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High-resolution ocean biophysical models are now routinely being conducted at basin
and global-scale, opening opportunities to deepen our understanding of the mechanistic
coupling of physical and biological processes at the mesoscale. Prior to using these
models to test scientific questions, we need to assess their skill. While progress has
been made in validating the mean field, little work has been done to evaluate skill of the
simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify
the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-
resolving coupled Community Earth System Model simulation. We compare results from
satellite remote sensing and ship underway observations in the North Atlantic Ocean,
where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e.,
the arithmetic standard deviation divided by the mean, from the two observational
data sets are approximately invariant across a large range of mean chlorophyll a
values from oligotrophic and winter to subpolar bloom conditions. This relationship
between the chlorophyll a mesoscale variability and the mean field appears to reflect
an emergent property of marine biophysics, and the high-resolution simulation does
poorly in capturing this skill metric, with the model underestimating observed variability
under low chlorophyll a conditions such as in the subtropics.

Keywords: geostatistical analysis, North Atlantic Ocean, Community Earth System Model, model validataion,
chlorophyll

INTRODUCTION

Mesoscale variability of phytoplankton biomass and chlorophyll a, including “patchiness,” has long
been observed in the global ocean, where mesoscale is defined here as O(10–100 km) and weeks-
months (e.g., Mackas et al., 1985; McGillicuddy, 2016). Much debate has centered around marine
phytoplankton stock variability as either being a passive reflection of the mesoscale turbulent
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physical flow or a response to biological rate heterogeneity arising
from the resulting variable nutrient, light, stability fields, and
mobile grazers (Denman and Platt, 1976; Currie and Roff, 2006).
Sorting through impacts of biological, chemical, and physical
interactions varying in space and time is an active area of research
(McGillicuddy, 2016), and it is increasingly clear that the impacts
of currents, fronts, and eddies on marine ecosystems are dynamic,
evolving as a function of geography, season, and biological
state. Understanding these interactions and their biogeochemical
impacts ultimately informs fisheries management and also the
quantification of export production and the biological pump
(Harrison et al., 2018).

The complexity of biophysical variability is often difficult
to resolve in observational studies, so our understanding can
benefit from the use of numerical models (McGillicuddy and
Franks, 2019). Within these models, realistic representations
of chlorophyll a are necessary for accurate estimates of
primary production. At global or even basin scales, resolving
mesoscale ocean processes has been limited by computing
power, and thus the physical ramifications of mesoscale
eddies often have been accounted for by parameterizations
of isopycnal mixing and eddy-induced transport in low-
resolution simulations (Gent and Mcwilliams, 1990). These
low-resolution ocean models have been used for most
multi-decadal hindcasts of marine ecosystem and ocean
biogeochemical dynamics, as well as almost all century-scale
coupled Earth System Model projections of future climate
change (e.g., Bonan and Doney, 2018). With the emergence
of routine, high-resolution, global-scale simulations comes
new opportunities to test the impact of parameterizations in
more computationally accessible low-resolution simulations
and to investigate specific science questions on mesoscale
biophysical dynamics.

Before we can use the model to evaluate the origins of
biological patchiness, we need to validate the model skill of
not only reproducing the mean field but also of simulating the
variability. The physical oceanography community has invested
considerable effort in developing, comparing, and evaluating the
model skill of ocean simulations across horizontal scales. Studies
on paired ocean simulations from eddy-resolving (nominally
1/10th degree and smaller) through eddy-permitting to non-
eddy resolving (nominally 1 degree and larger) demonstrate
how mesoscale processes affect physical variability as well
as the modeled ocean mean state (e.g., thermocline depth,
overturning circulation, location, and strength of boundary
currents; Bryan et al., 2007). Standard ocean physical metrics
have been developed for assessing the magnitude and spatial and
temporal patterns of simulated mesoscale variability, including
comparisons against drifter and satellite-derived eddy kinetic
energy, sea surface height anomalies, and sea surface temperature
variability (Hurlburt et al., 2009).

