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Under certain conditions, dispersed crude oil in the sea combines with organisms,

organic matter, and minerals to form marine oil snow (MOS), thereby contributing to the

sinking of oil to the seafloor. Marine microbes are the main players in MOS formation,

particularly via the production of extracellular polymeric substances. Distinct groups of

microbes also consume the majority of the hydrocarbons during descent, leading to

enrichment of the less bioavailable hydrocarbons and asphaltenes in the residue. Here

we discuss the dynamics of microbial communities in MOS together with their impacts

on MOS evolution. We explore the effects of dispersant application on MOS formation,

and consider ways in which laboratory experiments investigating MOS formation can be

more representative of the situation in the marine environment, which in turn will improve

our understanding of the contribution of MOS to the fate of spilled oil.

Keywords: marine oil snow, marine snow, hydrocarbon biodegradation, hydrocarbonoclastic bacteria,

extracellular polymeric substances, oil-spill response

INTRODUCTION AND SCOPE

In order to respond effectively to crude oil released to the marine environment it is imperative
to understand the interplay between the physical, chemical, and biological factors that determine
petroleum fate, transport, and impact on the biota and surrounding environment. Marine snow
(MS) came to prominence as a vehicle for transporting oil to the benthos during the 2010
Macondo spill (hereafter referred to as the MC-252 spill, because the Macondo Prospect is located
in Mississippi Canyon Block 252 of the Gulf of Mexico), and has stimulated a lot of research
to determine its quantitative importance, resulting in several reviews on the topic (e.g., Daly
et al., 2016; Passow and Ziervogel, 2016; Quigg et al., 2016, 2020; Decho and Gutierrez, 2017;
Brakstad et al., 2018b; Burd et al., 2020; Kujawinski et al., 2020; Passow and Overton, 2021).
Here we consider the microbial communities associated with marine oil snow (MOS), including
producers and degraders of extracellular polymeric substances (EPS). We discuss the evidence
for biodegradation of different hydrocarbon components during the descent of MOS, the impacts
of MOS on the benthos, and the potential influence of oil on the formation of MOS and on its
associated microbiome. We discuss the efficacy of the methods used to investigate aspects of MOS,
and conclude by suggesting ways to advance research into the formation and fate of MOS.
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MARINE SNOW (MS) FORMATION

The ocean contains ∼600 gigatonnes of carbon in the form of
dissolved organic matter (DOM; Hansell et al., 2009), the vast
majority in the nanometre size range (Benner and Amon, 2015).
Around 10% of this DOM can self-assemble to form marine
microgels, three-dimensional polymer networks transiently
suspended in seawater, which can aggregate into particulate
organic matter (POM; Chin et al., 1998; Verdugo, 2012; Orellana
and Leck, 2015; Figure 1). This transition from DOM to POM
plays a critical role in marine snow (MS) formation (Passow
et al., 2012). MS is defined as aggregates ≥500µm in diameter
that descend from the euphotic layer of the epipelagic zone (0–
200m depth) into the mesopelagic zone and beyond, ultimately
reaching the sea floor (Turner, 2015; Figure 1). MS is made up of
various organic and inorganic particles, eukaryotic microalgae,
and Bacteria, along with Archaea, microzooplankton, fungi,
viruses, fecal material, detritus, and feeding structures, all bound
together by biopolymers (Shanks and Trent, 1980; Alldredge
and Silver, 1988; Alldredge et al., 1993; Simon et al., 2002;
Volkman and Tanoue, 2002; Bochdansky et al., 2017). Bacteria
are abundant in MS (Mestre et al., 2018), where their large
surface-area to volume ratio makes them particularly effective
in transporting and transforming organic matter and cycling
nutrients (Azam and Long, 2001). Analysis of large, slowly
sinking MS particles in the bathypelagic zone showed that,
while bacteria were extremely numerically dominant, two distinct
eukaryotic groups, the fungi and the labyrinthulomycetes,
together contributed about twice the bacterial biomass on the
MS (Bochdansky et al., 2017). Marine snow transports microbes
from the surface (Mestre et al., 2018), provides an important food
source for organisms living in the deep water column, and drives
the organic-carbon pump that exports carbon and energy to the
aphotic zone, sequestering atmospheric CO2 into the deep ocean
and sediment (DeVries et al., 2012). MS sinking velocities range
from 1 to 368 m/day (median 95 m/day) (Alldredge and Silver,
1988), dependent on particle size, density, and porosity (De La
Rocha and Passow, 2007; Brakstad et al., 2018b), and can change
while sinking.

Extracellular polymeric substances (EPS) are a major
component of the total DOM pool in the ocean. They consist
primarily of polysaccharides (up to 90%), but also proteins,
glycoproteins, nucleic acids, and lipids, and are secreted
or released by phytoplankton and heterotrophic microbes
(Mühlenbruch et al., 2018). Polysaccharide-rich EPS are
transparent, but can be visualized with Alcian Blue (Alldredge
et al., 1993), and hereafter, this form of EPS will be referred
to by its widely used descriptor of “transparent exopolymer
particles” (TEP; Alldredge et al., 1993; Passow and Alldredge,
1995). Protein-rich EPS (which are also transparent in nature but
not in name), can be distinguished by staining with Coomassie

Abbreviations: CEWAF, Chemically Enhanced Water Accommodated Fraction;
DOM, Dissolved Organic Matter; EPS, Extracellular Polymeric Substances; MC-
252, Mississippi Canyon Block 252; MOS, Marine Oil Snow; MS, Marine Snow;
OHCB, Obligate Hydrocarbonoclastic Bacteria; POM, Particulate Organic Matter;
PAH, Polycyclic Aromatic Hydrocarbons; TEP, Transparent Exopolymer Particles;
WAF, Water Accommodated Fraction.

