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The RNA sequencing data sets available for different fish species show a potentially
high variety of forms of enzymes just in teleosts. This is primarily considered an
effect of the first round of whole-genome duplication with mutations in duplicated
genes (isozymes) and alternative splicing of mRNA (isoforms). However, the abundance
of the mRNA transcript variants is not necessarily reflected in the abundance of
active forms of proteins. We have investigated the transcriptional profiles of two
enzymes, aralkylamine N-acetyltransferase (AANAT: EC 2.3.1.87) and N-acetylserotonin
O-methyltransferase (ASMT: EC 2.1.1.4), in the eyeball, brain, intestines, spleen, heart,
liver, head kidney, gonads, and skin of the European flounder (Platichthys flesus).
High-throughput next-generation sequencing technology NovaSeq6000 was used to
generate 500M sequencing reads. These were then assembled and filtered producing
75k reliable contigs. Gene ontology (GO) terms were assigned to the majority of
annotated contigs/unigenes based on the results of PFAM, PANTHER, UniProt, and
InterPro protein database searches. BUSCOs statistics for metazoa, vertebrata, and
actinopterygii databases showed that the reported transcriptome represents a high
level of completeness. In this article, we show how to preselect transcripts encoding
the active enzymes (isozymes or isoforms), using AANAT and ASMT in the European
flounder as the examples. The data can be used as a tool to design the experiments
as well as a basis for discussion of diversity of enzyme forms and their physiological
relevance in teleosts.

Keywords: Aralkylamine N-acetyltransferase, N-acetylserotonin O-methyltransferase, aanat expression, asmt
expression, asmtl expression, fish, isoform, isozyme

THE BASICS

The presence of multiple forms of enzymes in teleost fish is primarily considered a result of the first
round of whole-genome duplication and mutations in duplicated genes that occurred in teleostean
evolutionary history (isozymes) as well as it is generated by the process of alternative splicing of
mRNA (isoforms). A common occurrence of gene duplication and the scale and importance of
this phenomenon are shown by Zhang (2003). Just for the record, isozymes are different forms of
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the same enzyme coming from different genes but catalyzing
the same chemical reaction; isoforms originate from the same
gene, but they can have the same or unique functions,
depending on how they are spliced. Such abundance of the
mRNA transcript variants as is shown in teleost fish is not
necessarily reflected in the abundance of active forms of enzymes.
Unfortunately, the analysis of transcriptome sequencing by de
novo assembly without any mechanisms of data preselection
may lead to an overestimation of the number of transcripts,
and only some of them correspond to active enzymes. Although
genome-based transcriptome analyses should be immune to
the problem, they do require a reasonably complete genome
project, which is often not available for the target species.
Reasonably deep RNA-Seq is relatively easy to perform, and de
novo assembly remains a method of choice for these species.
Thus, a question arises as to how to effectively preselect
cDNA transcripts corresponding to proteins that are active
in the cells. In this article, we show it on the example of
two enzymes: aralkylamine N-acetyltransferase (AANAT: EC
2.3.1.87) and N-acetylserotonin O-methyltransferase (ASMT: EC
2.1.1.4) in the European flounder (Platichthys flesus). We have
investigated the transcriptional profiles of the enzymes in the
eyeball, brain, intestines, spleen, heart, liver, head kidney, gonads,
and skin. A link between aanat and asmt expression and the
physiological role of AANAT and ASMT in various organs in fish
is discussed in our previous papers (Kulczykowska et al., 2017;
Pomianowski et al., 2020).

WHY AANAT AND ASMT?

