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Aulacomya atra is an active suspension feeder, spatially dominant in the shallow-water
hard-bottom benthic communities of the Chilean Patagonia fjords. In this region, the
vertical flux of autochthonous organic matter (OM) reaching the benthos is augmented
by allochthonous OM both from a terrestrial origin and from intensive salmon farming.
This mixed pool of OM represents a potential source of food for a variety of benthic
consumers, but to date little is known about the degree of utilization of these materials
by filter feeders organisms. In this context, feeding experiments on A. atra in Puyuhuapi
Fjord, Chilean Patagonia, were conducted during summer and winter 2018–2019.
These experiments were designed to determine ingestion rates (IR) of A. atra fed with
autochthonous (bacterial and microplanktonic community) and allochthonous (salmon
food pellet) OM. Additionally, samples of A. atra tissues and suspended particulate
organic matter (SPOM) were taken from the study area for stable isotope analysis. Data
from laboratory experiments indicated that A. atra can feed on both autochthonous
and allochthonous OM, but higher IR were detected in individuals fed with salmon food
pellets. Because the IR is sensitive to food particle density rather than specific type
of food, diet preferences of A. atra in feeding experiments could not be determined.
Stable isotope analyses indicate that A. atra in natural environment preferentially exploits
food with an isotopic signal corresponding to autochthonous OM, highlighting the
primary role of phytoplankton carbon in their diet. Extensive utilization of terrestrially
derived OM is therefore unlikely, although utilization of OM derived from salmon farming
is not precluded because of the overlap in isotopic signal between food pellets and
marine plankton.

Keywords: Aulacomya atra, ingestion rate, stable isotopes, autochthonous and allochthonous food,
Puyuhuapi Fjord
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INTRODUCTION

In aquatic ecosystems, animals that feed on particles suspended
in the water are collectively known as filter feeders (Jørgensen,
1990). Bivalves tend to be the dominant suspension feeders in
benthic communities (Sebens et al., 2016; Filgueira et al., 2019),
filtering large volumes of water whilst retaining a wide range of
particle sizes (ca. 4–35 µm diameter) (Voudanta et al., 2016).
By filtering water to satisfy their nutritional demands, these
organisms remove substantial quantities of microscopic particles
from seston, such as bacteria, phytoplankton, detritus, and
suspended sediments (Wright et al., 1982; Langdon and Newell,
1996; Prins et al., 1998; Kreeger and Newell, 2000; Cranford et al.,
2011). Therefore, these bottom dwelling organisms process large
amounts of suspended organic matter (OM) and are often major
agents of pelagic-benthic coupling and nutrient cycling (Norkko
et al., 2001). The total amount of OM consumed by bivalves
is largely determined by their ingestion rate (IR) (Riisgård,
1988) which is a parameter of great ecological importance,
and critical to the understanding of their impact on particles
fluxes in coastal environments (Winter, 1978). Filter feeding
behavior in bivalves is known to be responsible for fluctuations
in both the abundance and the composition of seston (Bayne,
1998; Prins et al., 1998). Several studies have suggested that
bivalve grazing can control phytoplankton abundance (Cloern,
1982; Prins et al., 1998; Lonsdale et al., 2009; Lucas et al.,
2016), favor small phytoplankton organisms (Greene et al., 2011;
Jacobs et al., 2016; Cranford, 2019) and decrease phytoplankton
production (Dolmer, 2000). Phytoplankton is clearly a major
source of nutrition for these organisms (Vaughn and Hoellein,
2018), but bacteria and detritus from terrestrial origins have
also been described as important food source for bivalves
during periods of low phytoplankton abundance (Langdon and
Newell, 1990; Kreeger and Newell, 1996). Mussels are also
known to filter small particles of salmon feed (Reid et al., 2010;
MacDonald et al., 2011) and fecal pellets from salmon farming
areas (Reid et al., 2010), incorporating this waste material as
a food source (Gao et al., 2006; Redmond et al., 2010; Handå
et al., 2012a,b). Several studies have indicated that bivalves
growing adjacent to salmon farming areas remove OM advected
from cages by increasing their growth rates (Lander et al.,
2004; Peharda et al., 2007; Sarà et al., 2009) and helping to
reduce the negative ecological impacts of the salmon industry
(Lefebvre et al., 2000; MacDonald et al., 2011) such as the
increase in load of OM in the water column and seafloor
(Quiñones et al., 2019).

