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There is a lack of depth-resolved temperature data, especially in coastal areas, which
are often commonly dived by SCUBA divers. Many case studies have demonstrated that
citizen science can provide high quality data, although users require more confidence
in the accuracy of these data. This study examined the response time, accuracy
and precision of water temperature measurement in 28 dive computers plus three
underwater cameras, from 12 models. A total of 239 temperature response times (τ )
were collected from 29 devices over 11 chamber dives. Mean τ by device ranged
from (17 ± 6) to (341 ± 69) s, with significant between-model differences found for
τ across all models. Clear differences were found in τ by pressure sensor location
and material, but not by size. Two models had comparable τ to designed-for-purpose
aquatic temperature loggers. 337 mean data points were collected from equilibrated
temperatures in hyperbaric chamber (n = 185) and sea (n = 152) dives, compared with
baseline mean temperature from Castaway CTDs over the same time period. Mean bias,
defined as mean device temperature minus baseline temperature, by model ranged from
(0.0 ± 0.5) to (−1.4 ± 2.1) ◦C and by device from (0.0 ± 0.6) to (−3.4 ± 1.0) ◦C. Nine of
the twelve models were found to have “good” accuracy (≤0.5 ◦C) overall. Irrespective of
model, the overall mean bias of (−0.2 ± 1.1) ◦C is comparable with existing commonly
used coastal temperature data sets, and within global ocean observing system accuracy
requirements for in situ temperature. Our research shows that the quality of temperature
data in dive computers could be improved, but, with collection of appropriate metadata
to allow assessment of data quality, some models of dive computers have a role in future
oceanographic monitoring.

Keywords: citizen science, dive computer, sea temperature, accuracy, response time, precision

INTRODUCTION

The oceans have a critical role in climate change, acting as a heat sink and being responsible for the
uptake of more than 90% of the excess heat in our climate system between 1971 and 2010 (Pörtner
et al., 2019; Johnson and Lyman, 2020). Warming ocean temperatures are intrinsically linked to
sea level rise and projections show the rise accelerating because of non-linear thermal expansion
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(Widlansky et al., 2020). In addition, the number and severity
of occurrences of extreme events linked to increased sea
temperatures, such as heat waves, are expected to increase
with global warming (Bindoff et al., 2019). Global sea surface
temperature (SST) is projected to rise by up to 6.4 ◦C depending
on the emission scenario (Aral and Guan, 2016); accordingly,
both sea surface and subsurface temperatures are defined as
essential climate variables (Bojinski and Richter, 2010; Lindstrom
et al., 2012). However, there is regional variability (Kennedy,
2014); for example, SST around the British Isles has been
increasing at a rate of up to six times the global average rate
(Dye et al., 2013) and at twice the global rate in offshore China
since 2011 (Tang et al., 2020). In contrast, parts of the North
Atlantic have experienced cooling (Wright et al., 2016). Shifts
in biodiversity have been seen in response to variations in
temperature between 0.1 and 0.4 ◦C (Danovaro et al., 2020),
with shallow seasonal thermoclines being important to ecosystem
dynamics, horizontal and vertical distribution of fish (Aspillaga
et al., 2017) and biological production (Palacios et al., 2004).
Variation and oscillations in thermocline depth and temperature
have been recorded during the stratification period (Bensoussan
et al., 2010; Aspillaga et al., 2017).

In situ data are essential to monitor these local variations,
supplement satellite sea surface temperature data and validate
ocean models (Brewin et al., 2017), but there are a lack of depth-
resolved temperature data (Wright et al., 2016) and few time
series on localised variations in thermoclines (Bensoussan et al.,
2010). This lack in data is especially true in areas near to the
coast which research vessels and Argo floats cannot commonly
reach (Wright et al., 2016). Citizen science has been shown to
provide opportunities for collecting data at broad spatial and
temporal scales, which would not be possible by traditional
means because of accessibility and financial constraints (Pocock
et al., 2014; Wright et al., 2016). Many case studies have shown
that citizen science can provide high quality data (Kosmala et al.,
2016) with comparable accuracy to dedicated research studies
(Vianna et al., 2014; Albus et al., 2019; Krabbenhoft and Kashian,
2020), but with uncertainty regarding the reliability and quality
of data (Burgess et al., 2016; Gibson et al., 2019). To address these
concerns, and to increase the value of existing datasets, users
require more confidence in the accuracy of these data (Burgess
et al., 2016; Kosmala et al., 2016). In situ measurements should
have associated uncertainty estimates (Barker et al., 2015). Post
hoc data quality assessment and error detection have been found
to dispel doubts about data quality (Burgess et al., 2016).

SCUBA divers (from here on referred to as divers) have
been involved in many marine citizen science projects (Thiel
et al., 2014; Hermoso et al., 2019) including marine protected
area monitoring (Pocock et al., 2014), reef habitat/biodiversity
surveys (Branchini et al., 2015; Hermoso et al., 2019) and
marine debris collection (Pasternak et al., 2019). Some areas most
frequently accessed by citizen scientist divers are the shallow
coastal subtidal areas (e.g., to depths < 40 m; Thiel et al., 2014)
where reliable physico-chemical data series are sparse. Within
the estimated 6–10 million recreational divers globally (Wright
et al., 2016) the use of dive computers may be approaching
100% (Azzopardi and Sayer, 2010). Dive computers are worn