Both AANAT and ASMT are well recognized in fish as
enzymes determining the overall biosynthesis rate of melatonin
(Mel; N-acetyl-5-methoxytryptamine). Mel, as a multifunctional
hormone synthetized in various tissues/organs and implicated
in a wide spectrum of physiological and behavioral events,
has been attracting the attention of researchers for many
years, the same as the enzymes controlling its synthesis in
fish cells (for review, see Falcón et al., 2010, 2011, 2014;
Kulczykowska et al., 2017; Pomianowski et al., 2020). For the
record, AANAT converts serotonin (5-hydroxytryptamine; 5-
HT) to N-acetylserotonin (NAS), and ASMT, previously named
hydroxyindole-O-methyltransferase (HIOMT), methylates NAS
to Mel in vertebrates, including fish. Furthermore, AANAT and
ASMT are active in many other metabolic pathways: AANAT
acetylates dopamine to N-acetyldopamine in fish (Zilberman-
Peled et al., 2006; Paulin et al., 2015), and ASMT methylates
NAS to 5-HT (and 5-HT metabolites) to 5-methoxytryptamine
(5-MTAM), 5-methoxyindole acetic acid (5-MIAA), and 5-
methoxytryptophol (5-MTOL) in mammals (Pévet et al., 1981;
Morton, 1987).

In teleost fish, in contrast to tetrapods, there are several
AANAT and ASMT isozymes encoded by distinct genes as a
result of genome duplication (Falcón et al., 2009, 2011). The
first report of AANAT encoding genes shows two (aanat1 and
aanat2) genes expressed in pike (Esox lucius) (Coon et al., 1999).
Later papers report expression of three genes: aanat1a, aanat1b

(also known as snat), and aanat2 in the pufferfish (Takifugu
rubripes and Tetraodon nigroviridis), medaka (Oryzias latipes)
(Coon and Klein, 2006), and sea bass (Dicentrarchus labrax)
(Paulin et al., 2015). Additionally, ASMT encoding genes asmt
and asmt2 (also known as hiomt and hiomt2) and their transcripts
or only one asmt transcript have been detected in various fish
species (Velarde et al., 2010; Khan et al., 2016; Muñoz-Pérez
et al., 2016; Zhang et al., 2017). Our research group has examined
the expression of the aanat and asmt genes in various organs
of the three-spined stickleback (Gasterosteus aculeatus) as a part
of the project on the cutaneous stress response system in fish
(Kulczykowska, 2019). We have found two transcripts of genes
encoding AANAT and two of ASMT in the eyeball and one of
each in the skin (Pomianowski et al., 2020). However, in an
earlier study (Kulczykowska et al., 2017), also in the three-spined
stickleback, we even found three aanats mRNAs in the brain, eye,
skin, stomach, gut, heart, and kidney, but their levels differed
significantly within and among organs.

A variety of AANAT and ASMT isozymes and isoforms in
teleost fish detected by the analysis of transcriptome sequencing
data (for example, Li et al., 2015; Zhang et al., 2017; Lv et al., 2020)
together with the results of our previous studies (Kulczykowska
et al., 2017; Pomianowski et al., 2020) show some discrepancies.
Thus, a question arises if all transcript variants correspond to
active forms of enzymes (isozymes and/or isoforms) in fish
organs/tissues. The diverse properties of the encoded proteins
with respect to their enzymatic activity, including substrate
preferences, kinetic characteristics, and mechanism of regulation
as well as their organ distribution can indicate multiple biological
functions. Furthermore, different AANAT and ASMT variants
(isozymes and isoforms) and their combinations, which are
organ specific, can be engaged in regulation of homeostasis
of the organism under different conditions and in different
phases of organism development having a marked impact
on fish physiology. Therefore, a preselection of transcripts
corresponding to the enzymes that are active in studied organs is
required. Biological importance of AANAT and ASMT resulting
from their role in many metabolic pathways in the cells
explains a continuous need for research on them. This paper
follows this trend.

WHY THE EUROPEAN FLOUNDER? IS IT
JUST ANOTHER SPECIES EXAMINED?