In Chilean Patagonian fjords, salmon farming represents the
principal aquaculture activity (Buschman et al., 2006). This
industry releases large quantities of organic and inorganic
wastes (uneaten feed, feces and excretory products) that modify
the particulate and dissolved materials in the water column
(Quiñones et al., 2019) and represent a permanent input of
allochthonous OM into the local fjord ecosystem (Iriarte et al.,
2014). This allochthonous OM, together with high levels of
autochthonous OM produced by phytoplankton in Chilean fjords
(Montero et al., 2011, 2017a,b), provides a heterogeneous pool of
organic substrates available as food for benthic consumers.

Several studies have addressed trophic structure of benthic
communities (Mayr et al., 2011; Zapata-Hernández et al., 2014;
Andrade et al., 2016; Quiroga et al., 2016), but little information
is available on the ecological role of bivalves species in the
structure and functioning of Patagonian fjord ecosystems. One
of the key suspension feeder in the Patagonian fjords is the
ribbed mussel Aulacomya atra (Molina, 1782), which normally
inhabits protected and semi-protected shallow rocky shores
(Betti et al., 2017), and is often found in close vicinity to
salmon farms. Despite its importance in bentho-pelagic carbon
fluxes of the Patagonian fjords, little is known about the
feeding behavior of A. atra, including its potential role in
processing the uneaten salmon feed. The aim of the present
study was to determine the capacity of A. atra to assimilate
and ingest OM derived both from salmon feed (allochthonous),
and from a phytoplankton and bacterial origin (autochthonous)
by means of stable isotope analysis and experimental feeding
studies conducted in Puyuhuapi Fjord, Chilean Patagonia, during
summer and winter periods between 2018 and 2019.

MATERIALS AND METHODS

Study Area and Sampling of Aulacomya
atra
The study was conducted in Puyuhuapi Fjord which extends
for about 90 km between 44◦19′ S and 44◦57′ S in northern
Chilean Patagonia (Figure 1), and runs in a N–NE direction,
connecting directly to the open sea via the Moraleda Channel
at its mouth, and through the Jacaf Channel near the head
(Schneider et al., 2014). The hydrography of this area is
characterized by an estuarine type of circulation with a vertical
two layer structure, comprised of a highly variable 5–10 m
deep freshwater layer overlying a more uniform, saltier sub-
pycnocline layer (Schneider et al., 2014 and references therein).
The deeper saline water originates from Sub-Antarctic Surface
Water (SAAW) characteristic of open ocean environments in
these latitudes (Chaigneau and Pizarro, 2005). The freshwater
upper layer is mainly supplied by the Cisnes River and by
rain runoff (Schneider et al., 2014). The surface outflow of
buoyant freshwater in the fjord carries high concentrations of
silicic acid derived from rivers, while SAAW waters are typically
enriched with nitrate and orthophosphate (Silva, 2008). Surface
salinity is higher in the north than in the south, suggesting an
intrusion of oceanic surface waters into the north of Puyuhuapi
Fjord through the Jacaf Channel, forced by westerly winds
(Schneider et al., 2014).

Aulacomya atra was collected in the Puyuhuapi Fjord during
summer (February) and winter (July) in 2 years, 2018 and 2019
(Supplementary Table 1). Samples of A. atra for both feeding
experiments and stable isotopes analysis were collected by scuba
diving at depths ranging from 5 to 10 m at several sampling
stations (Figure 1). After collection, mussels for the feeding
experiment were transferred to the field laboratory, cleaned of
epibionts and debris, and maintained in a 200-liters seawater
tank with constant aeration and at ambient temperature prior to
the experimental protocols (approximately 24 h after collection).
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FIGURE 1 | (A) Location of the study area in Chilean Patagonia, (B) close-up of the study area with the position of the sampling stations along the Puyuhuapi Fjord.

Mussels for the stable isotopes analysis were treated as described
in detail in section “Stable Isotopes.”

Feeding Experiments
The feeding experiments were performed using plastic aquaria,
each of 6-liters capacity and provided with a pumped air supply
(3 L/min). Three different type of food (treatments) were tested:
bacterial community, planktonic community, and allochthonous
OM derived from salmon food pellets.

