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Zooplankton can serve as indicators of ecosystem health, water quality, food web
structure, and environmental change, including those associated with climate change
and ocean acidification (OA). Laboratory studies demonstrate that low pH and high
pCO, associated with OA can significantly affect the physiology and survival of
zooplankton, with differential responses among taxa. While laboratory studies can be
indicative of zooplankton response to OA, in situ responses will ultimately determine
the fate of populations and ecosystems. In this perspective, we compare expectations
from experimental studies with observations made in Puget Sound (Washington,
United States), a highly dynamic estuary with known vulnerabilities to low pH and
high pCO,. We found little association between empirical measures of in situ pH and
the abundance of sensitive taxa as revealed by meta-analysis, calling into question
the coherence between experimental studies and field observations. The apparent
mismatch between laboratory and field studies has important ramifications for the
design of long-term monitoring programs and interpretation and use of the data
produced. Important work remains to be done to connect traits that are sensitive to
OA with those that are ecologically relevant and reliably observable in the field.

Keywords: ocean acidification, zooplankton, Puget Sound, meta-analysis, pteropods, calcification, pH

INTRODUCTION

Zooplankton are excellent indicators of ecosystem health, food web function, and water quality
(Beaugrand, 2005) because their short life cycles allow them to respond to seasonal variations
and abrupt changes in environmental conditions. While the response of zooplankton to ocean
acidification (OA) is understudied compared with that of many benthic species, the critical
importance of zooplankton to marine food webs underscores the need to better understand
their sensitivities to changing seawater carbonate chemistry. Laboratory studies show that low
pH and high pCO; associated with OA can significantly affect the survival, growth, calcification,
development, and reproduction of planktonic organisms (Kroeker et al., 2013; Busch et al., 2014;
Cripps et al., 2014; Busch and McElhany, 2016; McLaskey et al., 2016; Tills et al., 2016; Bednarsek
etal.,, 2017; Lischka and Riebesell, 2017), and that sensitivity to current and projected levels of pH
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and pCO, can vary substantially among zooplankton taxa.
Understanding the ecological context in which these responses
occur is important, given the co-occurring environmental
stressors (e.g., increasing temperature and oxygen stress) to
which zooplankton are exposed.

Here, we present the results of an exploratory study to assess
the level of correspondence between the results of experimental
studies and field observations of zooplankton abundance in a
natural setting. Specifically, we asked whether relative sensitivities
to pCO;, as reported in the literature and revealed through meta-
analysis could explain a significant proportion of the variation in
zooplankton abundance at two time points, across six stations,
in Puget Sound, Washington. We focused on Puget Sound
because pH and pCO, are known to vary substantially across
short spatial and temporal scales, often reaching values that are
more extreme than in open-ocean environments (Feely et al,
2010; Bianucci et al., 2018; Pelletier et al., 2018), and because
the fate of zooplankton in nearshore environments such as this
imposes critical controls on food webs and fisheries in coastal
environments. We interpret our results in the context of long-
term monitoring studies and their utility in detecting biological
response to ocean change.

EVIDENCE FROM CONTROLLED
EXPERIMENTS

To better understand zooplankton sensitivities to OA
conditions in Puget Sound, we performed a meta-analysis of
experimental studies reporting responses of seasonally abundant,
holoplanktonic taxa known to occur in Washington State’s
marine waters. Meroplanktonic larvae of shellfish, including
crabs, were also included due to their regional economic and
ecological importance. Studies published in peer-reviewed
journals over the 10-year period from January 2009 to February
2019 were included. We modified the approach of Wittmann
and Portner (2013) to determine the effect of increasing pCO,
on major taxonomic groups and to compare sensitivity across
groups. The coarse nature of our taxonomic groupings was
necessitated by the relative scarcity of published results and
was similar to the broad taxonomic levels used by Wittmann
and Portner (2013). For each species, we interpolated and
extrapolated data to help compensate for missing values and
cleaned the dataset to eliminate duplicative response categories.
For example, because weight and diameter are both measures
associated with growth, only one was used in the meta-analysis,
thereby reducing the likelihood of over-representation of
response categories by including only one experiment per
response category per study. Thirty-six studies met our criteria
for inclusion in the meta-analysis, representing 17 species and
eight taxonomic groups.