with the primary purpose of managing decompression limits via
algorithms which calculate the level of nitrogen load in tissues.
Most modern dive computers record profiles of temperature
and depth, with the latter derived from a dedicated pressure
sensor. Temperature data are required to correct for non-linear
pressure sensor output as ambient temperature changes (Li
et al., 2016), but as temperature does not have the same impact
on decompression algorithms as pressure, the same level of
accuracy is not required. Consequently, temperature data are
obtained from thermal corrections applied to the pressure sensor
(Azzopardi and Sayer, 2010; Wright et al., 2016), rather than
from a dedicated temperature sensor. Temperature readings are
not calibrated, and only have an advertised accuracy (where
published by manufacturers) of ± 2 ◦C (Mares, 2020; Azzopardi
and Sayer, 2012), or± 2 ◦C within 20 min of temperature change
(Suunto, 2018). Previous research has explored the possibility
of collecting temperature data from dive computers. Wright
et al. (2016) concluded that, with processing, temperature data
from dive computers could be a useful resource. Other authors
recommend that these data be avoided for scientific study
(Azzopardi and Sayer, 2012), or state that dive computers do not
have sufficient accuracy to measure ocean temperature changes
(Egi et al., 2018).

This study builds on the work carried out by Wright et al.
(2016) and investigates a range of dive computers in replicated
experiments which aim to mimic real-world scenarios, to
quantify the temperature responses of different models; aiming to
address some of the concerns regarding the potential use of these
data. We focus on three objective measures; the time constant
τ , accuracy and precision. Time constants are used to measure
a sensor’s response to change; representing the time taken for
63% of the total step change in temperature to have taken
place. τ is useful in the context of oceanographic temperature
change (such as thermocline identification), and, in conjunction
with the sample rate, the potential to gather useful data from
relatively short dive profiles. Temperature accuracy is defined as
the systematic error in the devices’ temperature measurement
when compared with a reference temperature, such as from
a calibrated microCTD. By focusing on these measures, this
paper investigates the potential of different devices as alternative
sources of in situ temperature for oceanographic monitoring.
The response to temperature change within and between models
and as a function of the dive computer’s body material, size,
pressure sensor location and attachment to the diver (i.e., worn
on the wrist or hanging freely) are analysed to ascertain whether
some models or features may offer potential for higher quality
data than others.

MATERIALS AND METHODS

Equipment
28 dive computers (11 models from 7 brands), along with three
Paralenz Dive Camera+ cameras (for the purposes of this study
referred to collectively as “dive computers”; see Table 1) were
analysed. All devices shared the ability to record full profiles
of temperature and depth as a function of time, except Suunto
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Vypers, which only store a single minimum temperature per dive.
All devices were able to sample at intervals of 30 s or less and were
set to the highest frequency possible for each model for all dives.

Recorded temperature resolution ranged from 0.1 to
1 ◦C. The devices were categorised into four “sizes”: “Small”
(diameter < 5 cm), “Medium” (5 cm < diameter < 7.5 cm),
“Large” (diameter> 7.5 cm), and “Camera” and further classified
by pressure sensor location based on the identifying small holes
in the housing material into “Back” or “Edge” with Paralenzes
being defined as “Covered” (Table 1). Material was a composite
category based on front, edge and back material being metal
(m) or plastic (p).

All hyperbaric tests were carried out in a cylindrical
two-compartment, 2,000 mm diameter Divex therapeutic
recompression chamber, manually controlled to compress to
the simulated nominal depths, as described by Sayer et al.
(2014). For all baseline temperature measurements with the
exception of water bath trials, three SonTek CastAway CTDs
(CTD = Conductivity, Temperature, Depth) with 0.01 ◦C
resolution, ± 0.05 ◦C accuracy, sampling rate of 5 Hz (SonTek
CastAway CTD, 2020) were used. For unpressurised temperature
comparison a Grant R4 refrigerated bath with TXF200 heating
circulator was used.

Time Constants (τ)
Inside the hyperbaric chamber, all devices and Castaways were
immersed to (8.5 ± 2.5) cm in a tub containing 13 litres of cold
(10 ± 1) ◦C fresh water and allowed to acclimatise for 10 min,
as high ambient air temperature has been demonstrated to affect
temperature profiles for several minutes into a dive. Three further
tubs were filled with well-mixed warm water between 18 and
25 ◦C. Although fitted with an environmental control unit it
was not possible to regulate chamber air temperature precisely;
varying between 18 and 27 ◦C over the course of a single dive
of 1 h duration, caused by the heating effect of compression and
subsequent cooling across the non-insulated chamber walls. To
minimise the impact of the changing chamber temperature on
tub temperature, warm tubs starting temperatures approximated
the mid-point of potential chamber ascent temperatures (as
measured with a stick digital thermometer).

Some models allow manual switching between salt and
freshwater mode (densities unspecified by manufacturers), but to
allow comparison between dive computers which did not have
this capability, all dive computers were left in default salt-water
mode for all dives with the exception of the Shearwater Perdix
which was set to “EN13319” mode (1,020 kg m−3 water density)
(Shearwater, 2020). All devices were allowed to automatically
start recording temperature profiles according to their default
pressure parameters, except for Paralenz Dive Camera+, which
were started manually.

After acclimatisation, all tubs were compressed to a maximum
simulated depth of between 9 and 10.4 m. Once the simulated
depth was reached, one Castaway was moved from the cold
bucket to each of the warm tubs and stirred well, followed
by a further 2 min of acclimatisation. One Paralenz Dive
Camera+ was then moved into each warm tub and stirred

well. Early trials established that all devices reached temperature
equilibrium before 7 min. Therefore, after 7 min all Paralenz
Dive Camera+ were removed and switched off to conserve
battery life. Subsequently, a dive computer was moved into each
of the warm tubs, stirred well, then left for 7 min, repeated
until all the devices had been transferred. This interval approach
was designed to minimise any effect of cold-water ingress by
the transfer of devices between tubs, without impacting the
temperature response of previously added devices. Two dives
were carried out with the same depth/tub protocol using only the
three Paralenz Dive Camera+ devices, and nine replicates with
all devices (Schema in Supplementary Figure 1).