The European flounder inhabits the European coastal waters
from the White Sea in the north to the Mediterranean and the
Black Sea in the south. The exceptional adaptability of this species
to live, breed, and prosper in waters of different salinity and
temperature makes it an excellent model organism in which to
study various physiological processes, including osmoregulation
and adaptation to variable oxygen conditions (for example,
Warne and Balment, 1995, 1997; Kulczykowska et al., 2001;
Lundgreen et al., 2008). Furthermore, the flounder is widely used
in many studies as a bio-indicator (Hylland et al., 1996; Grinwis
et al., 2000; Napierska et al., 2009; Laroche et al., 2013). This
flatfish is generally readily chosen as an experimental subject

Frontiers in Marine Science | www.frontiersin.org 2 February 2021 | Volume 8 | Article 618779

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-618779 February 14, 2021 Time: 16:50 # 3

Pomianowski et al. Annotated Transcriptome of European Flounder

as a species easily adaptable to laboratory conditions. Despite
this, so far, there are no comprehensive transcriptome data from
different organs of this species except for a mixed-tissue RNA-
seq data set (SRX893920) released in 2015 but not described in
any formal publication. The only transcriptomic and genomic
data for closely related species are limited to Japanese flounder
Paralichthys olivaceus (Pleuronectiformes) inhabiting the Western
Pacific, which hampers any comparative molecular approaches
between flatfish species so that we want to fill the gap.

It is becoming increasingly apparent that transcriptome data
of the European flounder can provide new tools for study of the
molecular mechanisms underlying the disruption of homeostasis,
which can affect the reproductive success of fish. Therefore, such
data are important not only for basic science, but they can be
applied in fisheries and resource management. We found the
European flounder to be a good model organism for studying
the diversity of enzyme forms and potential physiological
consequences of this phenomenon. We address our study to
marine and freshwater biologists and ecologists, aquaculturists,
toxicologists, and climatologists.

METHODS

RNA Extraction and Sequencing
One European flounder (Platichthys flesus) female was collected
in the Gulf of Gdańsk (Poland), transported to the Institute
of Oceanology PAS, and kept in a 200-L aerated aquarium
(at 7 ppt salinity, 8 ± 0.2◦C water temperature and 8L:16D
natural photoperiod) 2 weeks before sampling. The fish was
sacrificed at 10 pm by cutting a spinal cord. Whole organs:
eyeball, brain, and approximately 5 × 5 mm samples of intestine,
spleen, heart, liver, head kidney, and gonad as well as skin
from the upper and bottom parts of the fish were dissected
immediately after sacrificing. All tissue samples were transferred
to Eppendorf tubes and snap frozen in a dry ice—95% EtOH
cooling bath. Frozen samples were stored at −70◦C until
RNA extraction. Total RNA was purified with a GenEluteTM

Mammalian Total RNA Miniprep Kit (RTN70, Sigma-Aldrich, St.
Louis, MO, United States) with minor modifications according
to Pomianowski et al. (2020). RNA integrity number (RIN) was
determined with a 2100 Bioanalyzer (Agilent), and samples with
a total RNA amount ranging from 1.85 to 6.36 µg, RIN 6.5 to
8.6, and rRNA ratio 1.0 to 1.5 were used to construct sequencing
libraries. Equal amounts of RNA isolates were sequenced on
an Illumina NovaSeq6000 platform (TruSeq NGS library) with
150 bp paired-end run mode and 40M reads per sample
throughput (Macrogen Inc., Korea). Initially, a total of more than
5.1 × 108 raw PE reads were obtained from all libraries. Then,
after filtering by removal of adaptor sequences, contaminated and
poor-quality reads we obtained approximately 75 Gbp of clean
data (Q20 bases > 99%).

De novo Assembly of Fish Transcriptome
The Trinity version 2.9.1 (Grabherr et al., 2011) assembler with
default parameters was used to obtain de novo assembly of the
combined reads from all samples. There were 350,609 contigs