Blue (Long and Azam, 1996). TEP are “sticky,” largely due to
acidic sugar units, and so they are often considered to be most
significant in the formation of MS (Daly et al., 2016).

Thus, EPS can enhance the aggregation of particles, enabling
the formation of MS (Quigg et al., 2016; Decho and Gutierrez,
2017), although not all EPS assembles to form these discrete
particles (Passow, 2002a). Firstly, EPS nanofibers (5–50 nm)
assemble, forming nanogels (100–200 nm) that are stabilized by
entanglement and, due to their polyanionic nature, cross-linking
with divalent Ca2+ (Verdugo, 2012; Wakeham and Lee, 2019).
These DOM polymer networks diffuse into the bulk seawater
and collide with neighboring nanogels, forming microgels (∼3–
6µm) in a reversible process (Verdugo, 2012). Microgels are
ubiquitous throughout the oceans, generally decreasing in
abundance below the photic zone (Engel et al., 2020), and
continue to collide and aggregate, eventually forming stable
macrogels of several hundred micrometers, operationally defined
as particles retained on 0.4µm polycarbonate filters (though
some researchers use 0.2 µm filters).

Aggregate formation depends on the number of particle
collisions, and is a function of the abundance of particles,
including cells, present in the medium, and their cohesiveness,
which enhances the probability that such particles will stay
attached after collision (Jackson, 1990; Burd and Jackson, 2009;
Cruz and Neuer, 2019). TEP aggregate with other particles
and act as a biological glue to form sinking MS (Engel et al.,
2004; Mari et al., 2017). Several studies have established a
link between increases in TEP concentration and the enhanced
aggregation and sinking of MS (Passow et al., 1994, 2001;
Logan et al., 1995; Gärdes et al., 2011). By contrast, Coomassie-
blue stainable particles are not considered to be as important
as TEP in MS formation (Prieto et al., 2002; Cisternas-
Novoa et al., 2015). However, protein-rich EPS, which are as
common as TEP in the ocean (Busch et al., 2017), consist of
both hydrophilic and hydrophobic domains, which result in
surface processes that are less predictable and more dependent
on the context (e.g., types of associated minerals, presence
of hydrocarbons), and may be important for MS formation
(Santschi et al., 2020). Actually, the world of hydrated gels is
less binary than portrayed here, with the existence of hybrid
and intermediate forms, and understanding the varied nature
of these gels and their roles in, inter alia, the microbial
loop and marine snow formation remains work in progress
(Thornton, 2018).

In addition to these biochemical processes, hydrodynamics
influence the formation and transport of MS and marine
oil snow (MOS), indirectly (e.g., by transport of limiting
nutrients to microbiota), and directly (e.g., by turbulence-
enhanced aggregation of particles due to increased
collision rate or, when excessive, disaggregation of MS)
(Burd and Jackson, 2009; Daly et al., 2016). Currents,
eddies, subduction, upwelling, river discharge, benthic
resuspension, and other physical processes can all alter
the formation and distribution of MS/MOS (see Daly
et al., 2016, 2020). Also, density gradients in the water
column can decrease the settling rate of MS/MOS particles
(Prairie et al., 2015).
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FIGURE 1 | Marine snow (MS) formation and sedimentation. Macromolecules/nanofibres are released by microbes (e.g., bacteria and phytoplankton), which

assemble, forming nanogels stabilized by entanglements and Ca2+ bonds. There is a transition in the size continuum of marine gels from dissolved organic matter

(DOM) to particulate organic matter (POM) as these nanogels interpenetrate each other forming microgels. Neighboring microgels then aggregate forming macrogels

[e.g., Transparent Exopolymer Particles (TEP)]. This process occurs in the euphotic zone, mesopelagic zone and the deep ocean. MS forms from aggregation of

microbes and other particles, which are held together by a combination of Extracellular Polymeric Substances (EPS) and the macrogels generated. Other material can

be incorporated into these aggregates, such as minerals and detritus. Positively buoyant MS particles rise and can float on the ocean surface. Negatively buoyant MS

particles sink, where they can be altered by the activities of heterotrophic microbes and zooplankton prior to sedimentation on the seafloor.

MARINE OIL SNOW (MOS) FORMATION
AND ITS CONTRIBUTION TO
TRANSPORTING WEATHERED CRUDE OIL
TO DEEP-SEA SEDIMENTS

Composition of MOS and Potential Impact
on the Benthos and Associated Biota
Crude oil spilled on the sea is rapidly weathered by processes such
as spreading, evaporation, natural dispersion, emulsification, and
photooxidation. Themost soluble hydrocarbons, such as benzene
and toluene dissolve into the underlying water, and hydrocarbons
with up to 15 carbon atoms evaporate in the first day or
so. Floating oil undergoes photooxidation and emulsification,
and any wave action will disperse some of the oil into the
water column. Oil-spill dispersants lower the interfacial tension
between oil and water, and thereby allow dispersion with much
less wave energy, and the generation of much smaller droplets.
Crude oil spilled from a deep-sea well blowout will rise to the
surface, losing most of its soluble components during the ascent
(Ryerson et al., 2012), and at least partially dispersing as small
droplets. Again, this process can be stimulated with dispersants
(Gros et al., 2017).