Ocean biological tracers have different source and sink
patterns and time-scales than physical tracers, and thus
parameterizations, horizontal resolutions, and scale closures that
are adequate for physics may still be insufficient for simulating
ocean biology and biogeochemistry (Doney, 1999). Therefore,
a similar systematic assessment of mesoscale biophysical

simulations is warranted, examining both model dynamics
and evaluating model skill of biological metrics relative to
observational constraints from ships, autonomous platforms, and
satellite remote sensing (Capotondi et al., 2019). Such efforts
build on experience with biophysical model-data evaluation of
simulated seasonal cycles, spatial climatologies, and interannual
variability in low-resolution global and regional models (Doney
et al., 2009; Stow et al., 2009) and require increasing focus
on specific techniques for characterizing the behavior simulated
mesoscale variability at a global scale.

Early studies on basin-scale mesoscale biophysical simulations
illustrated how mesoscale features alter vertical stratification,
mixed layer depths, and upwelling velocities, thus modulating
nutrient and light supply for phytoplankton and biological
productivity (Oschlies and Garçon, 1998; McGillicuddy et al.,
2003). Recent work has continued down this thread, showing
that improved representation of the mean ocean circulation at
high-resolution changes the simulated biophysical interactions,
altering regional primary production (Clayton et al., 2017)
and bringing regional carbon export more in line with
observations (Harrison et al., 2018). Harrison et al. (2018)
showed that simulations without mesoscale resolution can over-
or underestimate local export production by 50%, particularly
in energetic regions. Mesoscale modeling simulations are also
used to explore large-scale patterns and variability of properties
ranging from air-sea gas fluxes to plankton community structure
and biodiversity.

Because of data limitations, the possible metrics for directly
evaluating simulated mesoscale biophysical dynamics is
rather limited. Following previous studies (e.g., Hurlburt
et al., 2009), we focus on the variability of surface ocean
chlorophyll a, where there is a wealth of data from underway
ship observations, moorings, autonomous platforms, and
satellite remote sensing. Model mesoscale variability in surface
chlorophyll a manifests as an emergent property of coupled
physical-biological processes, and explicitly examining simulated
chlorophyll a variability may provide insight into whether
the hypotheses underlying the model’s formulation are not
incorrect—and would enable studies using the model to evaluate
the origins of phytoplankton patchiness.

We focus here on analyzing the skill of a high-resolution,
eddy-resolving biophysical ocean simulation in capturing
magnitude and length scales of observed phytoplankton
variability using structure function (variogram) analysis (Journel
and Huijbregts, 1978; Clark, 1987). This geostatistical technique
(Cressie, 1993) has been used in the past to characterize
variability in ocean surface chlorophyll a observations (Denman
and Freeland, 1985; Yoder et al., 1987; Doney et al., 2003; Tortell
and Long, 2009; Glover et al., 2018), and importantly, does
not require gap-filling as is required for spectral analysis of
chlorophyll a variability (Platt, 1972; Denman and Platt, 1976;
Steele and Henderson, 1979; Gower et al., 1980; Weber et al.,
1986; Denman and Abbott, 1988, 1994). Structure function
analysis reveals the magnitude of spatial variability resolved in
the data (sill), the spatial length scales at which the observations
become independent (range), and the unresolved noise in
the data (nugget).
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We concentrate our analysis on the western North Atlantic
Ocean where pronounced mesoscale eddies are thought to play
a large role in controlling the total magnitude of the annual
phytoplankton bloom, the largest spring bloom in the world
(McGillicuddy et al., 2003; McGillicuddy, 2016; Behrenfeld et al.,
2019). The region encompasses a range of environments, each
with its own dynamical regime from the oligotrophic subtropical
gyre to the Gulf Stream to the subpolar gyre (Della Penna
and Gaube, 2019). This study is aided by ship and airborne
observational data from field campaigns in this region carried
out through the North Atlantic Aerosols and Marine Ecosystems
Study [NAAMES, (Behrenfeld et al., 2019)] and prior satellite
ocean color remote sensing analysis by Glover et al. (2018).