The first treatment – referred here as the bacterial
community treatment (BC_T) – was prepared by gravity
filtering seawater onto 22-µm mesh to remove large zooplankton
and microphytoplankton. A peristaltic pump was then used
to gently filter this water through 0.8-µm pore size sterile
membrane filters (Millipore) in order to separate bacteria from
the rest of the planktonic community (including potential
predators). The second treatment – referred here as planktonic
community treatment (PC_T) – was prepared by gravity
filtering seawater onto 150-µm mesh to remove larger plankton.
The third treatment consisted of 0.2-µm filtered seawater
amended with salmon food pellets (SFP_T). This treatment
was prepared by gravity filtering seawater onto 22-µm mesh.
Then, a peristaltic pump was used to gently filter this water
through 0.2-µm sterile membrane filters (Millipore), in order
to remove bacteria and other microorganisms. Finally, 1 g of
salmon food pellet was finely ground into particles <1 mm
using a mortar; this powder was then added to the filtered water.
For each treatment, an experimental and a control aquaria
were used. At the beginning of each experiment, both aquaria
were filled with the filtered water (BC_T, PC_T, SFP_T water,
depending on the treatment) and one specimen of A. atra
was placed in each experimental aquarium, whilst the control
ones remained without individuals. The experiments began
as soon as A. atra valves opened. Triplicate water samples of
500 mL were taken from experimental and control aquaria at

the initial time (t1), and again 1 h later (t2). Samples from t1
and t2 were processed for particulate organic carbon (POC)
analyses. Total POC was measured by filtering 500 mL water
samples on pre-combusted GF/F glass microfiber filters (4 h
at 450◦C) which were then frozen at –20◦C until analysis.
Prior to the analysis, filters were defrosted and acidified with
HCL. After acidification, the HCL was removed and the filters
were dried at 50◦C for 24 h. Filters were analyzed at the
Laboratory of Biogeochemistry and Applied Stable Isotopes
(LABASI, PUC), Chile.

The rate of change in POC concentration from control (kc)
and experimental (kg) aquaria was calculated according to Frost
(1972) equation:

C2 = C1ek(t2−t1)

where C1 and C2 are POC concentrations (mg C L−1) at initial
(t1) and final time (t2), respectively, and k (h−1) corresponds to
the rate of change in POC concentration during the experiments.
The grazing coefficient is g (h−1) and was calculated according to
Ribes et al. (1998) equation:

g = kc− kg

where kc and kg are the rates of change in POC concentration
from control and experimental aquaria, respectively.

The clearance rate, CR (volume swept clear per individual per
time) was calculated according to Ribes et al. (1998) equation:

CR = V
( g

n

)
where V is the volume of the aquaria (L), n is the number
of A. atra in the experimental aquaria and g is the grazing
coefficient (h−1). For comparative purposes, clearance rates were
also standardized (CRs) to constant biomass of 1 g A. atra dry
flesh weight (Cranford et al., 2011). Finally, the ingestion rate,
I (particles ingested per individual per time) was calculated as
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the product of CR (L individual−1 h−1) and the concentration
of POC (mg L−1) using Ribes et al. (1998) formula:

I = CR× C

where C is the initial POC concentration (C1) in the experimental
aquaria, calculated according to the following equation (Frost,
1972; Saiz, 1993):

C =
C1[e{(kc− kg) (t2− t1)} − 1]

(t2− t1) (kc− kg)

When the rate of change in POC concentrations was higher
in experimental (kg) than in control (kc) aquaria, negative
grazing coefficients (g) were obtained. Negative g are reported
in Table 1; according to previous studies, negative values were
set up to zero (Strom and Fredrickson, 2008; Stoecker et al.,
2014, 2015; Anderson et al., 2018; Menden-Deuer et al., 2018;
Anderson and Harvey, 2019), in order to calculate the mean and
standard error of grazing in each treatment, and subsequently
to estimate means and standard deviations in CR and IR.
The significance of grazing (g values > 0) for each food type
(treatments) was tested by comparing the rate of change in POC
concentration from control (kc) and experimental (kg) aquaria
using a two-tailed Wilcoxon test. Individual values of kc and
kg for each experiment (Table 1) correspond to the average of
three replicates obtained from control (Supplementary Table 1)
and experimental (Supplementary Table 2) aquaria, respectively.
Wilcoxon test was applied to seven experiments conducted under
PC_T (autochthonous source), nine under BC_T (autochthonous
source), and five under SFP_T (allochthonous source). In this last
case, Wilcoxon test considered an alpha = 0.1 due the low number
of sampling points.