Dispersed oil droplets are subject to rapid biodegradation,
and can also interact with minerals and organic matter. In

coastal areas oil-mineral aggregates are common (Owens, 1999;
Loh and Yim, 2016; Li et al., 2020) and result in sinking or
suspension in the water column depending on the nature of the
aggregate (Quigg et al., 2020). Suspended sediment particles from
the Mississippi River outflow generated oil mineral aggregates
during the MC-252 spill (Figure 2), although their quantitative
influence is not clear (Daly et al., 2016). A substantial settling
of MS during the early days of the MC-252 spill led to the
suggestion that MS could also transport oil to the sediment
(Passow et al., 2012; Passow, 2016; Passow and Ziervogel, 2016;
Larson et al., 2018). There are many examples from mesocosm
studies of the formation of oil-algal-bacterial complexes (e.g., Lee
et al., 1985; Macnaughton et al., 2003; Coulon et al., 2012). In
the open sea the resultant oil-containing flocs have been called
marine oil snow (MOS) or oil-related marine snow (Brakstad
et al., 2018b) among other names (Quigg et al., 2020), shown
schematically in Figure 3. From analysis of MOS captured in
sediment traps (Stout and German, 2018) it has been estimated
that the extensively biodegraded residue of 217,700 to 229,900
barrels of oil was deposited in the form of MOS over an area of at
least 7,600 km2 following the MC-252 spill, representing around
7% of the estimated 3.19 million barrels of spilled oil (Barbier,
2015). MOS particles consist of a mixture of organic matter (e.g.,
phytoplankton, heterotrophic microbes, fecal material, dead, or
decaying material), sediment particles and weathered crude oil
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FIGURE 2 | A mind-map showing the factors that may influence the likelihood of a marine oil snow sedimentation and flocculent accumulation (MOSSFA) event, (A) in

the event of freshwater influence from rivers, and (B) and (C) after common oil-spill-response strategies, such as (B) in-situ burning, and (C) dispersant application.

Abbreviations include: dissolved organic matter (DOM), extracellular polymeric substances (EPS), oil-mineral aggregates (OMA), protein/carbohydrate ratio (P/C ratio)

and transparent exopolymer particles (TEP). Up-arrows denote an increase of the process and down-arrows denote a decrease.
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within a matrix of EPS and especially TEP (Daly et al., 2016;
Passow and Ziervogel, 2016; Brakstad et al., 2018b). Thus, TEP
can be considered as the glue, while the cells and other particles
act as ballast, providing the density to sink the less dense oil
and TEP. In addition, the presence of oil may lead to a tighter
packaging of microbial cells causing MOS particles to sink faster
than MS (Passow et al., 2019). However, as with MS, MOS
particles are hot-spots of microbial activity (Ziervogel et al.,
2012), and constantly changing as colonization, consumption,
clumping, and fragmentation alter the rate of their descent. The
sinking of these MOS particles and their accumulation on the
seafloor of the Gulf ofMexico was referred to as amarine oil snow
sedimentation and flocculent accumulation event (MOSSFA;
Valentine et al., 2014; Brooks et al., 2015; Chanton et al., 2015;
Romero et al., 2015, 2017; Yan et al., 2016; Schwing et al.,
2017). Oil is also transported to deep-water sediments by other
mechanisms, such as incorporation into invertebrate fecal pellets
(Lee et al., 2012; Almeda et al., 2016), direct sinking of very
degraded oil (Murray et al., 2020), sinking of degraded oil
attached to mineral particles (Li et al., 2020), settling of oil-mud
complexes formed from the injection of drilling fluids (Stout
and Payne, 2017), and sinking of heavy residue from burning oil
(Stout and German, 2018). For example, in-situ burning removed
220,000–310,000 barrels of surfaced oil following the MC-252
spill, generating some 33,800–54,700 barrels of heavy viscous
residue that sank to the seafloor (Stout and Payne, 2016b). Also,
4% of the burned oil was emitted as soot particles (Middlebrook
et al., 2012), which may have contributed to MOS formation due
to aerosol deposition and adsorption of DOM on the surfaces of
soot particles, thereby stimulating aggregation (Mari et al., 2014;
Figure 2).

Oil and sediment deposition following the MC-252 spill
impacted the benthic macrofauna and meiofauna (including
foraminifera whose carbonate shells provide a temporal
sedimentary record), reducing their abundance and biodiversity
(Montagna et al., 2013; Baguley et al., 2015; Schwing et al.,
2015, 2017, 2018; Washburn et al., 2017). The main drivers of
these changes have been assigned to the introduction of toxic
oil compounds (van Eenennaam et al., 2018, 2019), an increase
in anoxic conditions due to aerobic consumption of the added
organic carbon (Hastings et al., 2016, 2020), or a combination
of both (Schwing et al., 2015). However, the composition of the
oil assumed in these predictions did not take into account the
biodegradation that occurs during descent through the water
column prior to deposition on the seafloor (Stout and Payne,
2016a; Bagby et al., 2017; Supplementary Table 1). For example,
van Eenennaam et al. (2018, 2019) applied 3 or 10 g per m2 of
freshMacondo surrogate oil in their mesocosm experiments. The
use of fresh oil is unrepresentative of what was actually deposited
on the seafloor, which was a wax-rich, severely biodegraded
residue lacking the more bioavailable and toxic components of
the oil (Stout and Payne, 2016a). Any future toxicity studies
should use weathered oil in order to fully assess the impact of
MOS on the benthos.