Dive profiles were downloaded from individual devices into
the open-source divelog software, Subsurface (Subsurface, 2020).
Profiles were then combined in an XML-based format and
exported into R Studio for processing. For each dive by device,
data were aligned to the start point of the response curve
and sliced at the first instance of the maximum temperature,
isolating the full temperature response (Figure 1). In contrast
to the findings of Egi et al. (2018), not all models’ temperature
response had a single exponential form, and linear regression
did not consistently produce a good fit. Time constants were
ascertained by exponential fitting via numerical integration as
defined by Jacquelin (2009), using the area under the curve to
calculate τ , allowing linear regression to be applied to non-linear
data without estimation of parameters (Jacquelin, 2009).

Accuracy
Three protocols were followed to assess the temperature accuracy
and consistency of the dive computers.

Water Bath
Dive computers only start to record profiles once they reach
a prescribed pressure, but for safety reasons, it is not possible
to put a temperature-controlled water bath in a pressurised
chamber environment. Therefore, trials were conducted in an
unpressurised environment and the temperatures were visually
recorded from the computer displays. Water temperature was
controlled using a Grant R4 refrigerated bath filled with deionised
water, with the circulation set to maximum and temperature
equilibrated to (20.0± 0.1) ◦C. Between 9 and 11 devices could be
submerged in the water bath at once, so the experiments were run
in a series of batches. An initial batch was submerged in the bath
for 15 min (three times the maximum mean model time constant,
by which time all devices have equilibrated to final temperature).
Temperature was then read from the digital display of each device
whilst still submerged, and the device removed from the bath.
Once all device temperatures had been read the subsequent batch
was submerged for 15 min and the process repeated. The process
was then repeated at bath temperatures of 10 and 30 ◦C. For
analysis, the deviation of on-screen temperature display from
the water bath temperature was noted. On-screen temperature
resolution for all devices is limited to 1 ◦C, with the exception of
the Ratio iX3M GPS Deep which display temperature on-screen
at a resolution of 0.1 ◦C.
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TABLE 1 | Outlines the models used and their categorisations within this study.

Model n (devices) Resolution/◦C Pressure sensor Size Material (front-edge-back) Sampling interval 1T/◦C

Aqualung i750TC 3 5/9 ≈ 0.56 Back Medium ppp 30

Garmin Descent Mk1 3 1 Edge Small mpp 1

Mares Matrix 2 0.1 Edge Small mmp 5

Mares Puck Pro 2 0.1 Back Medium ppp 5

Paralenz Dive Camera+ 3 0.1 Covered Camera mmm 1

Ratio iX3M GPS Deep 3 0.1 Back Large ppp 10

Scubapro G2 3 0.4 Back Medium ppp 4

Shearwater Perdix 3 1 Back Large ppp 10

Suunto D4i 1 1 Edge Small mmp 20

Suunto D6i 3 1 Edge Small mmm 10 (20 for first 3 dives)

Suunto EON Steel 3 0.1 Edge Large mpp 10

Suunto Vyper 1 1 Back Medium ppp NA

In the material column, m denotes metal and p, plastic. E.g., ppp denotes plastic for the front, edge and back of the housing, respectively.

FIGURE 1 | Example of response curve for one dive/device. Elapsed seconds is the entire dive profile during which all devices were moved between cold and warm
tub at 7 min intervals.

Chamber
Six replicate dives were carried out in the outer lock of the
Divex chamber, with a maximum simulated depth of (10± 1) m.
Three dives included a temperature change from a cold to
warm environment and three a warm to cold transition, using
one tub for the starting temperature and three for the contrast
temperature. All devices acclimatised in a single tub for 10
min, unpressurised, to the same starting temperature (cold or
warm, depending on dive). Devices were then shared across the
three tubs with contrasting temperature; one Castaway CTD
in each tub to provide a baseline. All tubs were compressed
to the simulated depth for 10 min, then decompressed
and removed (Schema in Supplementary Figure 2). Over

the six dives, cold tub final temperature ranged from 10.4
to 12.6 ◦C and warm tub final temperature ranged from
16.8 to 19.5 ◦C.

Raw data output from the Castaways was used, retaining
the full temperature profile as a function of pressure and
time. Castaway depth was calculated from pressure using
the swDepth function in R (swDepth, 2020), which uses
Fofonoff and Millard’s refitted equation (Fofonoff and Millard,
1983). Device profiles were aligned by depth and time with
the relevant Castaway from the same tub. Mean device
temperature from the final 180 s at > 2.5 m depth was
calculated (to compensate for differences in depth at which
devices start recording) by which time all devices had
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FIGURE 2 | (A) Devices in tub with Castaway in chamber dive. (B) Diver wearing computers on arms, with frame shown in RHIB.

equilibrated to the change in temperature (Supplementary
Figure 3). The mean from the equivalent 180 s Castaway
data were used as baseline temperature for comparison. Mean
bias was defined as mean device temperature minus mean
Castaway temperature.

Sea Dives
Six sea dives were carried out by RHIB at dive sites local to Oban
(56.41535◦ N, 5.47184◦ W), with maximum depths ranging from
13.5 to 30.7 m (mean: 18.6 m). For each pair of dives, half the
dive computers were carried hanging loosely on a frame made
from plastic piping, and half were worn on the arms of two
divers (Figure 2). For subsequent dives in each dive pair, each
device was switched to the other mounting position. All Paralenz
Dive Camera+ were transported on the frame for all dives (as
they were not wrist mountable), along with all Castaways for
baseline temperature.

