates used in the
calculation of N2O production rates from each substrate (see
calculation templates in the Supplementary Material), and can
be used to assess ammonium oxidation, nitrite oxidation or
nitrate reduction rates in parallel.

Samples are preserved by adding 0.1 mL of five times
diluted saturated solution of HgCl2 or 50% (w/v) ZnCl2 to
each bottle with a 1 mL plastic syringe to arrest microbial
activity. Diluting the HgCl2 saturated solution reduces the
toxicity of the hazardous wastes without any impact on sample
preservation (e.g., see Bourbonnais et al., 2017; Casciotti
et al., 2018). Important considerations: ZnCl2 should not be
used for 15NO2

− incubations because it triggers abiotic N2O
production. It should also be noted that HCl should not be
used for N2O production experiments as N2O is produced from
abiotic NO2

− reduction under acidic and anoxic conditions
(Zhu-Barker et al., 2015).

Preserved samples should be stored in the dark and likely keep
for several months although the maximum storage time has not
been thoroughly tested. We recommend analyzing these samples
as soon as possible.

Preparation of Internal Isotope Standards for IRMS
Analysis
Internal isotope standards, to determine the atom fraction of
15N in NO2

− or NO3
−, are prepared by mixing solutions of

non-labeled NO2
− or NO3

− salts with 15N-labeled Na15NO2
or Na15NO3 (>98.5%, Cambridge isotope Laboratories) as
described in Frame et al. (2017). The isotopic composition of
NO2

− or NO3
− is measured by conversion to N2O using the

denitrifier and azide methods (Sigman et al., 2001; McIlvin and
Altabet, 2005; Weigand et al., 2016).

Alternatively, 46N2O gas (Cambridge Isotope Laboratories)
and natural abundance N2O gas can be mixed using a gas tight
syringe in different ratios to obtain a range of labeled N2O
standards for calibration. Standards should be made to span
the expected range of 15N enrichment in the samples. These
isotope standards are used to verify and/or correct the linearity
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of the IRMS and can also be used to calibrate N2O isotope
measurements for the incubation samples.

The accuracy of the internal standards can be assessed
by comparing expected (theoretical) with measured values [as
in Frame et al. (2017)]. If standard analytical precautions
are followed for preparing the dilution series, the deviation
from expected vs. measured values should allow correction for
any IRMS linearity effects. The precision can be obtained by
measuring several replicates for each dilution.

IRMS Analysis
N2O is analyzed for its concentration and isotopic composition
(masses 45/44 and 46/44) using an IRMS with a purge trap system
adapted for N2O measurements (McIlvin and Casciotti, 2010;
Ji et al., 2015; Bourbonnais et al., 2017). Briefly, the samples
are degassed directly from the bottle (e.g., Ji et al., 2015) or the
water is pumped to an online gas extractor where it is completely
degassed (McIlvin and Casciotti, 2010) before IRMS analysis. The
lower detection limit of most IRMS is typically 1–5 nmol N2O. It
should be noted that a typical IRMS can only analyze samples to
a range of about 5% 15N while some instruments are capable of
analyzing up to 99% 15N using equal collector resistors (e.g., see
Bergsma et al., 2001). Some IRMS have the capability of switching
between equal and non-equal resistors to enable analysis of both
natural abundance and enriched samples.

Rate Calculations
The equations below describe the calculations using calibrated
δ15Nsample and δ18Osample values [relative to air (AIR) and
Vienna Standard Mean Ocean Water (VSMOW), respectively]
to obtain rates of N cycling processes. See Sharp (2017) for
example calculations that convert raw sample δ15N and δ18O
values that are expressed relative to an internal reference gas to
values expressed relative to AIR and VSMOW using international
isotopic reference materials.

Incorporation of tracer during 15N incubations results in an
excess of m/z 45 and 46 N2O:

(1) Total 45N2O = 15N14N16O+ 14N15N16O+ 14N14N17O
(2) Total 46N2O = 15N15N16O+ 14N14N18O

To determine the quantities of 45N2O and 46N2O for
each sample, the measured 45/44 and 46/44 ratios are first
normalized to AIR for N and VSMOW for O:

(3) δ15Nsample = (15Rsample/15Rair − 1)× 1000
(4) δ18Osample = (18Rsample/18RSMOW − 1)× 1000
(5) 15R = [15N]/[14N]
(6) 18R = [18O]/[16O]
(7) 17R = [17O]/[16O], and 17R = [(18R/0.0020052)0.516]
× 0.0003799

where 0.0020052 is the R value for 18O in VSMOW and
0.0003799 is the mass dependent relationship between 17O and
18O (Sharp, 2017).