To examine the relationship between CR and size/weight of
the individuals under study, after each experiment, shell lengths
and dry (24 h at 60◦C) flesh weights were determined for
each individual.

The non-parametric Kruskal–Wallis test (H) was used to
examine differences in g, CR and IR between the different food
sources (treatments). Kolmogorov-Smirnov test (K-S) was used
to examine seasonal differences in CR and CRs.

Stable Isotopes
Three specimens of A. atra were collected from each sampling
station for stable isotopes analysis in the study area (Figure 1).
After collection, mussels were maintained in filtered seawater
(0.2 µm) in a plastic container for 24 h and were then rinsed with
distilled water and frozen at –20◦C. Frozen samples were thawed
and dissected. A. atra tissues were lyophilized and grounded
prior to analysis.

In order to measure the stable isotope composition in
suspended particulate organic matter (SPOM), samples were
monthly collected from three depths (2, 10, and 20 m) from
March to May 2018 and from July 2018 to February 2019
at sampling station B4. In addition, samples from 2 and 20
m depth were obtained from station B3 between March and
May 2018 and in July 2018. Water samples (5 L) were filtered
under gentle vacuum through GF/F filters (pre combusted

for 4 h at 450◦C) and refrigerated prior to analysis. The
isotopic signal from salmon food pellets used in the feeding
experiments of February/July 2018 and February 2019 was also
measured. Tissues, filters and salmon food pellets samples were
analyzed at the Laboratory of Biogeochemistry and Applied
Stable Isotopes (LABASI, PUC, Chile) with an Isotope Ratio
Mass Spectrometer (Thermo Fisher Scientific, Delta V Advantage
IRMS) coupled with and Elemental Analyzer (Flash, EA 2000).
Data are expressed in the standard ∂ unit notation:

∂13C or ∂15N =
((

Rsample
Rstandard

)
− 1

)
× 1000h

where R represents the 13C/12C or 15N/14N ratio for carbon and
nitrogen, respectively, reported relative to VPDB for carbon and
to atmospheric N2 for nitrogen.

The non-parametric Kruskal–Wallis test (H) was used to
examine seasonal differences in carbon (∂13C) and nitrogen
(∂15N) signals from A. atra tissue and SPOM samples. In
addition, isotopic signals (∂13C and ∂15N) from different
sampling stations were also examined using test H.

To assess the potential contribution of the different carbon
sources (allochthonous and autochthonous) in the diet of A. atra,
and in the SPOM samples, an isotopic mixing model was used
(Dauby, 1989; Fry, 2006). Allochthonous terrestrial OM (TOM)
is isotopically lighter than its marine counterpart (Bianchi,
2007). In Chilean fjords TOM has an average δ13C isotopic
signals of −29h while autochthonous marine OM (MOM) has
an average δ13C isotopic signal of −1h (Vargas et al., 2011;
Lafon et al., 2014; González et al., 2019). The isotopic mixing
model considered three end members recorded in this study: (i)
autochthonous OM from a marine source with a ∂13C of −18.3
(measured at station B4, 2 m depth), (ii) allochthonous OM from
a terrestrial source with a ∂13C of −29.9 (measured at station
B4, 20 m depth), and (iii) allochthonous OM from salmon food
pellets used in feeding experiments with a ∂13C of−21.94.

RESULTS AND DISCUSSION

Differences in rates of change of POC concentrations in control
(Supplementary Table 2) and experimental (Supplementary
Table 3) aquaria were used to calculate grazing by A. atra
(Table 1). The highest average grazing values were recorded on
bacterial community (0.20 h−1

± SE 0.08) and salmon food pellet
treatment (0.26 h−1

± SE 0.12), while planktonic community
treatment showed the lowest (0.05 h−1

± SE 0.02). Grazing
values greater than zero; obtained when the rate of change
of POC concentration was significantly higher under control
conditions than in experimental aquaria (Figure 2A), indicated
that A. atra was able to feed on both of the autochthonous
sources of OM (bacterial and total microplanktonic community;
Wilcoxon test, p < 0.05) and on the allochthonous source
(ground salmon food pellet; Wilcoxon test, p < 0.1). The
present study therefore confirms observations that ribbed
mussels are omnivores, feeding on a wide array of organic
particles (Kreeger et al., 2018), and highlights the ability of
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TABLE 1 | Variables calculated during the feeding experiments.