Raw Castaway data was imported, depth calculated as per
section “Chamber.” The sea dives had a shallow cold surface
thermocline from snow melt run-off. The mean temperature
below the depth at which the Castaway temperatures equilibrated
(top of the bottom mixed layer) was used as a baseline
temperature for comparison for each dive (Supplementary
Figure 4). In dive number order this depth was 5, 10, 10, 10,
10, and 12 m. As the frame was carried by divers, and therefore
may not have been consistently horizontal, small variations were
seen in Castaway depths. Device dive profiles were imported
into R Studio and mean temperatures calculated for each device,
Castaway and model for the final 180 s below the specified
depth (Supplementary Figure 5). Mean bias was defined as mean
device/model temperature minus mean Castaway temperature.

RESULTS

As per Wright et al. (2016), devices and models were categorised
as accurate if the mean bias from baseline temperature was
≤0.5 ◦C and as precise if the standard deviation of the mean bias
was ≤0.5 ◦C. Devices were defined as having quick, intermediate
or slow response to temperature change (respectively τ < 60 s,
60 s ≤ τ < 120 s, τ ≥ 120 s).

Time Constants
A total of 239 τ values were collected from 26 devices over 9 dives
plus three Paralenz Dive Camera+ cameras over 6 dives. 13 τ
values were lost because of battery failures or camera recording
not initiating correctly. All Ratio iX3M GPS Deep dives and two
Shearwater Perdix dives were removed from the analyses because
of a poor regression fit (Figure 3).

Mean τ by model ranged from (18 ± 5) s to (304 ± 45) s
(Figure 4 and Supplementary Table 2). Uncertainties represent
1 σ unless otherwise described. Time constants and residuals
were not normally distributed; time constants were best fitted
to an inverse Gaussian distribution curve. A generalised linear
model (GLM) approach was used in R Studio to look for
significant differences. Significant between-model differences
were found for τ for all models (p < 0.001) [Mares Puck Pro
(p< 0.01)]. Mean τ by device ranged from (17± 6) to (341± 69)
s (Figure 5). S(τ fit) represents 95% confidence intervals in the
regression fit, based on the standard error of the regression (full
data in Supplementary Table 3). S(τ fit)< 10 s was considered to
be a good fit and applied to all profiles except for those mentioned
in the first paragraph of this section.
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FIGURE 3 | Example of a poor regression fit in Ratio iX3M GPS Deep; devices excluded from further analysis.

FIGURE 4 | Mean response time (τ) by model. The black line represents the median. The lower and upper hinges correspond to the first and third quartiles (the 25th
and 75th percentiles). Upper and lower whiskers extend from the hinge to the largest/smallest value, respectively, no further than 1.5 ∗ inter-quartile range from the
hinge. Data beyond the end of the whiskers are plotted individually as outliers.

Clear differences were found in τ by pressure sensor
location and material, but not by size (Figure 6). All
devices with the pressure sensor at the edge along with
the Paralenz Dive Camera+ were defined as having a quick

response (17 s ≤ τ < 52 s) and all with a pressure
sensor at the back were classified as intermediate or slow
responders. Devices with entirely metal housing had quick mean
response (17 s ≤ τ < 24 s), part metal/part plastic were
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FIGURE 5 | Mean response time (τ) by device. The black line represents the median. The lower and upper hinges correspond to the first and third quartiles (the 25th
and 75th percentiles). Upper and lower whiskers extend from the hinge to the largest/smallest value, respectively, no further than 1.5 ∗ inter-quartile range from the
hinge. Data beyond the end of the whiskers are plotted individually as outliers.

intermediate (41 s ≤ τ < 52 s) and all plastic were slowest
(70 s ≤ τ < 322 s).

Temperature Accuracy
Water Bath Trials
A total of 78 data points were collected from 29 devices over three
conditions (bath temperatures). One Suunto D6i data point was
missed because of a dead battery. Paralenz Dive Camera+ were
not included in the water bath deployments due to not having an
on-screen temperature display. Mean bias is defined as displayed
device temperature minus water bath temperature, averaged
on a model or device basis. By model, this ranged from 0 to
(−1 ± 1.7) ◦C. The mean bias by device ranged from 0 to
(−2.3± 1.5) ◦C (Supplementary Tables 4, 5).

Chamber
The chamber dives investigating accuracy comprised
n(devices) = 31 and n(dives) = 185. Mean bias by model
ranged from (0.1± 0.3) to (−1.4± 2.0) ◦C and by device ranged
from (0.1 ± 0.1) to (−3.3 ± 1.4) ◦C. Full data on accuracy
dives across conditions are shown by model (Table 2) and
device (Table 3).

Sea Dives
A total of 152 mean bias values were collected from 31 devices
over five sea dives. Three values are missing due to failure to
recover data from Paralenz Dive Camera+. Mean bias by model,
without taking into account experimental condition, ranged from

(0.0± 0.1) to (−1.3± 2.2) ◦C and by device ranged from (0± 0.1)
to (−3.5± 0.1) ◦C (Tables 2, 3).

“On Frame” vs. “On Arm”
Wearing a computer “on arm” led to a non-negative mean
bias across all models (0.0 ± 1.6) ◦C (Table 4) and devices
(0.0 ± 2) ◦C (Supplementary Table 6) when compared to being
carried on the frame (Figure 7). Brand, housing material, shape
or response group were not found to be significant for bias in “on
arm”/“on frame” data.