Because there are 2 N atoms in N2O, these isotopic ratios can
then be substituted into:

(8) 45N2O/44N2O = 2× 15R+ 17R
(9) 46N2O/44N2O = 2× 15R× 17R+ 18R+ 15R2

45N2O and 46N2O are finally calculated by converting
the calibrated molecular ratios, R, (45N2O/44N2O and
46N2O/44N2O) to moles of 45N2O and 46N2O:

(10) [45N2O] = [N2O] × [45N2O]/[44N2O] / (1 + [45N2O]/
[44N2O]+ [46N2O]/[44N2O])

(11) [46N2O] = [N2O] × [46N2O]/[44N2O] / (1 + [45N2O]/
[44N2O]+ [46N2O]/[44N2O])

Incorporation of tracer 15N into N2O over the course of the
incubation produces an excess of mass 45N2O and/or 46N2O
(calculated for each time point with Equations 10, 11). N2O
production can be calculated based on the equations for N2O
by Trimmer et al. (2016) (nmol N2O L−1 d−1) (Equations 12–
16 below).

The underlying assumptions for each treatment (Table 1 and
Figure 2) are:

(1) 15NH4
+ and unlabeled NO2

− incubations: NH4
+

oxidation (hydroxylamine oxidation) produces 46N2O
from two labeled NH4

+ (Equation 12) and some 45N2O-
labeled N2O based on a binomial distribution (Equation
13). Production of excess 45N2O indicates hybrid N2O
formation (see Figure 2 and Equation 14).

(2) 15NO2
− and unlabeled NH4

+ incubations: Nitrifier-
denitrification and denitrification both mainly produce
46N2O (Equation 12). Excess 45N2O indicates hybrid N2O
production by archaeal nitrifiers (Equation 15) or fungi
(Shoun et al., 2012).

(3) 15NO3
− incubations: Only denitrification produces 46N2O

(Equation 12).

(12) Rateexogenous = slope 46N2O× (F) −2

(13) p45N2Oexpected = slope 46N2O× 2× (1-F)× (F) −1

(14) p45N2Oexcess = slope 45N2O− p45N2Oexpected
(15) Ratehybrid = (F) −1

× [slope45N2O + 2 × slope46N2O
× (1- F)]

(16) Ratetotal = Rateexogenous + Ratehybrid

where F [15N/(15N + 14N)] is the fraction of 15N in the
substrate pool (NH4

+, NO2
−, or NO3

−), which is assumed to
be constant over the incubation time. If known, uncertainties in
F should be propagated to uncertainties in the rate calculations
(Supplementary Material, Spreadsheet N2OPR). Exogenous
refers to the conversion of externally supplied N to N2O.
Concentrations before and after tracer addition should be
measured to determine the exact addition made. The 45N2O
that is produced estimated from the binomial distribution
and the additional 45N2O that is produced through a hybrid
N2O production pathway can be disentangled using the above
equations (Trimmer et al., 2016). The reader is referred
to the calculation template in the Supplementary Material
(Spreadsheet N2OPR) for example calculations. It should be
noted that the “total rate of N2O production” and “% hybrid”
calculated here refers to the rate of N2O production and % of
hybrid from a particular labeled substrate. Care should be taken
in interpreting this as hybrid % of total N2O production if there is
substantial production of exogenous N2O from other substrates,
such as NO3

−, in parallel incubations.
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Waste Handling
HgCl2 and ZnCl2 are highly hazardous chemicals and waste
should be disposed of accordingly.

Part B: Tracer Incubations for N2O
Consumption
Two main methods are used to perform 15N-N2O incubation
experiments to measure N2O reduction rates during
denitrification (Figure 5). These methods are refereed to
below as method #1 (Babbin et al., 2015; Sun et al., 2020) and
method #2 (Holtappels et al., 2011). Unless specified, the steps
below apply to both methods.

Supplies for Tracer Incubations for N2O Consumption
General Supplies (for Both Methods)

Chemicals/Gases
- Saturated KCl solution
- Glass bottles with 15N-N2O tracer (Cambridge Isotope

Laboratories Inc., part #NLM-1046-PK, purity > 98%)
- Saturated solution of HgCl2 or 50% (w/v) ZnCl2
- He and N2 gas tanks for purging (UHP 5.0 to 4.6 grade)

Other Supplies
- MilliQ water supply
- Disposable gloves
- 12 mL Labco exetainers (Labco 12 mL exetainers, flat

bottom, labeled, DW cap, #739W) in tube racks, labeled,
with caps removed

- Exetainer caps, deoxygenated in anaerobic chamber
or stored under He atmosphere before the sampling
expedition

- Tygon tubing (approximately 1 m length) with adaptors to
fit the Niskin bottle opening

- Luer-lock gas tight glass syringes [2.5 mL (Hamilton
#81420) or 5 mL (Hamilton #81501)] and several needles
(26G× 3/8′′) for KCl injection

- Fixed needle gas tight glass syringes for 15N-N2O addition:
e.g., Hamilton, sample lock: 1 mL (#81356), 500 µL
(#81256), 250 µL (#81156), and 100 µL (#81056) (volume
is based on desired 15N-N2O tracer addition) and
26G× 3/8′′ needles