MOS may have formed after other major spills. For example,
MOS is thought to have formed during the 1979 Ixtoc I
blowout in the Bay of Campeche based on the presence of
river-derived POM (Vonk et al., 2015). Two lines of evidence

support a significant depositional pulse of oil following the
spill: (1) petroleum biomarkers and molecular compound classes
indicative of the Ixtoc I oil were detected in seafloor sediments in
the Bay of Campeche from deep (>500m) waters (Lincoln et al.,
2020); and (2) similar laminations and visible redox boundaries
in sediment cores to those seen following the MC-252 spill
(Brooks et al., 2015; Schwing et al., 2020). However, it cannot
be determined what proportion of oil was deposited due to
MOS sedimentation compared to the alternative mechanisms
discussed above.

Mechanisms of MOS Formation
To our knowledge, controlled field studies to investigate MOS
formation and fate soon after an oil spill have yet to be
performed as it would require researchers to be present (and
divert resources) during an emergency incident. MOS formation
and fate are also difficult to investigate experimentally at sea due
to stringent regulations on controlled oil releases. In addition,
monitoring MOS formation would be technically challenging as
this needs an in-situ camera system that follows the aggregation
process (Iversen and Lampitt, 2020). As an alternative, MOS
experiments have been performed in microcosms with the aim
of replicating in-situ conditions, often comparing MS/MOS
formation in uncontaminated and crude-oil-amended seawater.
Most groups use closed bottles on their sides on roller tables,
where the changing direction of gravity keeps any flocs in
suspension. If the bottles are full there is minimal turbulence, and
if there is an air space the rotation simulates surface turbulence
under mild sea conditions. The aggregates formed are generally
morphologically and chemically similar to MS particles collected
in situ (Unanue et al., 1998; Ziervogel et al., 2012), and rotating
bottle experiments have been widely adopted to investigate MOS
formation (e.g., Passow et al., 2012; Ziervogel et al., 2012).
However, aggregates formed in full bottles may grow larger than
those that descend through marine water layers where there is
varying turbulence.

MOS may develop as: (1) pre-formed MS interacting with oil,
or (2) oil acting as a nucleus for microbial biofilm growth and
floc formation. The latter is referred to as a bacteria-oil aggregate
(BOA; Passow and Overton, 2021). These mechanisms are not
mutually exclusive, and given the temporal and spatial extent
of the MC-252 spill, both mechanisms are highly likely to have
been responsible for MOS formation. Mechanism 1 was probably
enhanced by river outflows (e.g., diversionary channels of the
Mississippi River) providing nutrients for microbial growth, as
well as directly supplying microbes, clay and other particulate
matter to the water column (Figure 2; Vonk et al., 2015; Daly
et al., 2016; van Eenennaam et al., 2016). In addition, the transient
acute toxicity of dispersed oil immediately upon dispersion may
have negatively impacted grazing zooplankton, diminishing their
effect on phytoplankton populations (Almeda et al., 2013a,b).
Thus, the stimulated phytoplankton blooms (Hu et al., 2011;
Bianchi et al., 2014), with their high levels of EPS/TEP, coupled
with greater abundance of particles, increased the probability of
collisions and aggregation that lead to MOS formation (Jackson,
1990, 2005; Burd and Jackson, 2009).

Furthermore, the unusual features of the MC-252 spill, i.e.,
its occurrence in deep water and extensive subsurface dispersant
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FIGURE 3 | Schematic representation of microbes and dispersed oil droplets in marine snow at different scales.

treatment leading to a deep-water plume of highly dispersed
oil, make it highly likely that some MOS formed below the
photic zone. For example, it is known that hydrocarbon-
degrading enrichments in the dark (Baelum et al., 2012)
as well as pure cultures of hydrocarbon-degrading bacteria
(Alcanivorax borkumensis, Omarova et al., 2019; Marinobacter
hydrocarbonoclasticus, Vaysse et al., 2011; Halomonas sp.,
Gutierrez et al., 2013b; and Alteromonas sp., Gutierrez et al.,
2018), can form EPS-rich films around oil droplets, sometimes
creating flocs (Gutierrez et al., 2013a,b, 2018), even causing
gelation (Radwan et al., 2017), and microbial coatings on oil
droplets will alter their surface properties and may result in
reduced coalescence (Omarova et al., 2019). Unfortunately, the
oil concentrations used in many of these studies were very high
(up to 5,000 ppm), and nutrient levels were often many orders
of magnitude above those available in the open sea (Bejarano
et al., 2014; Wade et al., 2016), so it is not clear how well
they mimic what happens in the ocean. However, enrichments
using seawater without added nutrients and applying light-dark
cycles demonstrated bacterial colonization of oil droplets and the
formation of flocs (Doyle et al., 2018).