Negative responses increased with increasing levels of pCO;
across taxonomic groups, with the exception of shrimp and
larvaceans (Figure 1). Pteropods emerged as the taxon most
sensitive to OA, showing negative effects at pCO; levels as
low as 530 patm. Copepods were the second-most sensitive
group, with reproduction and survival negatively affected at

pCO; levels as low as 824 patm. Larval bivalve calcification,
growth, development, reproduction, and survival were negatively
affected, with calcification affected at pCO; levels as low as 545
patm. Shrimp were the only taxon to show positive response
to OA conditions, but this was not consistent across studies.
Krill development, growth, metabolism, and survival were all
negatively affected at pCO; levels as low as 956 patm, while
crab larvae showed tolerance up to pCO; levels of 1,361 patm.
Jellyfish growth was affected at pCO;, levels above 1,000 patm, but
other response categories showed no effect. Larvaceans showed
the least sensitivity, with no significant response to the levels of
pCO; tested. We note, however, that our meta-analysis included
only one study of larvaceans.

Pooling data across all taxa revealed that calcification was
the response category most sensitive to increasing pCO,,
followed by development, growth, reproduction, survival, and
metabolism, in that order.

MATCHING EXPERIMENTAL DATA WITH
FIELD OBSERVATIONS

To compare results of the meta-analysis with field observations,
we collected zooplankton via vertical tows and used standard
techniques to characterize water chemistry at six stations in Puget
Sound in 2017 from June 23 to 30 and again from August 25 to
September 01 (hereafter referred to as June and August). The
sampling stations and dates were chosen to cover a range of
physical and chemical conditions, targeting stations where high
pCO;, or low pH had been previously reported (Feely et al,
2010; McLaskey et al., 2016; Pelletier et al., 2018). We chose
abundance as our response variable because abundance or its
co-variate, biomass, is the most commonly measured variable
in long-term monitoring studies, including those that have been
used to detect changes due to ocean condition (e.g., Hays et al,,
2005; Mackas and Beaugrand, 2010; McKinstry and Campbell,
2018). Moreover, abundance has been used to detect response to
change in short-term studies of marine microbes (Currie et al.,
2017; Rahlff et al.,, 2021).

Twenty-five taxonomic groups of zooplankton were
represented in our samples. Copepods were abundant across
stations, accounting for 70% of total abundance across all
samples, while larvaceans were abundant at two stations in
August, accounting for 15% across all samples.

To compare sensitivities between experimental and field
settings, we used the taxon-specific sensitivities revealed by the
meta-analysis to infer a hierarchical range of susceptibilities to
pCO,. We grouped taxa into four categories, with pteropods (and
all other gastropods), copepods, and bivalve larvae designated as
“most susceptible”; shrimp and krill as “susceptible”; crab larvae,
jellyfish, and larvaceans as “least susceptible”; and all other taxa as
“insufficient data.” The distribution of differentially susceptible
taxa varied across stations and sampling points (Figure 2), but
overall we detected no clear association between zooplankton
abundance and sensitivity as inferred from meta-analysis.

The BIOENV function (R package “vegan™ Clarke and
Ainsworth, 1993) was used to estimate the combination
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FIGURE 1 | Top panel: Percent (%) of representative experiments across all taxonomic groups (pteropod, copepod, bivalve larvae, shrimp, krill, crab larvae, jellyfish,
and larvacean) exhibiting positive (green), negative (red), or no significant response (yellow) to elevated levels of pCO, (watm). The number above each bar indicates
the number of experiments analyzed for each level of pCO», not including interpolated or extrapolated data. Bottom panels: Responses to varying levels of pCO2 by
taxonomic group, with n representing the number of studies included in the analysis.
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of environmental variables most highly correlated with the
biological matrix. The best fit model did not include pCO,
or its covariate, pH, but instead included a combination
of minimum temperature, maximum dissolved oxygen, and

minimum fluorescence. Research indicates that zooplankton
are negatively affected by pCO, conditions that currently
occur in Puget Sound, including conditions that were observed
in this study (Barton et al., 2012; McLaskey et al., 2016;
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FIGURE 2 | Total abundance of zooplankton (individuals/m?) by broad taxonomic grouping at six stations established by the Puget Sound Regional Synthesis Model
program (P8, P12, P15, P28, P38, and P402) sampled in Puget Sound, WA, United States in June and August 2017. Isopods and arachnids were recorded three or
fewer times and were omitted. The color of each taxon is based on estimated levels of susceptibility to ocean acidification derived from the meta-analysis: red taxa
are most susceptible, yellow taxa are susceptible, blue taxa are least susceptible, and gray taxa have insufficient data. The mean pH for each station is recorded in

Bednarsek et al., 2017, 2020c). Our results, however, did not
suggest that zooplankton abundance was responsive to low pH or
waters undersaturated with respect to Q,,; if effects were present,
they were not detectable by our methodology. The mean values
of pH observed across stations ranged from 7.45 to 7.90; for
comparison, the pH predicted for the surface ocean by the end
of this century is 7.75 (IPCC, 2014).