- Manifold to simultaneously purge 10–15 exetainers
(12 mL). The purging rack should preferably be made using
Viton tubing∗ (e.g., 1/16′′ ID × 1/8′′ OD, Fisher Scientific,
#NC0511742) (see Figure 6A)

- 18G, 6′′ stainless steel needle∗ (that reaches the bottom
of the bottle) for purging the liquid phase (e.g., Cadence
science #9860) or 21G × 4 3/4′′ (B Braun #4665643)
(depending on bottle size)

- Shorter outlet needle for pressure balance during purging∗
[e.g., BD PrecisionGlide Regular Bevel needles, e.g.,
25G× 5/8′′ (#305122)]

- Dual stage regulators, stainless steel or brass tubing and
Swagelok fittings, and mechanical flow controller (e.g.,
Porter, VCD-1000) for purging

- Incubator (or temperature-controlled room or container)
covering the in situ temperature range of the samples

- O2 probe/meter and oxygen sensor spots (Oxysense,
Pyroscience, or custom-made sensor spots as in Larsen
et al., 2016) for O2 monitoring during incubations

- Paper towels
- Colored tape and Sharpies for sample labeling
- Notebook, log sheets and pens
- IRMS adapted for N2/Ar measurements (e.g., see

Charoenpong et al., 2014) and for N2O isotope
measurements [see McIlvin and Casciotti (2010)] by
either manual injection (Dalsgaard et al., 2012) or using an
autosampler

Additional Supplies Required for Method #1
- Glove bag (Sigma Aldrich, AtmosBag)
- 320 mL glass bottles (Wheaton, BOD Bottle,

300 ml, 227497-00G)
- Repeat pipettor and adaptor for 50 mL repeater pipette tips
- A thin tube that can be attached to the pipette tip and is long

enough to reach the bottom of the 320 mL glass bottle
- Anaerobic chamber (GasPak, 150 Large Anaerobic

Systems) with catalyst (BD BBLTM GasPakTM anaerobic
and CO2 indicators)

- Beaker for excess seawater

Additional Supplies Required for Method #2
- Serum borosilicate glass bottles (200 mL; note: total volume

is 250 mL) with a 20 mm opening diameter (Ochs #102041;
Kimble #61000G-200) or

- Serum borosilicate glass bottles (500 mL, Wheaton
#223952) with a 30 mm opening, 30 mm outer diameter
(OD) gray bromobutyl septa (Wheaton, #224100-331),
30 mm OD aluminum crimp seals (Wheaton, #224197-01,
and 30 mm seal crimper (Wheaton, #224357) and decapper
(Wheaton, #224307)

- Gray butyl septa (20 mm) (Wheaton #20-0025) (these septa
need to be deoxygenated in anaerobic chamber or boiled
for 5 min and stored under He atmosphere before the
sampling expedition)

- Aluminum crimp seals (20 mm) (Wheaton #224178-01)
- Crimper and decrimper for 20 mm caps
- 1 mL luer-lock syringe (BD #309628) connected to a

16G × 1′′ (BD #305197) needle, cut-off flange end and
plunger removed (see Figure 5, setup #2)
Note: In Holtappels et al. (2011), a plastic syringe is used to
dispense the seawater into the exetainers. To limit the use of
plastic components (potential for oxygen contamination),
we recommend attaching a stainless steel luer-lock fitting to
the outlet needle (16G), which is connected to a short piece
of gas tight Viton tubing with a glass tube on the end (long
enough to reach the bottom of an exetainer). This approach
also makes dispensing the seawater into exetainers easier.

- Various size needles 21G × 4 3/4′′ (B Braun #4665643) and
23G× 1′′ (BD #305145)

- Luer-lock syringes: BD luer-lock tip 3 ml (#309657)
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FIGURE 5 | Workflow showing 15N-N2O incubation experiments to measure N2O reduction rates during denitrification according to Babbin et al. (2015) (method #1)
and according to Holtappels et al. (2011) (method #2).

FIGURE 6 | Example purging racks using for method 1 (B), and method 2 (A). In panel (B), 8 mL seawater in 12 mL exetainers are purged with He for 5 min before
15N-N2O tracer addition. Each purging manifold shown here conveniently allows purging the liquid phase of 10 to 12 exetainers at once. 12 mL exetainers with
seawater samples in tube racks organized by time points (C).
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Preparation Before the Sampling Expedition
Degas the Caps
Degas the caps at least 1 month in advance of the sampling
expedition (see De Brabandere et al., 2012), and store the empty
uncapped, labeled exetainers covered with plastic wrap in their
original boxes. Caps are deoxygenated by storing them in plastic
Ziploc bags (24 caps/bag) in anaerobic chambers with a catalystic
O2 scavenger, and flushed with He (or evacuated and filled with
He several times). Alternatively, stoppers are stored under a He
atmosphere in a gas tight bottle (flushed regularly with He).