Overall Accuracy
As depth resolved-temperature data are required for scientific
interest and collecting temperature data from dive computers
in an unpressurised environment would not be recommended,
only data from sea and chamber accuracy dives were combined
for overall accuracy results. Across the total n = 337 data
points from the two accuracy protocols, overall mean bias was
(−0.2 ± 1.1) ◦C. Mean bias by model ranged from (0.0 ± 0.5)
to (−1.4 ± 2.1) ◦C (Figure 8 and Table 5) and by device ranged
from (0.0± 0.6) to (−3.4± 1.0) ◦C (Supplementary Table 7).

DISCUSSION

Despite the inherent limitations of the existing technology, our
research shows that, while there is wide between-model variation
in both temperature bias and τ , there is value in data derived
from devices commonly carried by SCUBA divers as a source
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FIGURE 6 | (A) τ by material; m = metal, p = plastic. For example; mmm devices comprise metal front rim, edge and back. (B) τ by size (C) τ by pressure sensor
location. The black line represents the median. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). Upper and
lower whiskers extend from the hinge to the largest/smallest value, respectively, no further than 1.5 ∗ inter-quartile range from the hinge. Data beyond the end of the
whiskers are plotted individually as outliers.

of subsurface temperature data in coastal areas. We demonstrate
that there is sufficient consistency in bias within some models
to offer the potential for bias correction by model. In addition,
an overall bias of (−0.2 ± 1.1) ◦C demonstrates that, with

TABLE 2 | Bias by model across the two accuracy conditions.

Model Sea dives Chamber

n(dives) bias 1T/◦C n(dives) bias 1T/◦C

Aqualung i750TC 15 –1.3 ± 2.2 18 –1.4 ± 2.0

Garmin Descent Mk1 15 –0.3 ± 0.7 18 0.1 ± 0.9

Mares Matrix 10 0.1 ± 0.1 12 –0.1 ± 0.7

Mares Puck Pro 10 0 ± 0.1 12 –0.2 ± 0.7

Paralenz Dive Camera+ 12 0.7 ± 0.1 17 0.7 ± 0.6

Ratio iX3M GPS Deep 15 0.9 ± 0.7 18 0.1 ± 0.3

Scubapro G2 15 0 ± 0.6 18 –0.4 ± 0.9

Shearwater Perdix 15 –0.3 ± 0.4 18 –0.9 ± 0.6

Suunto D4i 5 –0.5 ± 0.2 6 –0.4 ± 0.8

Suunto D6i 15 –0.3 ± 0.4 18 –0.2 ± 1.0

Suunto EON Steel 15 –0.6 ± 0.1 18 –0.4 ± 0.7

Suunto Vyper 10 –0.3 ± 0.4 12 –0.2 ± 2.9

sufficient datapoints, valuable data may be produced irrespective
of the models from which data were derived. Due to variation
in τ , while not all models would be recommended for use in
scenarios of temperature change, some models also demonstrate
a τ which, in conjunction with a sufficiently high resolution, offer
the potential for identification of thermoclines.

Response Time
τ varied widely between models, with less within-model variance
than between. We saw less within-device variation in τ than
Egi et al. (2018), although a similar mean τ (46 s compared
with 52 s) was seen for the only model used in both papers
(Mares Matrix). Within-model consistency is promising for the
purposes of citizen science, as it offers projects the potential
to select specific models based on the project objectives or run
post hoc corrections.

Six models were defined as quick responders (τ < 60 s)
(Supplementary Table 8). Of these, the two models with
the shortest τ [Suunto D6i (18 ± 5) s and Paralenz Dive
Camera+ (22 ± 3) s] have τ comparable designed-for-purpose
aquatic temperature loggers; the plastic Star-Oddi Starmon
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mini has an 18 s standard τ . Although more commonly
used in moored scenarios, Starmon minis have been used to
measure lake temperature profiles, with corrections applied
(Jóhannesson et al., 2007).

Exponential fits proved consistent across models, exceptions
causing poor fit were errant temperature data points recorded
in the temperature profile (Suunto EON Steel) or a sharp rise in
temperature followed by a levelling or drop before a further rise
(Ratio iX3M GPS Deep). In the case of the Ratios, the response
seen could be because of intermittent heating caused by internal
electronic functions of the model, or, as a slow responding but
higher resolution model, the devices may have been affected by
cold water ingress introduced by adding additional devices.

When dive computer model was excluded as a parameter
from the generalised linear model, pressure sensor location and
housing material were also found to significantly influence τ . As
the two features are correlated (e.g., all devices with a pressure
sensor at the back are entirely housed in plastic, Table 1), it is not
possible to fully separate the effect of the two variables. Also, while

pressure sensor location is identifiable (Supplementary Table 1),
it is not known whether the temperature sensor is co-located with
the pressure sensor in any given model. However, it is logical to
postulate that in a small device, or where a sensor is close to the
edge of the device housing, a more rapid response to temperature
change will be seen than that of a sensor buried deep within a
larger housing, where the thermal mass of the dive computer itself
may slow the response.

Temperature Accuracy
All models performed well within the± 2 ◦C advertised accuracy
(Mares, 2020; Azzopardi and Sayer, 2012; Suunto, 2018) overall,
with only one model having a mean absolute bias ≥1 ◦C
(Aqualung i750TC), and only two (Aqualung i750TC, Suunto
Vyper) having poor precision. The overall mean bias seen
[(−0.2 ± 1.1) ◦C] is comparable with existing commonly used
coastal temperature data sets, such as those using handheld digital
thermometers for subsurface temperature measurement; Cefas
coastal temperature datasets include data from thermometers and

TABLE 3 | Bias by device across the two accuracy conditions.