DISCUSSION

Zooplankton abundance as measured in the field did not reflect
evidence from laboratory studies regarding organismal response
to low pH/high pCO,. Taxa reported to be most susceptible to
low pH in the laboratory reached high abundances at stations
with pH as low as 7.45. Our analysis revealed that temperature,
dissolved oxygen, and fluorescence, but not pH, were leading
environmental variables influencing zooplankton abundance at
the locations and dates sampled.

Zooplankton abundance tends to be positively associated with
primary production (or its correlate, chlorophyll fluorescence),
and our observations confirm the importance of primary
production to zooplankton abundance in Puget Sound. This
strong positive relationship is consistent with evidence that food
availability can mediate organismal response to OA (Thomsen
et al,, 2013; Pansch et al., 2014; Ramajo et al., 2016). We note,
however, that this is not always the case: for example, Brown
et al. (2018, 2020) found that food sufficiency exacerbated the
negative effects of low pH on organismal performance. Given
our limited dataset, the relationship between food availability and
zooplankton abundance in our study should be interpreted with
caution with respect to zooplankton response to OA.

Although several of our stations were similar in the
physical and chemical properties we measured, their zooplankton
communities differed, especially in our samples from August.
Notably, the stations differ in depth, but according to our
analyses, depth did not appear as a significant explanatory
factor. Factors that we did not measure, such as life-cycle
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timing, competition and predation, and physical factors such
as advection, could contribute to differences in community
composition. Moreover, while all species considered in this study
inhabit Washington waters, most studies included in the meta-
analysis used specimens collected from outside of our study
area. Consequently, we cannot evaluate the potential influence
of local adaptation, including changes in gene expression that
can act on short timescales. Accounting for local adaptation
will be important in any study that strives to make inferences
about the response of local populations to OA conditions, but
the difficulties of measuring local adaptation at meaningful scales
remain considerable.

The expression of behavioral traits likely plays important but
unstudied roles in determining differential sensitivity to OA in
natural habitats. Some zooplankton species exhibit behaviors that
can influence their ability to tolerate or avoid stressful conditions.
Copepods, for example, have been shown to actively adjust their
position or motility in response to a variety of stimuli, including
turbulent flow (Michalec et al.,, 2017), light (Martynova and
Gordeeva, 2010), pollutants (Michalec et al., 2013), and hypoxia
(Keister and Tuttle, 2013), while echinoderm larvae can alter their
swimming behavior to avoid low pH (Maboloc et al., 2020). Our
data collection methods almost certainly obscured any behavioral
responses that might have occurred.

Moreover, we cannot estimate the duration of individual
exposure to specific levels of pH or other stressors. While
seawater pH varies seasonally in Puget Sound (Feely et al., 2010;
Pelletier et al., 2018), variation also occurs over diel cycles and
short-term changes in circulation (Murray et al., 2015). Variation
in the duration of exposure could partially explain why the meta-
analysis revealed copepods to have high sensitivity to OA but our
field observations did not. Zooplankton species and life stages
with stronger vertical migration capabilities have been associated
with higher tolerance to low pH because they experience a
wide range of pH daily (Lewis et al, 2013). Our decision to
identify samples to higher-order taxonomic levels (i.e., not to
genus or species) allowed broad assessment across taxa, but
constrained our ability to detect species-specific differences in
response to environmental conditions, including those caused by
differences in behavior.

Copepods dominated nearly every station we sampled, and
much of the mismatch we observed between experimental and
field observations could be attributable to our categorization of
copepods as “most susceptible.” A more detailed look conceivably
would reveal differential responses among species and life stages
of copepods, not all of which are likely to be highly susceptible
to OA. Our analysis failed to capture variation at this level, and
in assigning all copepods to the same category, we could have
overestimated the abundance of highly susceptible taxa. This
observation suggests that, for monitoring programs, sampling to
the lowest possible taxonomic level is advisable. It also cautions
against the use of coarse taxonomic data to infer ecological
response or for use as input to numerical models.

New research that has been published since the completion
of our meta-analysis suggests that our results could over- or
underestimate susceptibility among the taxa we included. One
such study demonstrates that early life stages of a common

copepod in Puget Sound—a taxon in the most susceptible
category according to our meta-analysis—are generally tolerant
of short-term direct effects of OA (McLaskey et al., 2019).
Another study found that larval crabs—a taxon in the least
susceptible category—may be more sensitive than indicated
by prior laboratory studies (BednarSek et al, 2020a). These
apparent discrepancies likely result from a combination of
factors, including a relatively small but growing literature,
differential responses among life-history stages, and the short
duration of our field sampling.