(h−1) (h−1) (h−1) L ind−1 h−1 mg C ind−1 h−1 g mm L g−1 h−1

Date Kc Kg g Treatment C rate I rate D Weight Length C rate (s)

22-February-18 −0.44 −0.06 −0.38 PC_T 0 0 6 132 0

25-February-18 0.06 0.16 −0.11 PC_T 0 0 7 120 0

22-February-19 0.49 1.17 −0.68 PC_T 0 0 7 115 0

22-February-19 0.33 0.82 −0.49 PC_T 0 0 5 100 0

16-July-18 −0.12 0.05 −0.17 PC_T 0 0 6 112 0

22-February-18 0.34 0.33 0.01 PC_T 0.08 0.04 8 126 0.01

25-February-18 0.06 −0.06 0.11 PC_T 0.68 0.17 2 106 0.34

16-July-18 −0.34 −0.39 0.06 PC_T 0.34 0.12 6 111 0.06

25-February-19 0.10 −0.12 0.22 PC_T 1.30 0.31 8 106 0.16

09-July-19 −0.03 −0.21 0.18 PC_T 1.06 0.19 6 98 0.18

09-July-19 −0.03 −0.04 0.01 PC_T 0.08 0.01 4 97 0.02

10-July-19 −0.05 −0.10 0.05 PC_T 0.30 0.04 6 101 0.05

21-February-18 0.18 0.25 −0.07 BC_T 0 0 13 128 0

25-February-18 0.10 0.19 −0.10 BC_T 0 0 6 119 0

26-February-18 0.07 0.16 −0.08 BC_T 0 0 11 115 0

21-February-18 0.23 0.20 0.03 BC_T 0.16 0.03 7 137 0.02

17-July-18 0.17 −0.002 0.17 BC_T 1.03 0.28 7 109 0.15

23-February-19 1.06 0.07 1.00 BC_T 5.98 1.31 12 118 0.50

23-February-19 1.33 1.15 0.19 BC_T 1.11 0.10 3 112 0.37

25-February-19 0.67 0.27 0.40 BC_T 2.39 0.41 4 95 0.60

25-February-19 0.60 0.29 0.31 BC_T 1.88 0.33 4 110 0.47

08-July-19 0.02 −0.10 0.13 BC_T 0.76 0.10 5 92 0.15

08-July-19 −0.14 −0.17 0.04 BC_T 0.24 0.03 6 110 0.04

09-July-19 0.02 −0.11 0.12 BC_T 0.73 0.10 4 111 0.18

21-February-18 −0.54 0.40 −0.94 SFP_T 0 0 6 125 0

26-February-18 −0.68 0.29 −0.97 SFP_T 0 0 5 103 0

23-February-19 −0.83 −0.47 −0.37 SFP_T 0 0 7 101 0

21-February-18 0.29 0.27 0.02 SFP_T 0.13 0.25 6 111 0.02

26-February-18 0.18 −0.07 0.24 SFP_T 1.40 2.19 4 109 0.36

17-July-18 1.69 0.85 0.85 SFP_T 5.07 11.38 7 124 0.72

23-February-19 1.23 0.59 0.64 SFP_T 3.82 20.89 7 106 0.55

26-February-19 0.32 −0.01 0.33 SFP_T 1.98 10.41 5 105 0.40

Kc, rate of change in POC concentration in control aquaria; Kg, rate of change in POC concentration in experimental aquaria; g, grazing coefficient; C rate, clearance rate
by individual; C rate (s), clearance rate standardized by weight; I rate, ingestion rate by individual; D weight and length, dry weight and length of Aulacomya atra in feeding
experiments. Negative values in bold were substituted by zero to calculate C rate and I rate.