MATERIALS AND METHODS

Numerical Simulation
We analyzed output from an eddy-resolving, 0.1◦ (∼10 km),
global simulation of the ocean and sea-ice components of the
Community Earth System Model (CESM; Harrison et al., 2018).
The CESM ocean component used was the Parallel Ocean
Program version 2 (Smith et al., 2010), and biogeochemistry
was simulated with the Biogeochemical Element Cycle model
(Moore et al., 2013). The model was initialized with World
Ocean Circulation Experiment temperature and salinity and
global climatology of biogeochemical variables [see Harrison et al.
(2018) for more complete details on model parameterizations,
initialization, spin-up, forcing, and integration]. Following
initialization, the simulation was integrated for 5 years, with
model output data saved as 5-day means. We analyzed output
from years 4 and 5 of the simulation, subset for the western
North Atlantic Ocean (25–55◦W, 30–60◦N), and used the surface
total chlorophyll a concentration as the biological tracer for the
geostatistical analysis.

Simulated chlorophyll a concentrations from this model
have been shown to match observed mean fields reasonably
well for basin-scale to global patterns (Harrison et al., 2018),
but the model has not been evaluated at the regional scale.
Yang et al. (2020), who compared aspects of the simulated
bio-physical seasonal cycle against observations from profiling
floats and satellite ocean color imagery in the NAAMES region
of the western North Atlantic, pointed to potential model
deficiencies, but the comparison was hindered by challenges
matching data in space and time. Specifically, the high-resolution
ocean model generates its own independent mesoscale turbulent
field, hindering the utility of point-to-point comparisons but
illustrating the value of statistical skill metric comparisons for
mesoscale variability (Doney, 1999).

Observations
Ship-based observations of surface ocean chlorophyll a
concentration were acquired as part of the four campaigns
of NAAMES in the western North Atlantic (Behrenfeld et al.,
2019). The cruises took place November 6 -December 1, 2015
(NAAMES 1), May 11 -June 5, 2016 (NAAMES 2), August
30-September 24, 2017 (NAAMES 3), and March 20-April 13,

2018 (NAAMES 4) to capture different bloom stages at different
times in the seasonal cycle. Surface-water spectral absorption was
measured continuously underway on the research ship using an
ac-s hyperspectral absorption and attenuation meter (Sea-Bird
Scientific), and particulate absorption was determined using
a calibration-independent method by differencing total and
dissolved absorption each hour (Slade et al., 2010). Chlorophyll
a concentrations were derived using the line height method
(Roesler and Barnard, 2013), where the particulate absorption
in the red (676 nm) is regressed against independently-derived
chlorophyll a concentration from extracted pigment samples;
the relationship was calculated specifically for the NAAMES
data. Data, originally collected at an average frequency of one
measurement per 0.3 km, was then interpolated using a piecewise
cubic interpolation onto a 9 km grid for comparison to model
and satellite products. This interpolation shows no appreciable
impact on the resolved variability (Supplementary Figure 1).

Satellite Ocean Color Data
Geostatistical analysis of remotely sensed surface chlorophyll
a was completed in Glover et al. (2018) and those results
are used for comparison here. They considered global surface
chlorophyll a concentration derived from 13 years of SeaWiFS
(1998–2010) to 8 years of MODIS/Aqua (2003–2010) using OC4
and OC3M algorithms (O’Reilly et al., 2000), and we have
subset results from the western North Atlantic here. SeaWiFS
and MODIS/Aqua level-3 imagery have a nominal resolution of
9 km. The same mathematical approach (detailed below) and
programming scripts (in MATLAB R©) were used in our analysis
as in Glover et al. (2018) for a consistent comparison.