The microfluidic system developed in the laboratory of Jian
Sheng (White et al., 2019) shows the colonization of an oil droplet
by Pseudomonas sp. ATCC 27259 (strain P62) in real time. This
coating of EPS dramatically increased drag, and would thus
reduce the rising velocity of oil droplets in the water column.
With further studies, applying natural communities and lower
nutrient concentrations, this experimental set-up should help
to explain and model various aspects of rising plumes of sub-
millimeter oil droplets, as was seen upon well-head dispersant
addition to the high-pressure MC-252 blowout, e.g., (1) rising
velocity; (2) potential for biodegradation; and (3) potential to
form MOS (White et al., 2020a,b).

During the MC-252 spill it is possible that biofilms on highly
dispersed oil droplets created small flocs in the water column that
were captured by downward flux of larger flocs of MS or MOS
from the surface (Passow and Stout, 2020), but, it is also feasible

that they reached the sediment of their own accord after extensive
biodegradation (Murray et al., 2020), or by a combination of both
means (Suja et al., 2017; Quigg et al., 2020).

It is noteworthy that droplets of dispersed oil persisted in the
environment at low concentrations long after the MC-252 well
was capped. Passow and Stout (2020) analyzed MOS captured
in a sediment trap 6 weeks to 13 months later, and found low
levels of very degraded oil in MOS which they believe originated
in the subsurface “plume” and had never reached the surface.
Four pulses of MOS were captured, demonstrating that periodic
“blooms” of MS, with varying compositions of diatoms, fecal
pellets, etc., occur regardless of major oil intrusion. Oil was highly
degraded, and concentrations were low (the residue of 1.45mg
fresh oil/m2/d, median percentage degradation of 85%).

Changes in Hydrocarbon Composition
During Sinking of MOS
In assessing the impact of MOS on the benthos it has sometimes
been assumed, erroneously, that the concentration and
composition of crude-oil entrained in marine snow near
the surface will be the same when it reaches the seafloor.
During the downward transport of MOS, weathering of the
oil by evaporation and photooxidation stops, and the relative
contribution of biodegradation, as well as dissolution, increases.
It is important to understand how rapidly hydrocarbon
abundance and composition change during transit and
sedimentation, as well as the environmental factors influencing
biodegradation, and thus the likelihood of harm to the benthic
biota from MOS. Hazen et al. (2010) reported a half-life of
alkanes in dispersed oil following the MC-252 spill of a few
days, and several papers have confirmed this result under
laboratory conditions that mimic environmentally-relevant
concentrations (Prince et al., 2013, 2017; Brakstad et al., 2015a;
Wang et al., 2016). A key to determining these rates is the
use of a conserved internal marker within the oil; hopanes are
used most commonly (Prince et al., 1994), although even this
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pentacyclic saturated hydrocarbon is known to be consumed
under some conditions (Frontera-Suau et al., 2002). Therefore,
estimates based on hopane’s stability may underestimate the
extent of biodegradation. Alternative biomarkers can be used,
such as C28 20S-triaromatic steroid (Douglas et al., 2012), or
even long chain n-alkanes (Bagby et al., 2017), although it must
be borne in mind that especially the latter may be biogenic
(Dehmer, 1993). Oil residues in deep-sea sediments were found
to be very biodegraded, with most of the resolvable alkanes and
PAHs degraded >90–95%. The residues did contain measurable
amounts of n-alkanes longer than about C30 (Stout and Payne,
2016a; Bagby et al., 2017; Stout and German, 2018). These studies
agree that the extent of biodegradation increased with distance
from the well, suggesting that the biodegradation occurred
while the oil was in transit. Nevertheless, some biodegradation
may also have occurred once the oil was in the sediment. The
concentrations of oil were sufficiently low that there was likely
enough bioavailable N and P so that biodegradation was not
severely nutrient limited. The foregoing evidence highlights that
biodegradation severely alters the oil composition of residues
deposited on the seafloor, and so, to fully understand MOS’
impact on the benthos, we must consider the influence of oil
degradation within MOS prior to deposition.

Microbial Production and Degradation of
Transparent Exopolymer Particles (TEP)
and Their Impacts on MOS
It is well-known that diverse eukaryotic phytoplankton produce
copious amounts of EPS that aggregate to form TEP, with the
quantity produced dependent on the species and environmental
conditions (Passow, 2002a,b; Passow et al., 2019). Diatoms,
dinoflagellates, and prymnesiophytes are perhaps the most
relevant taxa in the context of MOS, as they tend to be the
most abundant blooming microalgae in coastal areas where
spills are most likely to occur. Many diatoms produce silica
and some prymnesiophytes (e.g., coccolithophores) produce
calcium carbonate, which cause cells to aggregate and ballast
marine snow, causing it to sink (Tyrrell and Young, 2009;
Lombard et al., 2013; Quigg et al., 2016). Cyanobacteria also
contribute TEP, with naturally forming flocs of Trichodesmium
trapping degrading oil in their mucus (Passow et al., 2012). The
abundant Prochlorococcus produces TEP (Iuculano et al., 2017).
Some associated heterotrophic bacteria can enhance cellular
aggregation (Cruz and Neuer, 2019), but other phytoplankton
blooms are accompanied by bacteria that consume TEP, such
as Flavobacteria, Verrucomicrobia, and Rhodobacterales species,
as well as those feeding on other algal products, especially
Gammaproteobacteria, such as Alteromonadaceae (Buchan et al.,
2014; Taylor et al., 2014; Arnosti et al., 2016; Needham and
Fuhrman, 2016; Bohórquez et al., 2017; Decho and Gutierrez,
2017).