A. atra to filter both small (bacterial community <0.8 µm)
and large (ground salmon food pellet <1 mm) food particles.
Bacteria are generally too small to be efficiently retained by
the gills of most bivalves, however, the particular morphology
of gills of ribbed mussels – such as A. atra and Geukensia
demissa (Dillwyn, 1817) – makes these species very effective
grazers of bacteria (Wright et al., 1982; Stuart and Klumpp,
1984; Langdon and Newell, 1990). The bacterial community
therefore makes an appreciable contribution to the diet
of these species (Stuart et al., 1982; Kreeger and Newell,
1996). Bacterial ingestion by A. atra may also represent an
important step in the vertical transfer of food and energy
in Patagonian fjord ecosystems, and could be a particularly
important route for allochthonous OM (from terrestrial origin
or from salmon farming waste) entering indirectly into the
benthic food web as material assimilated by bacterial community
(Zapata-Hernández et al., 2014).

Consumption of salmon waste particles (uneaten food and
feces) by blue mussels (Mytilus edulis; Linnaeus, 1758) under
laboratory conditions has been described in the literature (Reid
et al., 2010; MacDonald et al., 2011; Handå et al., 2012b). These
studies have shown that mussels not only have the ability to
efficiently capture and ingest particulate organic material (POM)
from salmon feed and feces, but in some cases, mussels can in
fact select fish feed particles and utilize them more efficiently
than feces particles (Handå et al., 2012b). POM derived from
salmon cages has previously been shown to be a food source as
important as microalgae for mussels (Reid et al., 2010). In feeding
experiments, clearance rates (CR) measured in bacterial (0–
5.98 L ind−1 h−1) and salmon food pellet (0–5.07 L ind−1 h−1)
treatments were quite similar and showed a range of values
greater than those measured in planktonic community treatment
(0–1.30 L ind−1 h−1) (Figure 2B). However, no significant
differences were observed between the different food sources
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FIGURE 2 | (A) Rate of change in POC concentrations (average ± SD) from feeding experiments in control and experimental aquaria under bacterial community
(BC_T), planktonic community (PC_T) and salmon food pellet (SFP_T) treatments. The mean value in both control and experimental aquaria correspond to all
experiments carried out under the same treatment with a grazing coefficient > 0 (Table 1), p: p-value with alpha = 0.05, p*: p-value with alpha = 0.1. (B) Aulacomya
atra clearance rate (average ± SD) in each type of treatment. The mean value correspond to all experiments carried out under the same treatment. (C) Relation
between POC concentration and ingestion rate (IR) of A. atra during feeding experiments. (D) Clearance rate as a function of dry flesh weight in A. atra during
sampling campaigns. (E) Clearance rate as a function of A. atra size during sampling campaigns. (F) Comparison between clearance rates by individual (CR) and
those standardized by weight (CRs) in each treatment.

(Kruskal–Wallis test, p > 0.05). The highest ingestion rates (IR)
(2.19 to 20.9 mg C ind−1 h−1) were obtained for salmon food
pellet treatment (allochthonous OM) (Figure 2C) indicating that
A. atra was able to capture and ingest salmon feed more efficiently
than bacteria and microplanktonic organisms (Kruskal–Wallis
test, p < 0.05). In contrast, highest IR values of between
0.17 and 0.31 mg C ind−1 h−1 recorded under autochthonous
feeding conditions were significantly lower (Kruskal–Wallis test,
p < 0.05) for the planktonic community treatment than the range
of 0.28–1.31 mg C ind−1 h−1 recorded in bacterial treatment
(Figure 2C and Table 1). These results do not necessarily

represent a selection or preference of A. atra for a given food type
since the diets provided in this study were not mixed. Highest
IR values were associated with higher POC concentration (IR
and POC concentration were positively correlated, Figure 2C,
r2 = 0.73, p < 0.05). Overall, salmon food pellet treatment
with POC concentration >2 mg C L−1 had a greater IR
(>10 mg C ind−1 h−1) than those treatments with a lower POC
concentration (Figure 2C).

Clearance rates (values > 0) was positively correlated to dry
flesh weight of A. atra (more clearly observed during the 2019
summer campaign; r2 = 0.64, p < 0.05) and with A. atra size

Frontiers in Marine Science | www.frontiersin.org 6 July 2021 | Volume 8 | Article 612406

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-612406 July 24, 2021 Time: 17:13 # 7