Model Device ID Sea dives Chamber

n(dives) Bias 1T/◦C n(dives) Bias 1T/◦C

Aqualung i750TC Aqualung 1 5 −3.5 ± 0.1 6 −3.3 ± 1.4

Aqualung i750TC Aqualung 2 5 −1.9 ± 0.0 6 −1.9 ± 0.8

Aqualung i750TC Aqualung 3 5 1.5 ± 0.4 6 0.9 ± 0.9

Garmin Descent Mk1 Garmin 1 5 −0.3 ± 0.4 6 0.2 ± 0.7

Garmin Descent Mk1 Garmin 2 5 −0.9 ± 0.3 6 −0.5 ± 0.9

Garmin Descent Mk1 Garmin 3 5 0.2 ± 0.7 6 0.5 ± 0.9

Mares Matrix Mares Matrix 1 5 0.1 ± 0.1 6 −0.1 ± 0.6

Mares Matrix Mares Matrix 2 5 0.1 ± 0.1 6 −0.1 ± 0.8

Mares Puck Pro Mares Puck Pro 1 5 0.1 ± 0.1 6 −0.2 ± 0.8

Mares Puck Pro Mares Puck Pro 2 5 0 ± 0.1 6 −0.2 ± 0.8

Paralenz Dive Camera+ Paralenz 1 4 0.5 ± 0.0 6 0.6 ± 0.7

Paralenz Dive Camera+ Paralenz 2 4 0.8 ± 0.1 6 0.9 ± 0.7

Paralenz Dive Camera+ Paralenz 3 4 0.8 ± 0.1 5 0.8 ± 0.5

Ratio iX3M GPS Deep Ratio 1 5 1.2 ± 0.7 6 0.4 ± 0.2

Ratio iX3M GPS Deep Ratio 2 5 0.5 ± 0.6 6 −0.3 ± 0.3

Ratio iX3M GPS Deep Ratio 3 5 0.8 ± 0.8 6 0.1 ± 0.1

Scubapro G2 Scubapro 1 5 0.2 ± 1.0 6 −0.5 ± 0.9

Scubapro G2 Scubapro 2 5 −0.1 ± 0.1 6 −0.4 ± 1.1

Scubapro G2 Scubapro 3 5 −0.1 ± 0.3 6 −0.4 ± 1

Shearwater Perdix Shearwater 1 5 −0.2 ± 0.5 6 −1 ± 0.5

Shearwater Perdix Shearwater 2 5 −0.4 ± 0.4 6 −0.8 ± 0.8

Shearwater Perdix Shearwater 3 5 −0.3 ± 0.5 6 −1 ± 0.5

Suunto D4i Suunto D4i 1 5 −0.5 ± 0.2 6 −0.4 ± 0.9

Suunto D6i Suunto D6i 1 5 −0.3 ± 0.4 6 −0.1 ± 1.2

Suunto D6i Suunto D6i 2 5 −0.3 ± 0.4 6 −0.3 ± 1

Suunto D6i Suunto D6i 3 5 −0.3 ± 0.4 6 −0.3 ± 0.9

Suunto EON Steel Suunto EON Steel 1 5 −0.7 ± 0.0 6 −0.6 ± 1

Suunto EON Steel Suunto EON Steel 2 5 −0.5 ± 0.1 6 −0.3 ± 0.6

Suunto EON Steel Suunto EON Steel 3 5 −0.6 ± 0.0 6 −0.4 ± 0.6

Suunto Vyper Suunto Vyper 1 5 −0.3 ± 0.4 6 −0.3 ± 2.2

Suunto Vyper Suunto Vyper 2 5 −0.3 ± 0.4 6 −0.1 ± 3.6
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data loggers with accuracies of (± 0.2 to ± 0.3 ◦C) (Morris
et al., 2018). A systematic negative bias of −1 ◦C has been seen
in satellite sea surface temperature (satSST) (Brewin et al., 2017)
and up to 6 ◦C bias between coastal satSST and in situ devices
(Smit et al., 2013).

Sampling requirements for the global ocean observing system
in situ SST temperature are 0.2 to 0.5 ◦C (Needler et al.,
1999), and bias-corrected numerical oceanic models have been
shown to still have up to −0.86 ◦C offset from baseline satellite
temperature after corrections have been applied (Macias et al.,
2018). As nine of the twelve dive computer models were found
to have “good” accuracy (≤0.5 ◦C) overall (Supplementary
Table 8), these requirements and biases indicate that, with
sufficient data points, some models of dive computers can
offer an additional source of temperature data to contribute to
ocean temperature monitoring, numerical models and composite
satellite products.

Differences were found in both bias and variance (accuracy
and precision) across the two conditions (sea and chamber). Nine
models had the same accuracy categorisation in both sea and
chamber dives (Supplementary Table 8). Of these, only three
models (Aqualung i750TC, Garmin Descent MK1, Scubapro G2)
had the same precision across the two conditions. Precision
was found to be improved in sea conditions, with eight models
categorised as having “good” precision (Supplementary Table 8).
Only one model (Ratio iX3M GPS Deep) was found to have good
precision in the chamber. The reduced precision found in nine of
the models in the chamber is likely caused by differences between
tub temperatures in dive repetitions, combined with the effect of
a static water environment on the Castaway temperature sensor.
Castaway CTDs are designed to work with a steady flow of water
of around 1 m s−1 through the sensor channel. Collection of data
in real world scenarios will always lead to differences caused by
environmental variation for which it is not possible to control.
In the present study, all Castaways were positioned on a frame
carried by one diver, while all the dive computers were worn on
the wrists of two divers. It is therefore possible that, although

TABLE 4 | Comparison of bias by model worn “on arm” with loose on a frame.