Prepare Exetainers and Caps Before Sampling
Place the empty exetainers in test tube racks in sets of 12
tubes per treatment per depth (12 vials for standard 15N-N2O
treatment: four time points in triplicate or use 15 tubes if five time
points are desired).

Prepare 15N-N2O Tracer Before the Sampling Expedition
Dilute 15N-N2O tracer in He to obtain the desired tracer
concentration. First, at least two 250 mL glass serum bottles
capped with gray butyl stoppers and aluminum seals are purged
with He for 5 min at 5 PSI pressure (∼500 ml min−1) using
22G needles, to purge the bottle (make sure that there is He
outflow from the serum bottles). Second, add the desired amount
of 15N-N2O tracer (e.g., 5 mL (50 times dilution of 99% 15N-
N2O tracer gas, Cambridge Isotope Laboratories, purity ≥ 98%)
with a gas tight syringe to one serum bottle that will be used
as the stock bottle. Third, based on the desired final 15N-
N2O tracer concentrations, use a fixed needle gas tight glass
syringe to transfer 15N-N2O and He gas mixture from the
stock bottle to He-purged small serum bottles/vials to make
several working tracer bottles (depending on the number of
samples that will be collected, e.g., use one working tracer bottle
per station). We recommend preparing the tracer bottles as
close as possible to the sampling expedition date to minimize
any leaking or contamination. Tracer concentration should be
decided based on (1) the expected final concentration of the tracer
in incubation exetainers, which should be within the range of
N2O concentrations at the sampling site, and (2) the volume of
the tracer injected into each exetainer, which should be around
50 µL. Larger injection volumes will cause positive pressure
in exetainers, and smaller injection volumes might introduce
volume measurement errors.

To make sure that the tracer stock concentration is the same
as the desired concentration, the tracer concentration should
be measured prior to the sampling expedition. If the tracer
concentration is too high for the Faraday cups of the IRMS, the
tracer stock should be subsampled and diluted in He to the level
that will not saturate the Faraday cups of the IRMS (typically 5%
15N). Determine the concentration of the 15N-N2O tracer based
on the peak area measured by IRMS and any dilution before the
sampling expedition.

Sampling: Method #1 Only
Before sampling, place everything you need EXCEPT the 320 mL
bottles in the glove bag. Do not flush the bag yet, and keep bag
compressed. Put one bag of caps from the anaerobic chamber

with sufficient numbers of caps for the designed experiment
inside the glove bag just before CTD-Rosette is back on deck.

Items to Go Into the Glove Bag:
- Water samples in 320 mL bottles
- 50 mL pipette (or repeat pipettor) and tips

Note: If you are also performing denitrification and
anammox experiments using the same method, make sure
to label pipette and tips distinctly using color coding; e.g.,
one color for each tracer or carrier addition.

- A thin tube that can be attached to the pipette tips and is
long enough to reach the bottom of the 320 mL glass bottle

- Exetainers in tube racks, labeled, with caps removed
- Exetainer caps from the anaerobic chamber
- Gloves
- Paper towels or sponge to handle spills
- Beaker for excess seawater

These shipboard operations are best done as a three-person
team. One person performing the glove bag manipulations,
another performing the He flushing and noting the times of tracer
addition and purging the liquid phase and the third injecting the
15N-N2O tracer into each exetainer. The task of tracer injection
can be shared between the first two persons if only two-person
team is available.

For Each Depth Fill 320 mL Round Glass Stoppered Bottles
Label distinctly the 320 mL bottles (e.g., using a color code) if you
are performing denitrification and anammox experiments using
the same method.

Obtain sample water by filling each 320 mL glass bottle from
Niskin bottles using a Tygon tube, which is inserted all the way to
the bottom of the bottle, overflow three times the bottle volume,
and seal with a glass stopper (ensure no bubbles are present).

Put the bottles with seawater samples into a glove bag.
Store bottles if the incubation experiment cannot be performed
immediately due to other sampling tasks. Store bottles under
conditions similar to in situ (for example ∼10◦C dark room
if sampling from dark cold depths), it is recommended that
experimental setup starts as soon as possible.

Note station location, date, cast number, depth, incubation
condition, and treatment (15N-N2O in this case) in notebook.

Aliquot Seawater Into Exetainers Inside a Glove Bag
Place all 320 mL sample bottles in the prepared glove bag,
compress to remove all air (or evacuate), then fill and evacuate
the glove bag three times with N2 by pressing out the gas inside
and refilling. Use the N2 tube coming into the glove bag and
flush every single open exetainer with gas before opening the
320 mL glass bottles.

Use the repeat pipettor and 50 mL pipette tips with the thin
tube attached to aliquot 8 mL of seawater to appropriately labeled
exetainers (15 exetainers for each treatment per depth: five time
points in triplicates).