Variogram Analysis
Variogram, or structure function analysis, is a geostatistical
approach that provides us with an analytical expression of how
the spatial variance/covariance of a field changes as a function
of distance and direction, even if the sampled data has gaps
as is common with satellite and field observations (Cressie,
1993; Doney et al., 2003; Glover et al., 2018). The empirical
semivariance (γ∗) in 1 dimension is given by:

γ∗ (h) =
1

2N(h)

∑N(h)

k
[C
′

(xk)− C
′

(xk + h)]2 (1)

Where h is the vector of distances between data pairs, N(h) is
the number of data pairs at each distance, C’ is the data anomaly
from a Reynolds decomposition involving the removal of a large-
scale spatial mean field, and xk is a spatial location in the data set
(Cressie, 1993). The semivariogram is applied in 2-D using the
full vector of potential data pairs.

The C’ anomaly field is assumed to contain variance from two
sources, spatially-correlated variability from sub-mesoscale and
mesoscale process and spatially uncorrelated noise. Generally, as
data pairs get further apart they are less likely to be influenced by
small-scale spatial correlations, and therefore the semi-variance
is expected to increase with h. The lag distance at which that
increase saturates at a plateau is the distance at which the data
becomes independent, i.e., do not covary. To identify the height
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of that plateau (the sill) and the distance at which it occurs
(the range), we fit the empirical variogram with a nonlinear
regression model. Here we use a spherical model (Cressie, 1993):

γ (h) =

{
c0 + (c∞ − c0)

[
3
2

h
d −

1
2
h3

d3

]
for h ≤ d

c∞ for h > d;
(2)

Where co is the unresolved variance (or nugget) from
spatially uncorrelated noise and/or sub-grid scale processes,
c∞ is the total variability (the sill) at distances exceeding
the correlation length scale, d is the decorrelation length
scale (range). The relative sill, which represents the resolved
variability, is then the difference between c∞ and c0. Relative
sill (resolved variability) is reported as directly computed
from Eq. 2 unless explicitly stated to be in terms of the
coefficient of variation (CV equal to standard deviation
divided by the mean) or the arithmetic standard deviation
(Glover et al., 2018).

Processing and Analysis
Our analysis approach matched that of Glover et al. (2018).
Before geostatistical analysis, all surface chlorophyll a estimates
were log10 transformed to follow past convention (e.g., Glover
et al., 2018) and because, to first order, it produces roughly
normal distributions for the time and space sub-domains used
to compute geostatistics (Campbell, 1995). To isolate anomalies,
we used a 200 km spatial low-pass filter with a 31-day Hamming
window in the N-S and E-W directions to remove variability
larger than mesoscale and subtract the large-scale mean. Model
output was divided into 5◦ × 5◦ boxes, and fully 2-dimensional
empirical variograms were computed for each 5-day time step
using a Fast Fourier Transform-based variogram approach
(Marcotte, 1996). A 1-D spherical model (forced with a zero
nugget for the CESM model output) was then fit to monthly
composites of those empirical variograms using a Levenberg-
Marquardt nonlinear regression routine to find a monthly
composite sill and range in the North-South and East-West
directions for each grid box.

Underway field observations of chlorophyll a were
interpolated onto a 9 km grid to more closely match that of the
model (∼9 km) and satellite (9 km) data. At this resolution,
both the resolved and unresolved variability recovered are a
combination of mesoscale and submesoscale variability, with
most of the latter likely being found in the nugget. The gridded
field observational data were then split into linear segments to
avoid zig-zags in the path, and a linear detrend was applied. We
then calculated the 1-D empirical variogram and fit that using a
spherical model.

RESULTS

The western North Atlantic region of focus here spans from
the upwelling-favorable subpolar gyre to the seasonally stratified
subtropical oligotrophic gyre separated by a temperate zone
and energetic Gulf Stream (see Della Penna and Gaube, 2019).