On frame On arm On arm minus on frame

Model Bias 1T/◦C Bias 1T/◦C Difference 11T/◦C

Aqualung i750TC −1.4 ± 2.1 −1.2 ± 2.3 0.2

Garmin Descent Mk1 −0.5 ± 0.5 −0.1 ± 0.8 0.3

Mares Matrix 0.1 ± 0.1 0.2 ± 0.1 0.1

Mares Puck Pro 0.0 ± 0.1 0.2 ± 0.3 0.1

Paralenz Dive Camera+ 0.7 ± 0.1 n. a. −0.7

Ratio iX3M GPS Deep 0.5 ± 0.3 2.0 ± 1.2 1.6

Scubapro G2 −0.2 ± 0.1 0.2 ± 0.8 0.4

Shearwater Perdix −0.5 ± 0.3 0.0 ± 0.4 0.5

Suunto D4i −0.7 ± 0.1 −0.4 ± 0.3 0.3

Suunto D6i −0.4 ± 0.3 −0.1 ± 0.4 0.4

Suunto EON Steel −0.6 ± 0.1 −0.6 ± 0.1 0.0

Suunto Vyper −0.4 ± 0.4 −0.1 ± 0.5 0.3

Bias is defined as the mean temperature derived from the final 180 s of sea
dives below the top of the bottom mixed layer, compared to baseline Castaway
temperature data acquired over the same time.

precision was better than in the chamber, proximity differences
combined with local variations in temperature led to additional
variation being seen in the sea dives.

With the exception of three devices [Ratio iX3M (n = 1),
Garmin Descent Mk1 (n = 1), Suunto EON Steel (n = 1)], all
individual devices aligned with their model’s overall accuracy
categorisation, demonstrating positive within model consistency.
Similarly, only one device had lower precision than its model’s
categorisation, with four devices [Suunto EON Steel (n = 2),
Aqualung i750TC (n = 2)] having better precision than
their model would indicate. This within model consistency is
encouraging for post hoc bias correction by model. Across both
conditions, all models except three showed overall negative bias
to the baseline temperature. In contrast, Mares Matrix had an
overall bias of 0, whilst Ratio iX3M GPS Deep and Paralenz
Dive Camera+ biased warm. This could be caused by an internal
heating effect of the electronics due to additional active functions
as both Ratio iX3M GPS Deep and Paralenz DiveCamera are both
devices with additional functionality in comparison with some
smaller devices.

Diver attachment placement also had significant effect on bias
in sea dives, with all models “on arm” having a non-negative
mean bias compared with than “on frame” (irrelevant of whether
the device was biased colder or warmer than the baseline). These
differences could be caused by the heating effect of the diver’s
body, an effect of an additional barrier between the ambient water
temperature and the temperature sensor (dependent on sensor
location within the housing). All divers were wearing drysuits,
but the material and thickness varied (neoprene/membrane).

With the exception of two models (Mares Matrix, Suunto
EON Steel) there was greater variation in within-model bias
in “on arm” conditions. This could be due to differences in
positioning of dive computers on arms, the amount of contact
between the device and the diver’s arm, or the dive suit
material. When collecting or correcting data across different
environments, console mounted devices which are mounted on a
hose not attached to the diver may be preferable for temperature
data accuracy. Alternatively, it is common for divers to have
redundancy in kit, carrying two dive computers. The secondary
device could be attached safely to the diver but not worn on the
arm. It is recommended that attachment mechanism and thermal
protection type be noted in data collection from citizen scientist
divers so it can be taken into consideration.

Technology Limitations
Accuracy in recorded or displayed temperature, or response to
temperature change does not form part of primary dive computer
function and dive computer manufacturers are not providing
temperature data for oceanographic purposes. The results found
are in no way reflective of the performance of any model in the
designed purpose as diver safety devices. Whilst dive computers
in the United Kingdom must adhere to standards set in British
Standard BS EN13319:2020, which covers functional and safety
requirements including depth and time, the Standard does not
include temperature (British Standard, 2000).

The greatest potential for temperature data from citizen
scientist divers is to address the lack of depth-resolved data in
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FIGURE 7 | Effect of wearing devices “on arm” vs. “on frame.” Bias from Castaway baseline data by device, black line represents an equal bias in both conditions.

FIGURE 8 | Normalised bias by model across sea and chamber dives. The black line represents the median. The lower and upper hinges correspond to the first and
third quartiles (the 25th and 75th percentiles). Upper and lower whiskers extend from the hinge to the largest/smallest value, respectively, no further than 1.5 ∗

inter-quartile range from the hinge. Data beyond the end of the whiskers are plotted individually as outliers.
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TABLE 5 | Bias by model, averaged across sea and chamber dives.