Montero et al. A. atra Feeding in a Fjord Ecosystem

(more clearly observed during winter campaigns and summer
2019; r2 = 0.3, p < 0.05), suggesting that in most cases, an
increase in weight and/or size of A. atra results in a higher CR
(Figures 2D,E). The weight-standardized clearance rate (CRs)
showed the same pattern as CR, although the values observed
were lower (Figure 2F). Seasonally, CR and CRs were both
significantly higher in summer than in winter (Kolmogorov-
Smirnov test, p < 0.05), probably associated with the influence
of water temperature on bivalve metabolic rates. Indeed, greater
CR values are generally associated with high temperature (Haure
et al., 1998; Sylvester et al., 2005; Kang et al., 2016). During
summer, experiments were conducted within the 15–18◦C
temperature range whereas in the winter period the temperature
range was lower (8–10◦C). CR and IR values measured in this
study for A. atra well agree with those reported in previous

laboratory studies, both with A. atra (Griffiths and King, 1979)
and with other species of mussels such as M. edulis (MacDonald
et al., 2011; Handå et al., 2012b).

Stable isotopes show long-term nutrition, yielding accurate
information about the characteristics of the assimilated food
(Valiela, 1995), being among the most suitable tools to describe
trophic relationships in coastal ecosystems (Wada et al., 1991).
In this study carbon (∂13C) and nitrogen (∂15N) signatures
from samples of A. atra tissue and SPOM from the Puyuhuapi
Fjord were plotted together (Figure 3A). ∂13C and ∂15N values
of A. atra tissues did not differ significantly (Kruskal–Wallis
test, p > 0.05) among sampling station throughout the study
period (B1: ∂13C −18.5 ± 0.9h, ∂15N 9.5 ± 0.7h; B2: ∂13C
−19.5 ± 1.7h, ∂15N 9.3 ± 0.7h; h; B3: ∂13C −20.1 ± 2.2h,
∂15N 9.1 ± 0.2h; B4: ∂13C −19.9 ± 1.2h, ∂15N 8.4 ± 0.4h;

FIGURE 3 | (A) ∂13C and ∂15N biplot showing stable isotopic composition of Aulacomya atra tissues (red shapes) and of suspended particulate organic matter
(SPOM) (black shapes). Samples of A. atra were obtained from different sampling stations across the Puyuhuapi Fjord (from B1 to B5). Samples of SPOM were
obtained from different sampling depths (2, 10, and 20 m) in B4 and B3 stations. The orange star indicates the expected isotopic signature of the preferred food
source. (B) ∂13C and ∂15N biplot showing stable isotopic composition in A. atra tissues and in pellet salmon food from this study and others.
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B5: ∂13C −19.2 ± 1.9h, ∂15N 9.2 ± 0.5h) (Figure 3A and
Supplementary Table 4). Likewise, the ∂15N of A. atra tissues
was quite similar seasonally (February 2018: 8.9 ± 0.8h, July
2018: 8.7± 0.2h and February 2019: 9.6± 0.7h) and showed no
significant differences (Kruskal–Wallis test, p > 0.05) (Figure 3A
and Supplementary Table 4). On the contrary, ∂13C values
of A. atra tissues were significantly different (Kruskal–Wallis
test, p < 0.05) between February 2018 (−18.4 ± 0.8h), July
2018 (−18.6 ± 0.7h) and February 2019 (−20.9 ± 0.9h)
(Figure 3A and Supplementary Table 4). These seasonal
differences observed in ∂13C values might be related to the
different food source (i.e., autochthonous vs. allochthonous) that
was available in the water column for consumption of A. atra. In
fact, ∂13C values in SPOM samples – that include a wide range
of potential food source for filter feeder organisms – between
March and July 2018 at surface layer (2–10 m) ranged from
−18.3 to−27.1h, while between August 2018 and February 2019
ranged from −21.5 to −29.7h (Figure 3A). Different seasonal
ranges observed in the isotopic signal of SPOM were possibly
determined by the contribution of oceanic surface water and
the increase in freshwater discharge, that usually occur in the
Puyuhuapi Fjord during winter and spring months, respectively
(Schneider et al., 2014). Oceanic waters are indicative of a strong
marine component (∂13C average = −19h), while freshwater
discharge has a high terrestrial signature (∂13C average =−29h)
(Vargas et al., 2011; Lafon et al., 2014; González et al., 2019).
In addition, depleted values of ∂15N with values low 4h
(as those observed between August 2018 and February 2019
in the study area) are indicative of a high terrestrial signal
(Sepúlveda et al., 2011). ∂13C and ∂15N values of SPOM from
2 and 20 m did not show significant differences between
sampling station B3 and B4 (Kruskal–Wallis test, p < 0.05;
Figure 3).