Over the course of this study, zooplankton at the stations
sampled were exposed to a wide range of environmental
conditions, including pH as low as 7.30 and Q,; as low as 0.32,
conditions that could be expected to elicit responses among
susceptible taxa. According to our meta-analysis, survival is
among the least sensitive response categories, suggesting that
changes in abundance due to differential survival could take time
to grow to detectable levels. Sub-lethal effects may emerge more
readily, but our data indicate that sublethal effects, if operative in
these populations, were not of sufficient magnitude or duration
to cause measurable declines in population abundance over the
period sampled. Despite the limited temporal duration of our
observations, we expected that such effects may have emerged
across sites because the large spatial differences in seawater
conditions that we sampled across are generally consistent year
after year (Feely et al, 2010; McLaskey et al., 2016; Pelletier
etal., 2018). This observation is important in the context of long-
term monitoring programs that use measures of zooplankton
abundance as indicators of environmental conditions. The
strength of inferences made possible by monitoring data is likely
to be dependent on the strength of the relationship(s) between
OA conditions and the abundance of specific taxa. It is important
that the scale of the response variable is adequate to reveal effects
over the temporal and spatial scales sampled.

Even so, abundance is a logical first factor to examine
zooplankton response to OA based on the expectation that
significant effects of low pH or high pCO, on development,
reproduction, and other traits that influence individual fitness
ultimately will be reflected in measures of population abundance.
Moreover, changes in abundance can serve as an indicator of
zooplankton response to OA. For example, Smith et al. (2016)
used natural gradients in CO; to show significant reductions
in zooplankton biomass and abundance under high CO,
conditions. Other taxa have shown similar declines in abundance
in response to increasing pCO; or acidity (Hall-Spencer et al.,
2008; Cigliano et al., 2010; Kroeker et al., 2011). Measures of
abundance are commonly used for zooplankton observations
in time series, and relative shifts in species abundances have
been used extensively to examine zooplankton responses to
climate (e.g., Mackas et al., 2007; Mackas and Beaugrand, 2010;
Peterson et al., 2017) and as input to models of food web
and ecosystem response to OA (Busch et al., 2013; Marshall
et al., 2017). Abundance data can also capture shifts in a
species’ center of abundance, indicating the directionality and
magnitude of responses to climate change (Chivers et al., 2017).
Hence, understanding the utility and limitations of abundance
measures to broader environmental and ecological inquiries is
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essential to interpretation of empirical studies and to natural
resource management. Importantly, the results of our study
suggest that the relationship between measures of zooplankton
abundance and seawater pH is not simple, emphasizing the
utility of intensive sampling over longer time periods to elucidate
underlying relationships. Longer time series that pair chemical
and biological observations and distinguish the effects of seawater
carbonate chemistry from factors such as temperature and
dissolved oxygen will improve attribution of biological effects
among co-occurring stressors (Doo et al., 2020). Our results
underscore the importance of long-term monitoring of species
abundance to determine the direction and magnitude of change
associated with climate and OA.

Low statistical power is common among small datasets, and
interpretation of our results is further limited by the existing
literature. Many zooplankton monitoring efforts lack long-term
and consistent data even though it is increasingly recognized that
decades-long time series will be needed to confidently identify
the effects of OA on zooplankton abundance. Our findings
corroborate this by demonstrating that snapshots of zooplankton
abundance in relation to seawater pH can fail to detect effects
of pH on abundance and community composition, even when
spatial gradients in pH are relatively steep and conditions differ
sharply among sampling locations.

Although abundance is more easily and frequently measured
in field settings, other variables could be more informative.
Measuring calcification is a clear choice because of its known
sensitivity to low values of €, and the relative wealth of
relevant laboratory studies concerning the ability of organisms
to create calcium carbonate structures under OA conditions.
Recent research studying in situ impacts on calcification found
reduced calcification in pteropods collected in the California
Current Ecosystem (Mekkes et al., 2021) and severe dissolution
in pteropods in our study area (Bednarsek et al, 2020b).
Importantly, some measures of calcification can be made on
preserved samples, potentially alleviating constraints of some
monitoring programs. However, calcification is important to only
a subset of key zooplankton taxa, and even for calcifiers, is only
one of many processes affected by OA. Where possible, adding
biological measures in addition to abundance may provide key
insights into sensitivity and add substantial value to monitoring
programs. Ultimately, including mechanistic studies that can
reveal cause-and-effect relationships between OA conditions and
biological response will be more informative than correlation-
based studies alone.

Overall, we found that observations of zooplankton
abundance and community composition in response to pH and
pCO; did not match experimental evidence from the literature.
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