Model n(dives) Bias 1T/◦C Resolution/◦C

Aqualung i750TC 33 –1.4 ± 2.1 5/9 ≈ 0.56

Garmin Descent Mk1 33 –0.1 ± 0.8 1

Mares Matrix 22 0 ± 0.5 0.1

Mares Puck Pro 22 –0.1 ± 0.6 0.1

Paralenz Dive Camera+ 29 0.7 ± 0.5 0.1

Ratio iX3M GPS Deep 33 0.4 ± 0.7 0.1

Scubapro G2 33 –0.2 ± 0.8 0.4

Shearwater Perdix 33 –0.6 ± 0.6 1

Suunto D4i 11 –0.5 ± 0.6 1

Suunto D6i 33 –0.3 ± 0.8 1

Suunto EON Steel 33 –0.5 ± 0.6 0.1

Suunto Vyper 22 –0.3 ± 2.1 1

coastal regions. To improve the overall use of dive computers
as oceanographic monitoring devices in less-well performing
models, manufacturers could look at improving the quality of
the out of the box measurements. The addition of an accurate
dedicated temperature sensor, with considered placement of the
sensor would support unbiased detection of water temperature
change. Whilst the majority of dive computer models tested by
Azzopardi and Sayer (2010) were found to be consistently within
1% of nominal depth, the addition of conductivity sensors to
measure salinity would increase the accuracy of depth values,
although this would not affect temperature data quality. Inclusion
of geolocation ability would allow easy identification of dive
locations. The combination of all of the above would maximise
the citizen science potential of divers, due to their access to
otherwise hard to reach locations.

Within the limitations of the current commercially available
devices, a citizen science project dataset could be improved by
calibrating individual dive computers in advance, simply, using
an iced bucket of water. As evidenced by the water bath trials—
this would be greatly improved by an additional significant
figure to the unpressurised temperature display, as currently the
majority of models display only positive integers, limiting the
potential accuracy by introducing truncation effects.

Citizen Science and Use of Data
We need to better understand how model type affects
temperature profiles so that citizen science diving projects can
help fill gaps in coastal temperature datasets. To standardise
data, there should be a focus on the models offering the
greatest accuracy and shortest temperature response. Only one
model (Aqualung i750TC) was found to have poor accuracy
and precision across all conditions, along with a slow response
to temperature change. Five of the six models with a quick
temperature response (τ < 60 s) were also found to also have
good accuracy, with good/moderate precision overall (Figure 9).
These comprise Mares Matrix (2/2), Garmin Descent (2/3),
Suunto D6i (3/3), Suunto EON Steel (2/3) and Suunto D4i (1/1),
all sharing promising characteristics as individual devices.

When considering models for citizen science data collection,
those with the greatest potential have a high sample rate and

resolution, are likely to have a pressure sensor located on an
edge and have a metal or part-metal housing. In addition, a
standardised model could be used by all volunteers in a project
and simple corrections applied for systemic model bias. The most
promising model tested here for overall use across citizen science
projects is the Mares Matrix. This model had consistently good
accuracy and precision and a quick response to temperature
change; exhibiting an overall mean bias of (0.0 ± 0.4) ◦C and
τ = (46 ± 5) s with a recorded resolution of 0.1 ◦C and a 5 s
sampling rate. A close second is the Suunto EON Steel, which has
good accuracy overall, moderate precision and a quick response
to temperature change, with a recorded resolution of 0.1 ◦C
and a 10 s sampling rate. Other models have shorter τ (Suunto
D6i, Suunto D4i, Garmin Descent), but single degree resolution,
making them less useful for monitoring temperature change.

With sufficient data points, we found “good” accuracy,
irrespective of originating device. Therefore, data collected by
local groups or dive centres in commonly dived, discrete areas,
may generate sufficient data points to provide a useful accuracy,
irrelevant of model. In addition, not all sampling locations have
equal value (Callaghan et al., 2019) and lower quality data may
still be of use to support decision making (Buytaert et al., 2016)
if uncertainties are quantified. As such, in remote, less widely
sampled areas where there are limited pre-existing records, dive
computer information may still be of use as indicative data,
even with fewer sampling points or from devices with less
accuracy/precision.

In addition to the device-related effect, we found that mode
of attachment and placement on the diver body had an influence
on temperature accuracy. Therefore, for citizen science-derived
dive computer profiles to be useful on a wider basis, collection
of metadata is crucial. Downloaded profiles already contain
metadata such as date, time and model, but diver attachment,
placement and diver thermal protection type should be collected
in addition, to enable a more comprehensive assessment of data
quality on an individual profile basis. An online portal facilitating
easy upload of profiles and associated metadata is currently
in late-stage development. Ideally, data from different citizen
science dive portals should be combined in a global dataset.

Temperature from dive computers could be used to
complement biological datasets. For example, thermocline depth
affects vertical distribution of fish (Sogard and Olla, 1993),
so computer-derived temperature data could contribute to a
better understanding of local variability in fish movements.
Temperature data can also support regional assessment of
hydrological conditions (Morris et al., 2018). In highly dived
areas, the data would provide a time series allowing identification
of seasonal variation, albeit without complete temporal coverage.
They may also be useful for marine recreation (Brewin et al.,
2015) or feeding into numerical models and satellite products
(Smit et al., 2013) in areas where the accuracy is known to
be < 1 ◦C. They could be especially useful in commonly dived,
poorly sampled areas, such as the South Pacific, where the
volume of dive profiles could provide data of a useful resolution
irrespective of model.

In conclusion, the limitation of divers as citizen scientists for
temperature data collection is inherent in the devices themselves.
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FIGURE 9 | Accuracy against bias for all devices; the inner box highlights 0.5 ◦C bias with 60 s τ. Devices falling in the inner box are defined as having both a quick
response and good accuracy overall. The outer box highlights devices which have up to 1 ◦C bias and 120 s τ: an intermediate response to temperature change,
and moderate accuracy.

The challenge is to understand the uncertainty in accuracy and
precision recorded by the devices rather than the abilities or
knowledge of the citizen science diver. Our research shows
that the quality of temperature data in dive computers could
be improved, but implementation would need to be driven by
manufacturers, or by diver demand. As some models of dive
computers can demonstrably provide data comparable to that
collected by more traditional methods, within required accuracy
levels for some monitoring scenarios, they have a role to play in
future oceanographic monitoring.
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