Overall, regional surface ocean chlorophyll a concentrations
in the model and in field observations peak in May with a
pronounced seasonal cycle in the northern sector [Figure 1; see
also Behrenfeld et al. (2019) and Yang et al. (2020)]. Surface
chlorophyll a concentrations remain relatively low (<0.15 mg/L)
year-round in the subtropical gyre, but the northern extent of
the oligotrophic region varies over time, pushing northward in
the Spring and Fall. The model produces high chlorophyll a
bands near the coast in the temperate region surrounding the
core of the subpolar gyre. Previous work, including a recent
study by Yang et al. (2020), has shown that the model may be
overestimating productivity at that frontal region. In contrast,
field observations document higher chlorophyll a in May in the
more central subpolar region than is seen in the model results
(Figure 2). Field observations closely resemble SeaWiFS and
MODIS climatology for the region.

Geostatistical analysis of the CESM simulation shows that
simulated mesoscale surface chlorophyll a variability is generally
isotropic, meaning the magnitude of the resolved variability and
the spatial scale (range) of variability are similar in the North-
South and East-West directions (Figure 3). A seasonal cycle is
detectable in the subpolar and temperate regions with higher
resolved variability (sill) during the peak of the Spring bloom
(average sill CV, of 0.54) compared to the Fall/Winter (average
sill CV 0.04). The seasonal cycle is much less pronounced south of
35◦N, corresponding to the oligotrophic region. Here the range in
relative sill values in terms of CV is 0.03–0.19. Resolved variability
is highest (CV near 1 in May) in the boundary current front
around Newfoundland (Figure 4).

Both modeled and remotely sensed surface chlorophyll a show
higher annually-averaged resolved variability in the northern
portion of the study region as compared to the south, particularly
north of 35◦ (Figure 4). The regional change in resolved sill is
more pronounced in the CESM results than in satellite imagery,
which shows a more gradual transition from a resolved sill of
approximately 0.14 to 0.04. While we might expect the range or
decorrelation length scale to be longer in the subtropics than in
the subpolar region due to changes in physical stirring length
scales with the Rossby radius (Doney et al., 2003), we see no clear
difference in range in the model (annual mean 86 km North of
35◦N and 88 km South of 35◦) in contrast to a decreasing trend
of range with latitude (Figure 4).

The patterns shown in the spatial maps were further analyzed
by plotting the resolved arithmetic standard deviation from the
resolved sill against the mean chlorophyll a concentration with
lines of constant CV overlain (Figure 5; see Glover et al., 2018).
Arithmetic standard deviation increases with mean chlorophyll a
values for both observed and model data sets. The CV of ship-
based field observations hovers around 0.3 for all cruise months
and all locations along the cruise transect, relatively invariant
of the mean chlorophyll a concentration. The CV of satellite
remotely-sensed surface chlorophyll a is also uniform and slightly
lower, approximately 0.2 for all months and all 5◦ × 5◦ grid
boxes, and again does not correlate strongly with chlorophyll
a concentration. For log-normal variables, CV is expected to
depend on the variance of the log-transformed variable but
not the mean data value [see Appendix, Glover et al. (2018)],
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FIGURE 1 | Monthly average Log10 surface chlorophyll a concentration for March, May, September, and November from year 5 of the CESM simulation. Black
rectangle on the western side of the left panel (March) indicates region displayed in Figures 3, 4.

FIGURE 2 | Field measured Log10 surface chlorophyll a concentration for the four NAAMES campaigns, organized by month. Ship-based, underway measurements
shown in closed circles. Grayed rectangle indicates grid region displayed in Figures 3, 4.