in this initial, highly redundant assembly. The redundancies
were reduced by applying CD-HIT-EST program release v4.8.1
(Li and Godzik, 2006) with parameter −c 0.98 and by filtering
off very poorly represented contigs (TPM <1.0) after mapping
the raw data back at the assembly as recommended by the
Trinity manual (Supplementary Table 1). Additional filtering
was performed after functional annotation. Contigs matching
likely contaminants (similarity >85% to inconsistent taxa) were
removed by our tritoconstrictor python script available on
github1. Moreover, contigs without consistently annotated open
reading frames and TPM <10 in at least one sample were also
removed. The final filtered assembly consisted of 75,017 contigs
(or Trinity isoforms) in 37,956 unigenes (defined as Trinity
“groups”). The technical quality of this assembly was assessed
by transrate v1.0.3 (Smith-Unna et al., 2016) (Supplementary
Table 2). The completeness of the assembly was evaluated using
BUSCO pipeline version 3.0.2 (Simão et al., 2015; Supplementary
Figure 1). More than 93% of the 2,586 representative vertebrate
BUSCOs were present in the reported transcriptome. For the
metazoa and actinopterygii BUSCOs, the statistics were also
very good, suggesting that the transcriptome represents a rather
high level of completeness. The relatively large fraction of
duplicated BUSCO for all databases suggests that the number of
alternatively assembled isoforms or assembly artifacts is still high
in the final assembly.

Functional Annotation of Transcriptomes
To annotate the assembled unigenes, we searched for the
homologous sequences of all isoforms in three protein databases:
UniRef90 (2020/02 release) (Suzek et al., 2015), PFAM release
32.0 (Finn et al., 2010), and PANTHER release 15.0 (Thomas
et al., 2003). All databases were searched on a local high-
performance computer cluster. The two databases containing
protein profiles (PANTHER and PFAM) were searched with
hmmer2 (version 3.3), UniRef90 was searched with Mmseqs2
release 11-e1a1c (Mirdita et al., 2019), and the results were
integrated according to the pipeline outlined in Supplementary
Figure 2. Only database hits with bitscores higher than 20
were used to produce the final annotation. Gene ontology
(GO) terms were assigned to those annotated unigenes based
on the current (dated 1/1/2017) official release (Ashburner
et al., 2000) using mapping files provided by UniRef and
PANTHER. Additionally, based on PFAM and PANTHER
signatures, some unigenes were classified according to InterPro
system (Mitchell et al., 2019), and GO terms for these
unigenes were also integrated. The majority (20,077) of
unigenes from the reference assembly were assigned some
GO terms (Supplementary Figure 3). The tritoconstrictor
python script performing annotation and filtering is available
on github.

Analysis of aanat and asmt Transcripts
The final annotated transcriptome contained all six expected
groups of transcripts of aanat and asmt, some with several

1https://github.com/aburzynski/tritoconstrictor
2hmmer.org
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potential isoforms (Table 1). The integrity of these transcripts
was verified as follows. First, homologous genomic sequences
of Japanese flounder (Paralichthys olivaceus) (GenBank
GCA_001904815 and GCF_001970005) and stickleback
(Gasterosteus aculeatus) (BROADs1, Ensemble release 97)
were identified using the CLC Genomics workbench ver.
9.5.5 (Qiagen) “Large Gap Read Mapping” procedure. Then,
all isoforms were aligned with Japanese flounder reference
sequences. The alignments of problematic isoforms are
presented in Figure 1. Based on these alignments, only a
single complete transcript from each gene was identified.
The remaining isoforms can be regarded as artifacts due to
illegitimate assembly of disjointed sequences. The apparent
presence of unspliced introns in three (out of 13) isoforms is
perhaps surprising. Apparently, given the substantial sequencing
depth, our RNA isolation procedure left enough genomic
DNA in the sample to generate this type of assembly artifact.
Despite that, the unambiguous identification of correctly spliced
transcripts was possible in each case. There was no evidence
for the presence of differentially expressed isoforms in any
of the six genes.