Seal vials with deoxygenated exetainer caps. When all
exetainers are filled and capped, remove from glove bag for
helium sparging.
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Sampling: Method #2 Only
Label distinctly the 250 or 500 mL bottles (e.g., using a color code)
if you are performing denitrification and anammox experiments
using the same method. The size of bottle used depends on
number of replicates and time points.

Fill each 250 or 500 mL serum bottles from Niskin bottles
using a Tygon tube, which is inserted all the way to the
bottom of the bottle, and overflow three times the bottle
volume. Cap, bubble-free, with a deoxygenated gray butyl stopper
and aluminum seal.

Store bottles under conditions similar to in situ (for example
∼10◦C dark room if sampling from dark cold depths) if the
incubation experiment cannot be performed immediately due
to other sampling tasks. It is recommended that experimental
setup starts as soon as possible. Note station location, date, cast
number, depth, incubation condition, and treatment (15N-N2O
in this case) in notebook.

Initially purge with He (0.4 L/min) for at least 15 min to
lower the background concentration of N2 and remove any O2
contamination introduced during sampling. The inflow needle
should reach to the bottom of the serum bottle (21G), while the
vent needle (16G, large bore size needed for dispensing) only
needs to reach into the top of the bottle, approximately 1 cm (the
helium flow will push out some sample creating a small headspace
in the bottle). The vent needle is connected to a 1 mL syringe
with a cut-off flange end (plunger removed). To purge several
serum bottles at once, use gas tight tubing with several glass (or
Swagelok) t-pieces in series to split the helium flow.

Transfer seawater in to 12 mL exetainers using the 1 mL
syringe with a cut-off flange end (Figure 5, setup #2). Insert a
cut-off flange end syringe to the bottom of the exetainer while
He gas is still flowing (the flow should be reduced to control the
flow rate during dispensing to approximately 0.15 L/min) into the
250 mL serum glass bottle. Allow water to overflow at least two
times the exetainer volume and close the exetainer (bubble free)
with a deoxygenated cap. Repeat (e.g., use 15 tubes if five time
points are desired).

Purge Exetainers With He
Method #1: (See purging manifold, Figure 6B). Turn on the
manifold gas flow and bubble exetainers for 5 min at 5 PSI (flow
rate = 0.5 to 1 L/min) with He.

(i) Pierce the butyl septa with 23G × 1′′ needle (vent needle).
Needle only needs to pierce through to the headspace, not
be pushed in entirely.

(ii) Attach the vial to a 4′′ cannula needle (He inflow), and push
on entirely to bottom of vial.
-There should be a steady stream of bubbles
in the exetainers.

(iii) After 5 min, increase the pressure to ∼5 PSI and pull
vials off the manifold, being sure to remove the exit
needle first to create positive pressure to prevent air
contamination into the vial.

Method #2: If using method #2, a 2 mL He headspace is created.
We recommend inserting a headspace as any trace amounts of O2

introduced during dispensing will concentrate in the headspace
(De Brabandere et al., 2012).

(i) To create a headspace, remove 2 ml of water through the
septa using a 3 ml luer-lock syringe and needle (23G × 1′′),
while adding helium simultaneously through a second needle
(23G × 1′′). The exetainers should be vigorously shaken after
inserting the headspace.

(ii) The headspace of the exetainers is then flushed with He
twice for 15 s (approximately 0.5 L/min, using 23G × 1′′ as
inflow and vent needles), shaking vigorously in between (De
Brabandere et al., 2012). Manifolds can be purchased (e.g.,
Ochs # 192012) or produced in house, preferably in metal or
glass allowing multiple exetainers to be flushed at once.

Although not always possible, it is preferable to do all these
manipulations under in situ conditions, i.e., in situ temperature,
and under red light (if the samples were collected from below
the euphotic zone).

Tracer Addition
Add ∼50 µL of 15N-N2O tracer into the liquid phase in each
exetainer to visually confirm that the gas is injected, and the
needle is not clogged. Note time of tracer injection, shake gently
and invert vials to start the incubation at in situ temperature
and light level.

In the tracer bottle, replace the tracer taken out with the same
volume of saturated KCl solution (purged with He) to balance the
pressure using a luer-lock syringe connected to a needle.

Other gases (H2S, CH4, CO2) lost during the He purge step
can also be added back (either as a gas or dissolved) to reproduce
as closely as possible in situ conditions before incubating.

Incubation
Replicate (preferably triplicate) samples per time point amended
with 15N tracer as well as replicate t = 0 controls immediately
killed after 15N-tracer addition should be incubated at in situ
temperature and light level using at least three time points for
up to a 48-h period.

Ideally, the concentration of O2 in the exetainer is monitored
over time during the incubation using non-invasive O2
measurement technology, such as Oxysense (see text footnote
1) or Pyroscience (see text footnote 2). A sensor dot is
attached to the bottom of a subset of exetainers prior to
sampling. After injecting the tracer, the O2 concentration is
measured continuously or at discrete time points using a fiber
optic pen to ensure low-O2 conditions are maintained during
the incubations.