Average ∂13C values of SPOM (2–20 m) among March 2018
and July 2018 (−24.4 ± 1.7h) and between August 2018
and February 2019 (−25.2 ± 0.4h) were significantly more
depleted (Kruskal–Wallis test, p > 0.05) than those measured
in A. atra tissues in July 2018 (−18.6 ± 0.7h) and February
2019 (−20.9 ± 0.9h) (Figure 3A and Supplementary Table 4).
Likewise, average ∂15N values of SPOM between March 2018 and
July 2018 (6.9 ± 0.6h) and between August 2018 and February
2019 (5.5 ± 0.6h) were significantly lower (Kruskal–Wallis test,
p > 0.05) than those measured in A. atra tissues in July 2018
(8.7 ± 0.2h) and February 2019 (9.6 ± 0.7h) (Figure 3A
and Supplementary Table 4). These ∂13C and ∂15N signatures
of A. atra tissues and SPOM samples well agree with previous
reports in Chilean fjords (Mayr et al., 2011; Andrade et al., 2016)
and with studies on bivalves in fish farming areas (Mazzola and
Sarà, 2001; Gao et al., 2006; Redmond et al., 2010).

Since the potential food sources ingested by A. atra are
those which are depleted by 1h in ∂13C and by ∼ 3h in
∂15N compared to the tissues of this consumer (Minagawa and
Wada, 1984; Rau et al., 1990; Post, 2002), we might expect
that the preferentially exploited food source shows values of
−19.4h ∂13C and 5.9h ∂15N in February 2018, −19.6h
∂13C and 5.7h ∂15N in July 2018 and −21.9h ∂13C and
6.6h ∂15N in February 2019 (Figure 3). These isotopic ratios

were close to the more enriched range of SPOM isotopic
signal from 2m deep in the water column (Figure 3) that
mainly correspond to autochthonous organic production by
marine phytoplankton, with ranges of ∂13C between −18 and
−22h (Goericke and Fry, 1994) and ∂15N between 6 and
7h (Wada et al., 1987). In this context, the results indicate
that A. atra preferentially exploits food resources with signals
consistent with autochthonous marine OM in Puyuhuapi Fjord.
However, the average isotopic composition of the salmon food
pellets used in feeding experiments from this study (∂13C
−21.9 ± 2.4h, ∂15N 8.0 ± 2.3h) and in other studies (∂13C
−22.7 ± 1.1h, ∂15N 8.3 ± 2.1h from Sarà et al., 2004 and
∂13C −22.9 ± 0.2h, ∂15N 4.9 ± 0.1h from Sanz-Lazaro
and Sanchez-Jerez, 2017; Figure 3B) overlaps with marine
phytoplankton signal in SPOM samples, mainly in February 2019
(Figure 3B). Estimating the contribution of this allochthonous
salmon feed material to the diet of A. atra is therefore not
so clear cut. The mixing equations clarify this point and
indicate that both allochthonous material derived from uneaten
salmon feed and autochthonous materials highly contribute
to its diet (Supplementary Table 5). In February and July
2018, the greatest relative contributions (92–99%) came from
autochthonous OM, while the terrestrial contribution to the
diet of A. atra was minimal (1–23%) throughout the study
(Supplementary Table 5). Regarding SPOM samples, the highest
relative contributions were from autochthonous OM (40–60%)
and allochthonous material from salmon pellet food (58–87%)
in surface waters (2–10 m). In subsurface waters (20 m) the
highest contributions (40–70%) were mainly from allochthonous
terrestrial material (Supplementary Table 5).

The influence of allochthonous carbon sources on hard-
bottom benthic communities in Chilean fjords has been poorly
studied to date. Some authors have suggested that allochthonous
material from a terrestrial origin plays a minor role as a food
for suspension feeders (Mayr et al., 2011; Zapata-Hernández
et al., 2014) and that autochthonous OM from phytoplankton
production provides one of the principal food sources to these
populations (Andrade et al., 2016). Our data confirm that
phytoplankton carbon plays a primary role in the diet of A. atra
and apparently excluding extensive utilization of terrestrially
derived OM. However, the present study cannot preclude
significant utilization of OM derived from salmon farming.
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