Heterotrophs produce their own EPS, including
polysaccharides that are often rich in uronic acids and protein-
rich EPS, and the protein-to-carbohydrate ratio of bacterial
EPS varies from 0.04 to 20 (see Santschi et al., 2020). Moreover,
heterotrophs can influence the EPS quantity/type synthesized

by proximal phytoplankton (see Quigg et al., 2020). The EPS
produced by phototrophs can be used as a source of carbon
and energy by heterotrophs (Abed, 2019), which release and
return nutrients (e.g., N, P, and trace metals) from the EPS to
the phototroph in a somewhat mutualistic system (Christie-
Oleza et al., 2017). Importantly, both MS and MOS formation
appears to be enhanced by these bacterial-phytoplankton
interactions (Fu et al., 2014; van Eenennaam et al., 2016; Cruz
and Neuer, 2019). For example, van Eenennaam et al. (2016)
showed that more EPS was released by bacteria associated
with phytoplankton (Dunaliella tertiolecta and Phaeodactylum
tricornutum) compared to bacteria-free phytoplankton (which
did not produce any EPS) or the phytoplankton-associated
bacteria grown on their own (up to 2-fold less). In addition
to a greater quantity of EPS being produced due to these
interactions, the chemical composition was also different. The
EPS produced by the bacteria associated with phytoplankton
had a higher protein-to-carbohydrate ratio, which may alter
how EPS aggregates and interacts with oil (Bacosa et al., 2018;
Santschi et al., 2020), e.g., by influencing: (1) hydrophobicity (Xu
et al., 2011); (2) surface tension (Schwehr et al., 2018); (3) light-
induced chemical crosslinking (Sun et al., 2017, 2018, 2019); and,
overall, affecting MS/MOS sinking rates (Xu et al., 2018a,b).

Therefore, when we talk about TEP derived from a
phytoplankton bloom, the TEP will actually come from an array
of microbial species—phototrophs (e.g., phytoplankton) and
heterotrophs (e.g., bacteria)—plus bacteria from the gut contents
of grazing microzooplankton (Turner, 2015), some of which
may include ingested oil (Almeda et al., 2016). Moreover, the
rapid turnover of phytoplankton and associated heterotrophic
Bacteria and Archaea during blooms (Needham and Fuhrman,
2016) will add to the structural variety of TEP. Different
EPS/TEP-degrading microbes will colonize sinking MS/MOS
flocs (Busch et al., 2017; Duret et al., 2019), which are additionally
grazed by animals (Giering et al., 2014; Figure 1), leading to
structural, chemical, and biological succession during descent,
and potentially altering sinking velocity (Turner, 2015; Dang and
Lovell, 2016). Clearly, the presence of weathered crude oil as a
substrate in the MS adds an extra microbial dimension.

WHICH HYDROCARBON-DEGRADING
MICROORGANISMS ARE ASSOCIATED
WITH MOS?

General Considerations of Microbial
Community Analysis of MOS
The analytical work discussed above has demonstrated that the
oil residues from the MC-252 well blowout in the sediments
of the Gulf of Mexico are highly degraded, and at least some
arrived in association with marine snow. Here we discuss the
microbial communities associated with MOS, followed by an
appraisal of the main taxa found, and their potential roles in
MOS formation and oil degradation. The capacity to degrade
hydrocarbons is found in more than 300 genera of Bacteria
(Prince et al., 2018) as well as in numerous fungal taxa
(Prince, 2018) and in some Archaea (Oren, 2017; Prince et al.,

Frontiers in Marine Science | www.frontiersin.org 7 January 2021 | Volume 8 | Article 619484

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Gregson et al. Marine Oil Snow, a Microbial Perspective

2018). However, most investigations into MOS have focused on
Bacteria, as, after viruses, they are the most abundant microbes
in the surface ocean, are often associated with phytoplankton
and typically dominate hydrocarbon degradation in the marine
environment (McGenity et al., 2012; Gutierrez, 2019; Yakimov
et al., 2019). We note that most of the experiments focusing on
MOS have used concentrations of dispersed oil and dispersant
that are substantially (sometimes >100-fold) higher than found
in the marine water column after a spill (Bejarano et al.,
2014; Wade et al., 2016), which may have resulted in toxic
responses from some organisms as well as unnaturally high
activity from others.