Termination
Add 50 µL of a five times diluted saturated solution of
HgCl2 or 50% (w/v) ZnCl2 to each vial with a 1 mL plastic
syringe to arrest microbial activity. Diluting the HgCl2 saturated
solution reduces the toxicity of the hazardous wastes without
any impact on sample preservation (e.g., see Bourbonnais et al.,
2017; Casciotti et al., 2018). Shake the vial for 3 s to mix in
the fixative. The replicate control exetainers (T0) immediately
sacrificed after adding the tracer for each treatment are used
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to quantify abiotic N2 production, if any, due to preservative
addition and during storage. Note the time when the T0, T1,
T2, T3, exetainers are sacrificed. Preserve at other time intervals,
adjusting times depending on the activity expected for the
sampled environment (shorter time intervals are preferable in
higher activity settings): T1 = 7–9 h, T2 = 15–17 h, and T3 = 23–
25 h.

Preserved N2 samples can be stored in the dark and likely keep
for several months but measuring samples at soon as possible is
highly recommended. Place the vials upside down in the dark—
to reduce diffusion across septa. Precipitates caused by ZnCl2
acts as barrier.

IRMS Analysis
Before analyzing samples on the IRMS in the home laboratory,
place the samples on a reciprocal shaker (∼150 rpm) overnight
to equilibrate the N2 with the headspace. Shaking also facilitates
removal of insoluble salts from the septum that can clog the
autosampler needle. When analyzing samples from 15N-N2O
incubations, a liquid N2 cryotrap should be used to remove 15N-
N2O to minimize interference from conversion to 30N2 by the
copper column (Dalsgaard et al., 2012).

N2 standards should be prepared in exetainers on the day
of measurement. Standard exetainers should be prepared in the
same way as sample exetainers: 8 (or 10) mL of NaCl solution
with salinity adjusted to match that of the sample water should
be added into each exetainer. Purge the standard exetainers with
He for 5 min, and then inject different volumes of unlabeled N2.
The different amounts of N2 injected should bracket the amount
of N2 in sample exetainers. Standards will be used to calculate
the amount of N2 in each sample exetainer. If possible, standards
with different ratios of 30N2 to 28N2 should be used to cover the
range of m/z 30 signals in the samples and test the accuracy of the
measured 30N2/28N2.

The isotopic composition and amount of N2 are determined
using a continuous flow system interfaced to the IRMS [Bulow
et al., 2010; Babbin et al., 2015; also see Charoenpong et al.
(2014) for more information regarding the IRMS set up for
these analyses] or a membrane inlet coupled to a quadrupole
mass spectrometer (Kana et al., 1994). In all cases, O2 must
be removed from the samples using a furnace containing a
Cu flow path as the presence of O2 has been shown to cause
isobaric interferences in the mass spectrometer source by reaction
with N2 to create NOx (Bender et al., 1994; Emerson et al.,
1999).

If necessary, a non-labeled (i.e., at natural abundance) N2
carrier gas might be added back into the exetainers before analysis
to (1) lower the 15N enrichment to be within the range that can
be measured by the mass spectrometer and (2) to assure sufficient
quantities of N2 for analysis on the IRMS.

Rate Calculations
N2O consumption rates from denitrification are calculated from
the excess of 30N2 produced during 15N-N2O tracer incubations
according to Babbin et al. (2015). Assuming any preexisting
unlabeled N2O was removed during the experimental setup
(purging steps), the fraction label is 100%, thus:

(17) Rateconsumption = slope30N2, i.e., 30N2 (nM-N2) changing
over time (hour or day).

The concentration of 30N2 in each sample exetainer is
calculated based on the area of 30N2 relative to the areas for
standard exetainers measured during IRMS analysis.

The reader is referred to the calculation template in the
Supplementary Material (Spreadsheet N2OCON) for a better
understanding and traceability of the given equations.

Waste Handling
HgCl2 or ZnCl2 are highly hazardous wastes and should be
disposed of accordingly.

RESULTS

Figure 7 and Supplementary Material (Spreadsheet N2OPR)
show an example of the increase in masses 44N2O, 45N2O, and
46N2O over the incubation period following the addition of 15N-
NH4

+, 15N-NO2
−, and 15N-NO3

−. In all treatments, masses 45
and 46 increase significantly with time, whereas the increase in
44N2O is not always significant and depends on the overall rate.
The steepness of the slope of the linear regression represents the
production rate over time. The enrichment in 45N2O or 46N2O is
also dependent on the fraction of labeled substrate which needs
to be taken into account when calculating the overall production
rates from a single tracer.