FIGURE 3 | Geostatistical analysis of chlorophyll a from the Community Earth System Model (CESM). Simulated monthly average chlorophyll a resolved variability as
computed from Eq. 2 (sill, top) and range (bottom) for March, May, September, and November in 5◦ × 5◦ grid boxes for the western North Atlantic sub-region
denoted in Figure 1.
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FIGURE 4 | Geostatistical analysis of annual average surface chlorophyll a resolved variability as computed in Eq. 2 (sill, top) and range (bottom) from CESM,
MODIS, and SeaWiFS in 5◦ × 5◦ grid boxes.

FIGURE 5 | Resolved arithmetic standard deviation of surface chlorophyll a variability against Log10 surface chlorophyll a concentration for CESM (blue), field
observations from NAAMES underway ship data (orange), and MODIS and SeaWiFS satellite ocean color (green) over study region in the western North Atlantic.
Dotted lines indicate lines of constant coefficient of variation (CV).

similar to the pattern observed in the ship underway and
remote sensing data.

In contrast to the field and satellite observations, modeled
surface chlorophyll mesoscale field has CVs ranging from 0.01
to 1.0, with CV generally increasing with the mean chlorophyll a

value. Thus, when comparing CESM to observations, CESM CV
is lower than expected at low chlorophyll a (in winter and the
subtropical gyre) and higher than expected at high chlorophyll a
(such as in the boundary front and in peak bloom conditions; see
also Supplementary Figure 2).
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FIGURE 6 | Normalized histograms of Log10 Chlorophyll a concentration from
the CESM model (top, colored by latitudinal band), satellites (middle), and ship
observations (bottom).

DISCUSSION AND CONCLUSION

Improved measures of mesoscale biological variability in the
surface ocean are needed both to address scientific questions and
test the skill of eddy-resolving marine biophysical simulations.
Geostatistical approaches, such as the variogram techniques
used here, have some distinct advantages in that they can
be applied to both 1-D and 2-D fields with data gaps (e.g.,
clouds in satellite remote sensing), partition resolved spatial
variability from unresolved instrument and algorithm noise
and sub sample-resolution scale biophysical processes, and
provide a measure of the spatial correlation scale or range
(Doney et al., 2003; Glover et al., 2018). Geostatistical techniques
complement more eddy-centric compositing techniques
(Chelton et al., 2011; Gaube et al., 2013; Rohr et al., 2020a,b)
by incorporating frontal features as well as well-defined
mesoscale eddies.

The geostatistical analysis of the NAAMES field observations
from the western North Atlantic generally indicated similar
patterns of resolved, mesoscale variability in surface chlorophyll
a from ship-based underway data and satellite ocean color
imagery, providing further support for the satellite results
presented in Glover et al. (2018). Both the field and satellite

data indicate relatively uniform, though somewhat offset, levels
of CV (arithmetic standard deviation divided by the mean value)
across a wide span in mean surface chlorophyll a concentrations,
from oligotrophic to bloom conditions. The observational results
indicate that the fractional variability of surface chlorophyll is
similar across a wide range of ecosystem states, from oligotrophic
to bloom conditions and across time from bloom initiation, peak,
and termination; effectively, there is a similar normalized width
of the local bell curve distribution for surface chlorophyll. The
result of uniform CV is not simply an artifact of statistics for a
log-normal variable but reflects an emergent property of marine
biophysics likely arising from some combination of physical
stirring and stimulation of biological production.

Differences in resolved variability across observational data
sets may reflect differences in the fundamental spatial resolution
of the sampling techniques and thus differences in the degree to
which submesoscale variability is captured. The slightly higher
mean CV for the underway ship data, when compared to
MODIS and SeaWiFS, might arise because the ship observations
are capturing more submesoscale variability. The influence of
these small-scale processes is retained even after we interpolate
the ship observations onto a 9 km grid, as indicated by the
lack of change in resolved variability when going from raw
data at approximately 0.3 km resolution to the gridded data
(Supplementary Figure 1).