In all studied organs of the European flounder, asmtl
transcripts were present at low levels (Table 1). In teleosts,
asmtl gene is a product of fusion between maf and asmt
genes (Zhang et al., 2017). Transcripts of the asmtl gene that
were identified in Platichthys flessus had the same intron–
exon structure as in the three-spined stickleback and Japanese
flounder. Moreover, their sequence similarity to stickleback and
Japanese flounder genomic sequences was convincing enough
to conclude that these genes are truly homologous. The asmtl
gene was found in the genomes of several fish species by Zhang
et al. (2017). The transcriptomic survey made by the same
author showed that asmtl is transcribed in the eye, skin, liver,
and gonads of Sinocyclochelius fish and in the brain, gill, liver,
muscle, and skin of mudskippers (Boleophthalmus pectinirosris
and Periophthalmus magnuspinnatus) (Zhang et al., 2017). Taking
into consideration that asmt transcripts were found mostly in the
eye and brain and asmt2 and asmtl transcripts in many peripheral
organs, their function seems to be different.

Data Records
The sequencing and assembly data of the transcriptome for
all samples were deposited into public repositories. The raw
sequencing data generated in this work were deposited in NCBI
Sequence Read Archive (Leinonen et al., 2011). The assembly
was deposited at DDBJ/EMBL/GenBank Transcriptome Shotgun
Assembly (TSA) database. The version described in this paper is
linked to NCBI BioProject number PRJNA637628.

Additional data, including expression profiling across
samples, are available as a Supplementary Material
(Supplementary Table 3).

CONCLUDING REMARKS

A variety of enzyme variants, isozymes and isoforms, in
teleost fish, which are shown by the analysis of transcriptome
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FIGURE 1 | Alignment of aanat/snat, asmt, asmt2 transcript sequences (referenced by contig/isoform IDs used in Table 1 and Supplementary Data) to relevant
genomic sequences of Japanese flounder (referenced by accession numbers). The figure was prepared in CLC Genomics Workbench and follows conventions used
in this software. Annotations are presented as arrows above the sequences represented by black lines. A good match is observed only within annotated exons
(green arrows), confirming the structural integrity of the annotated open reading frames (yellow arrows). Note that ORF annotations span over the alignment gaps.
Only a single isoform from each locus has a complete ORF and no indication of misassembly (red boxes).

sequencing data and presented in many papers, including
ours, prompted us to investigate the factual diversity of the
enzymes. Hence, we proposed how to effectively preselect those
cDNA transcripts while analyzing transcriptome sequences
to distinguish those corresponding to the active proteins.
In this article, we show it on the example of two enzymes,
aralkylamine N-acetyltransferase and N-acetylserotonin
O-methyltransferase, in the European flounder. It is important
to sequence RNA from as diverse a set of organs as possible
to assure that the final transcriptome is complete enough
for identification of true organs-specific alternatively spliced
transcripts. Therefore, the analyses were performed in nine
different organs. Discrimination of true alternatively spliced
isoforms from assembly artifacts proved to be difficult based
on the de novo data alone. However, raw genomic data of
closely related Japanese flounder coming from two sequencing
projects (GenBank GCA_001904815 and GCF_001970005)
were used for final verification of identity and completeness
of prefiltered isoforms. The expression of five aanat and
asmt genes differed markedly between organs. Moreover,
a low expression of asmtl, a gene previously described
in several teleost species, was also found in nine organs

of the European flounder. No compelling evidence for
alternatively spliced isoforms was identified for any of the
six target genes.
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Supplementary Figure 1 | BUSCO assessment of assembly completeness. The
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Supplementary Figure 2 | Simplified overview of assembly annotation and
filtering workflow.

Supplementary Figure 3 | Functional annotation of the assembly. There were
37,956 unigenes in the final assembly consisting of 75,017 contigs. Out of these,
20,090 unigenes were assigned at least one Gene Ontology (GO) term. The Venn
diagram shows the distribution of unigenes among the three GO categories:
cellular component, biological process, and molecular function. The colored areas
are proportional to the number of unigenes with respective assignments.

Supplementary Table 1 | List of raw reads and per sample assembly statistics.

Supplementary Table 2 | Transrate assembly assessment of the final assembly.

Supplementary Table 3 | The transcript expression values across selected
European flounder organs. Values are presented in normalized transcripts per
million (TPM) units.
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