In incubations with relatively small rates (N2O from
NH4

+ = 0.047 ± 0.007 nM-N2O/d) mass 44N2O is not changing
significantly, while in treatments with higher rates mass 44 also
increases with time [e.g., N2O from NO3

− = 2.56 ± 0.44 nM/d,
see calculation spreadsheet N2OPR (Supplementary Material)
for N2O production rates]. A non-paired two-tailed t-test is
performed in order to see if the slope over time is significantly
different from zero. If the t-test p value is higher than 0.05 (for a
significance level of 95%), the production rate is not significant.
An increase in the number of replicates or time points reduces
the uncertainty of such measurements and decreases the standard
error for the linear regression.

It is possible that the product pools change exponentially over
time and deviate from linearity, as indicated by a low R-squared
for the linear regression. In longer incubations, a curvature
generally indicates an artifact due to “bottle effects,” where bottle
size (surface to volume ratio) or change in O2 concentration
artificially stimulate bacterial growth (Garcia-Robledo et al.,
2016). We recommend only using the linear portion of the curve
for rate calculation and report the most conservative rate.

N2O consumption rates are similarly calculated (Figure 8). An
example from Sun et al. (2020) is given in Spreadsheet N2OCON
(Supplementary Material).

DISCUSSION

We discuss below important considerations and recommenda-
tions for N2O rate measurements using 15N-tracer incubations,
including data reporting and archiving.
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FIGURE 7 | 44N2O (A), 45N2O (B), and 46N2O (C) masses over time for N2O production 15N-labeled incubations performed in the ETSP on R/V Meteor in June
2017 (Frey et al., 2020). The samples were taken at 220 m depth above the oxic-anoxic interface off the coast of Peru (sample S4, station 882).

Maintaining Anoxic Conditions Prior and
During Incubations
Precautions are necessary during 15N incubations of anoxic
waters to determine N2O production or consumption

to N2. One area of concern is O2 contamination from air
during sampling from Niskin bottles, which has been reported
to result in an increase in dissolved O2 of as much as 1 µM (De
Brabandere et al., 2012). If possible, it is preferable to replace
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FIGURE 8 | Production of 30N2 (nM-N2) over time for N2O consumption 15N-labeled incubations performed in the ETNP on R/V Sally Ride in March and April 2018
(Sun et al., 2020). The samples were taken above the oxycline at 60 m depth (station 2, cast 34).

the headspace created in the Niskin bottle with CO2 or N2 while
water is removed rather than simply allowing air invasion. It
is also recommended to avoid plastic and rubber components
wherever possible as O2 can diffuse through or from these
materials (e.g., De Brabandere et al., 2012) and stoppers should
be deoxygenated and kept in an anaerobic chamber or under He
atmosphere prior to incubations (see section “Stoppers”).

Water collection systems differ in their degree of oxygen
contamination. Pump profiling system (PPS) allow sampling
directly from the water column which minimizes O2
contamination during sample collection (e.g., Padilla et al., 2016).
Sampling from Niskin bottles introduce oxygen contamination
in the sample (De Brabandere et al., 2012), thus most research
groups typically purge with He to remove O2 in incubation
bottles (e.g., Holtappels et al., 2011; Kalvelage et al., 2013; Frey
et al., 2020; Sun et al., 2020). Purging the liquid phase with He
before the incubations alters ambient conditions and removes
gases such as N2O, CH4, and H2S that are intricately linked
to the N-cycle. Therefore, potential rates are obtained as is
usually the case for these type of incubations due to changes in
experimental conditions. If desired, these substrates should be
added back after purging. Creating a headspace can also help
draw dissolved O2 into the headspace while the more soluble
N2O remains dissolved in the water sample. The non-invasive
monitoring of O2 concentrations inside the incubation bottle is
strongly advised (see section “Incubation”).

Bottle Types
A range of bottle types and sizes have been used for 15N
denitrification incubations including, for instance, 1 or 0.5 L

amber glass bottles with Teflon stoppers containing two lengths
of 1/8′′ tygon tubing with valves (Devol et al., 2006; Bourbonnais
et al., 2012), 500 mL bags (Ward et al., 2009; Bourbonnais et al.,
2012), or 12 mL exetainers (Holtappels et al., 2011; Bourbonnais
et al., 2012). Tedlar R© bags are typically hard to fill without bubble
formation and the valves are not usually completely leak-tight.
Thus, incubating in bags is discouraged. Larger serum bottles
(at least 60 mL) with butyl rubber stoppers are recommended to
measure N2O production rates as N2O produced in small volume
exetainers might not be sufficient to be detected with the IRMS
if rates are low.

Stoppers
Niemann et al. (2015) found that the thick black, non-
halogenated butyl rubber stoppers leached high amounts of
various organic compounds that have toxic effects during
aerobic methane oxidation incubations. The gray bromo- and
chlorobutyl stopper types tested did not seem to leach any
organics. We thus recommend using these types of stoppers,
but further tests investigating potential toxic effects of these
stoppers during N2O production and consumption 15N-labeled
incubations are required. Prior to anoxic or low O2 incubations,
exetainer caps should be stored under a He atmosphere to remove
O2. Gray butyl rubber stoppers for serum glass bottles should be
boiled for about 5 min in purified (e.g., Milli-Q) water and stored
under He atmosphere to remove O2 (De Brabandere et al., 2012).