The eddy-resolving (1/10th degree horizontal resolution)
CESM ocean bio-physical simulation (Harrison et al., 2018)
created mesoscale biological patchiness at roughly the same
magnitude and spatial decorrelation scales as observed in
the field and with remote sensing. However, the simulation
exhibits a striking difference from the field and remote
sensing data in the relationship of the arithmetic standard
deviation of mesoscale surface chlorophyll anomalies and
the background mean field. In striking contrast to the
relatively uniform CV found across a wide range of observed
chlorophyll levels, the simulated CV of resolved mesoscale
variability increases steeply with mean surface chlorophyll a
levels. The model-resolved arithmetic standard deviation is
biased low relative to observations while surface chlorophyll
a concentrations are low and is too high where chlorophyll
a is high.

Some of this discrepancy could arise because the underlying
distribution of log chlorophyll a values in the region is further
from “normal” for the model when compared to observations
(Figure 6). However, within regional (5◦ × 5◦ bins) and temporal
(monthly) domains relevant to the variogram analysis, the data
is also approximately log-normal with the median skewness in
each domain within ±1.6 (Supplementary Figure 3). Further,
if we exclude results when the skewness is outside the bounds
of ±1, consistent with best practices detailed in Kerry and
Oliver (2007), the model’s variable CV with chlorophyll still
holds (Supplementary Figure 4). While some of the issues likely
reflect errors in the mean state of the model [see Harrison et al.
(2018)], there are likely additional dynamical issues. The CV
biases represent a clear deficiency in the mesoscale variability
predicted by the model and one that would not be as obvious from
simple visual comparisons of observed and simulated maps of the
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standard deviation of surface chlorophyll that combine mesoscale
and mean field skill.

The model resolution is 1/10th of a degree, which is
approximately 9 km at this latitude in the temperate/subpolar
North Atlantic. Thus, based on a regional Rossby radius of
deformation of 10–35 km (Chelton et al., 1998), the model only
resolved mid- to large mesoscale eddies and frontal features
(10 s to 100 km) but did not capture smaller mesoscale
and submesoscale processes. The effective spatial resolution of
model biophysical dynamics may be larger than the nominal
grid resolution such that smaller simulated mesoscale features
generate overly weak chlorophyll anomalies in oligotrophic
conditions. Also, ocean turbulence and biophysical variability
extend well down into the submesoscale domain O(1–10 km) and
smaller scales (Lévy, 2008; Lévy et al., 2018) that is not captured in
the model. While the submesoscale variability in the observations
would be partitioned into the variogram’s unresolved variance
term, some of the submesoscale biophysical processes could be
being rectified into the resolved mesoscale variability. Those
unaccounted-for processes may be particularly important in
generating spatial variability while background chlorophyll a
is low, such as in fall/winter and in the oligotrophic gyre.
This could point to problems with capturing physical nutrient
supply mechanisms driving eddy-scale anomalies. In contrast,
under high chlorophyll a conditions, the model arithmetic
standard deviation is biased high. This could potentially be
driven by boundary current processes rather than open-ocean
mesoscale eddies.

As biophysical and biogeochemical ocean models continue
to drill down to finer resolution, we need metrics to assess the
skill of the predicted time/space variance fields, not simply the
mean fields. In addition to standard bio-physical metrics such
as mean state of bloom magnitude (e.g., Doney et al., 2009;
Stow et al., 2009), we also need to include an assessment of a
model’s ability to reproduce chlorophyll a variability seen in the
real world, leveraging the wealth of satellite and autonomous
platform data. Without this diagnostic, mesoscale simulations
lose some of their utility in determining the mechanisms of
bio-physical coupling driving chlorophyll a patchiness. The
observation-tested simulations will also provide an avenue
for developing improved parameterizations of sub-gridscale
biophysical dynamics (e.g., nutrient injection by episodic
upwelling events) that would complement efforts on dynamically
consistent physical mixing parameterizations across resolution
that are already under development (e.g., Jansen et al., 2019).
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