Some studies assessing hydrocarbon degradation have
assigned this function to particular taxa by testing isolates,
applying DNA-stable isotope probing (DNA-SIP) with 13C-
labeled hydrocarbons (Gutierrez et al., 2013b), or drawing
inferences from metatranscriptomics, metagenome-assembled
genomes and single-cell amplified genomes (Mason et al., 2012),
but the majority of these studies have been on bulk water samples
rather than specifically focussing on MOS. In many cases the
identification of a taxon’s capacity for hydrocarbon degradation
is based on an increase in relative abundance of their 16S rRNA
gene sequences in oiled samples vs. non-oiled controls, as well
as an understanding of taxon-trait relationships. Therefore, we
briefly assess the degree to which phylogenetic data can be used
to infer the function of particular microbial taxa. Some genera
contain species that can degrade hydrocarbons and others that
cannot (e.g., Pseudomonas and Marinobacter; Duran, 2010;
Palleroni et al., 2010), and so an increase in abundance in oil
samples may be a direct or indirect effect of the oil, requiring
complementary techniques to understand their role. In this
respect, Netzer et al. (2018) provide a relevant example in the
microbial community succession in MOS formed in cold (4–
5◦C) seawater microcosms additionally containing the obligately
psychrophilic diatom Fragilariopsis cylindrus and 30 ppm of
chemically dispersed oil (30 ppm oil and 0.3 ppm Corexit 9500).
Degradation of hydrocarbons was similar with and without
diatoms, but Nonlabens, a genus within the Bacteroidetes,
was dominant in the diatom-containing aggregates, and thus
proposed to be a hydrocarbon degrader. However, Nonlabens,
clearly co-habiting with the diatom culture, was also dominant
on aggregates formed in diatom-containing microcosms without
hydrocarbons, and so its role needs further investigation (Netzer
et al., 2018). These bacterial communities differed significantly
from those in diatom-free oiled samples that were dominated by
Oleispira, a psychrophilic alkane degrader (Yakimov et al., 2003),
and members of the family Sphingomonadaceae (Netzer et al.,
2018). Whilst there is no evidence for hydrocarbon utilization
by most of the seawater-derived strains of Sphingomonadaceae,
marine sediments have yielded isolates from this family that
degrade polycyclic aromatic hydrocarbons (PAHs) (Gilewicz
et al., 1997; Johnson and Hill, 2003; Kertesz et al., 2019).
Thus, in this example, other approaches (e.g., cultivation or
DNA-SIP) are needed to confirm hydrocarbon degradation
by the identified Sphingomonadaceae and Nonlabens. By
contrast, we can have much more confidence that Oleispira

was degrading alkanes as they belong to a group of marine
bacteria that use hydrocarbons almost exclusively as a source
of carbon and energy, known as obligate hydrocarbonoclastic
bacteria (OHCB). These microbes are present in non-polluted
marine environments in low numbers, but often bloom
and dominate the microbial community following a spill
(McKew et al., 2007a,b; Yakimov et al., 2007; Teramoto et al.,
2009; Vila et al., 2010). Although some species designated as
OHCB will use small organic acids as a source of carbon and
energy, the word “obligate” is understood in the context that
OHCB cannot compete with generalists in an environment
lacking hydrocarbons. OHCB include genera with species that
degrade aliphatic (Alcanivorax, Oleibacter, Oleiphilus, Oleispira,
Thalassolituus) and aromatic (Cycloclasticus, Neptunomonas)
hydrocarbons (McGenity et al., 2012; Gutierrez, 2017). There
are also obligate (as well as some facultative) methane-oxidizing
bacteria that are termed methanotrophs (Kalyuzhnaya et al.,
2019).

Baelum et al. (2012) found that cells aggregated to form
bacterial-oil aggregates during incubation of enrichment cultures
consisting of uncontaminated seawater from the Gulf of Mexico,
100 ppm of MC-252 oil and 60 ppm of the dispersant
Corexit 9500. The aggregates were dominated by members of
the family Colwelliaceae, which is discussed in detail later.
Methylococcaceae also increased in abundance from <1% at 10
days to 16% at 40 days. Methylococcaceae are methanotrophs,
meaning they can metabolize only methane or methanol as
carbon and energy sources. An increase in the abundance of
Methylococcaceae following the MC-252 spill was not surprising
given the unprecedented amount of methane that entered
the water column (∼250,000 tons) (Rogener et al., 2018).
However, the increase of Methylococcaceae in experimentally
formed aggregates (Baelum et al., 2012) was surprising, as
there was no obvious source of methane or methanol. The
presence of these methanotrophs may suggest the existence
of anoxic microenvironments in the aggregates that could
allow growth of methanogenic Archaea, and although Baelum
et al. (2012) adapted bacterial primers to improve archaeal
detection, it is not clear whether they would have amplified
methanogens. Suboxic and anoxic conditions develop as a
consequence of oxygen consumption during aerobic degradation
of MS organic matter and insufficient oxygen diffusion into
flocs (Ploug et al., 1997; Rath et al., 1998; Vojvoda et al.,
2014). Reduced levels of dissolved oxygen enhance the use
of alternative electron acceptors for anaerobic respiration by
microorganisms (Torres-Beltrán et al., 2016) and can provide
a favorable environment for methanogens (Shanks and Reeder,
1993; Vojvoda et al., 2014). The methane produced would diffuse
to oxic zones and serve as a source of carbon and energy
for methanotrophs.

Thus, there are numerous microbes implicated in
MOS formation, oil emulsification/degradation and other
activities induced indirectly by their existence on an oil-
containing floc. Below, we discuss the main genera of
heterotrophic bacteria involved in the formation and fate
of MOS.
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Role of the Generalist Genera
Alteromonas, Pseudoalteromonas and
Halomonas in the Formation and Fate of
MOS
These genera are cosmopolitan marine aerobic generalists
capable of consuming a wide range of organic compounds,
including, in several species, hydrocarbons. Their potential
involvement in hydrocarbon degradation tends to be overlooked
in sequencing surveys, as their increased abundance relative to
controls is not enough to suggest a direct role in degrading
oil-derived hydrocarbons in that environment (Gutierrez et al.,
2013a,b, 2018; Gutierrez, 2017; Gutierrez and Kleindienst, 2020).