15N-Tracer Addition
Ideally, the final concentration of tracer added should be as close
as possible to ambient concentrations. However, this is difficult
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to achieve for oxic water-column samples where dissolved
NH4

+ and NO2
− typically do not significantly accumulate. For

denitrification incubations, additions of at least 5–20 µM of
15N-NO2

− or 15N-NO3
− tracers have been used [e.g., Devol

et al. (2006); Bourbonnais et al. (2012)] in order to detect
production of labeled N2O or N2 products when rates are low.
Consequently, tracers are commonly added at concentrations
of 10–100% of ambient concentrations, hence potential rates
are investigated. The final tracer concentration is typically 0.5–
5 µM 15N-NH4

+ or 15N-NO2
− for water-column samples from

oligotrophic waters (see Ji et al., 2015; Frame et al., 2017).

Choosing a Fixative
While a comprehensive comparison of different fixatives is still
lacking, the use of HgCl2 is advised. Ostrom et al. (2016)
showed that ZnCl2 or HgCl2 acts as catalyst for abiotic N2O
production from Fe2+ oxidation coupled to NO2

− reduction in
anoxic environments where Fe2+ concentrations are relatively
high (Antarctica Lake, sediment pore-waters). This should not
be a concern for water-column samples because Fe2+ and NO2

−

concentrations are generally too low for this abiotic process to
be significant. However, at the same time, there is an increasing
awareness of how anthropogenic activities impact the mercury
cycle and efforts are being made to reduce these emissions. In
2017, during the Minamata convention, Europe agreed to reduce
the usage of Hg, including HgCl2. Since then, Sweden has banned
HgCl2 from research vessels and other European countries are
following. There is an urgent need to find good alternatives.

Data Reporting and Archiving
We recommend submitting all relevant metadata and data to
an open-source public data repository such as Pangaea3, the
Biological and Chemical Oceanography Data Management Office
(BCO-DMO4) or the Pan-European Infrastructure for Ocean
and Marine Data Management (SeaDataNet5). Metadata should
include sampling date, station and GPS site location, depth
(m), 15N treatment, amount of 15N tracer added, bottle and
headspace volume (if applicable), whether the sample was purged
or not and gas used for purging the liquid phase, incubation
time points, preservative used as well as in situ temperature,
oxygen and nutrient (NO3

−, NO2
−, and NH4

+) concentrations.
δ15N (vs. air) and δ18O (vs. VSMOW) as well as calculated
quantities of [44N2O], [45N2O], and [46N2O] (in nmol N2O
L−1 or nmol N L−1) (see section “Rate Calculations”) should
also be reported for each time point. N2O production and
consumption rates can be reported in nmol-N2O (or N) L−1

d−1 or nmol N2O (or N) kg−1 d−1 as long as the units are
consistent and clearly stated. Common vocabularies should be
used in all metadatabases and data formats, following guideline
established by the British Oceanographic Data Centre (BODC) by
means of the National Environment Research Council (NERC)
Vocabulary Server (NVS2.0). For instance, the following terms

3www.pangaea.de
4https://www.bco-dmo.org
5https://www.seadatanet.org/

were submitted to the NERC Vocabulary Server (NVS2.0) to
facilitate future data archiving and search.

N2OPR = The production of nitrous oxide [N2O CAS 10024-
97-2] per day per unit volume of the experiment water sample by
15N [15N CAS 14390-96-6, CAS 68378-96-1, and CAS 31432-46-
9] isotope labeled tracer addition, incubation and purge and trap
measurement at the GC-IRMS.

N2OCON = The consumption of nitrous oxide [N2O CAS
10024-97-2] per day per unit volume of the experiment
water sample by 15N [15N CAS 10024-97-2] isotope
labeled tracer addition, incubation and purge and trap
measurement at the GC-IRMS.

Any available ancillary dataset (e.g., microbiological
sequences) should also be mentioned in the metadata.

CONCLUDING REMARKS

We present protocols to measure nitrous oxide production
and consumption rates. This approach takes advantage of
the fact that 15N exists in low abundances in the natural
environment. With recent advances in isotope ratio mass
spectrometry, it is now possible to measure N2O isotopes down
to nanomolar concentrations and detect N2O production
rates as low as 0.001 nM/d. Measuring actual process
rates is essential to understand the environmental factors
controlling N2O production and consumption in marine and
freshwater environments.

While we present the different approaches currently used
by experts in the field to measure N2O transformation rates, a
thorough inter-comparison of these protocols between labs, as
well as across larger spatial and temporal scales is undoubtedly
the next step moving forward. This will require a community
effort that is beyond the scope of this manuscript.
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