Nevertheless, Alteromonas, Pseudoalteromonas, and
Halomonas constitute a significant proportion of
hydrocarbon-degrading communities in oil-contaminated
marine environments. For example, Alteromonas and
Pseudoalteromonas were enriched from surface waters and
water-column samples collected following the MC-252 spill
(Hazen et al., 2010; Valentine et al., 2010; Yang et al., 2016a).
Halomonas was regularly detected in sequencing surveys of
surface oil samples collected 1 month after the MC-252 spill
(Gutierrez et al., 2013b) and water-column samples collected
after 6 months (Yang et al., 2016a). The ability of strains within
these genera to use hydrocarbons as growth substrates was
confirmed with isolations of Alteromonas strain TK-46(2),
Pseudoalteromonas TK-105 and three Halomonas strains
(GOS-2, GOS-3a, and TGOS-10) from samples collected in
the Gulf of Mexico (Gutierrez et al., 2013b, 2018; Bacosa et al.,
2018). In addition, the similarity and co-location of these
strains to those enriched in surface oil slicks suggests that they
made a major contribution to the degradation of Macondo
oil (Hazen et al., 2010; Valentine et al., 2010; Gutierrez et al.,
2013b, 2018). There are also many other species within these
genera that degrade hydrocarbons. For example, Alteromonas
napthalenivorans was responsible for the in-situ biodegradation
of multiple PAHs in oil-contaminated tidal-flat sediment
from the Yellow Sea (Jin et al., 2012; Math et al., 2012).
Pseudoalteromonas was enriched in ship-board mesocosms
containing North Sea water and crude oil, and many isolates
were able to grow on PAHs, and branched and straight-chain
alkanes (Chronopoulou et al., 2015). Halomonas species degrade
a variety of hydrocarbons including monoaromatics (Garcia
et al., 2004; Abdelkafi et al., 2006), polycyclic aromatics
(Melcher et al., 2002; Yang et al., 2010) and aliphatics
(Pepi et al., 2005; Mnif et al., 2009).

Sequencing surveys demonstrated an increase in the relative
abundance of Alteromonas, Pseudoalteromonas, and Halomonas

in MOS particles compared to the surrounding seawater
(Arnosti et al., 2016; Suja et al., 2017). Moreover, an
Alteromonas strain isolated from a MOS particle that formed
in roller-bottle incubations with sea surface water collected
during the active phase of the MC-252 spill, matched the
aforementioned hydrocarbon-degrading strain Alteromonas TK-
46(2) with 100% 16S rRNA sequence identity (Gutierrez
et al., 2018). Fluorescence in-situ hybridization assays also
detected Halomonas in bacterial-oil aggregates generated in

the laboratory in alkane enrichments from deep plume water
(McKay et al., 2016).

Roller-bottle experiments with Alteromonas strain TK-
46(2) (Gutierrez et al., 2018) and Halomonas strain TGOS-10
(Gutierrez et al., 2013a) formed MOS even when cells had been
inactivated by sodium azide, suggesting that the cell surface
and/or their EPS, play a role in MOS formation/colonization.
Epifluorescence microscopy revealed the attachment of
Alteromonas and Halomonas cells to the MOS particles. The EPS
produced by these bacteria enhance aggregation of particles to
form MS or MOS (Passow et al., 2012; Ziervogel et al., 2012;
Gutierrez et al., 2013a), and can exhibit amphiphilic properties,
leading to emulsification or dispersion of hydrophobic oil
constituents, making them more amenable to biodegradation
(Gutierrez et al., 2007, 2008, 2018).

Colwelliaceae
Numerous amplicon and metagenomic sequencing studies from
the MC-252 spill (and others) have shown an increased relative
abundance of Colwelliaceae in the presence of crude oil
(Brakstad et al., 2015b; Kleindienst et al., 2015b; Campeão
et al., 2017; Hu et al., 2017; Bacosa et al., 2018; Lofthus
et al., 2018; Ribicic et al., 2018). Following the initial
enrichment of Oceanospirillales (May 2010) there was a shift
in dominance to Colwellia (until August 2010) (Redmond and
Valentine, 2012). Furthermore, Mason et al. (2014) suggested
that the high abundance of Colwellia in the sediments
below the oil plume was due to its transport by MOS.
Many species of Colwellia are psychrophilic and/or piezophilic
(Bowman, 2014; Liu et al., 2020), and one strain, RC25
was able to degrade 75% of MC-252 oil at 5◦C (Baelum
et al., 2012). While some of this loss can be attributed
to evaporation, Colwellia species are probably important
hydrocarbon degraders in deep-sea MOS (e.g., MC-252 at 4 to
6◦C and 15 MPa). As an aside, phylogenetic analysis of strain
RC25 (Supplementary Figure 1) reveals that it clusters within
Colwelliaceae Clade 1, which according to Liu et al. (2020) should
be renamed as Cognaticolwellia.

Mesocosm experiments with deep-sea (1,100–1,240m depth)
Gulf of Mexico bacterial communities have indicated that
Corexit-9500 components provide additional carbon sources for
bacteria, leading to an increase in the relative abundance of
Colwelliaceae (e.g., Kleindienst et al., 2015b; Techtmann et al.,
2017). Colwellia strain RC25, for example, degraded dioctyl
sodium sulfosuccinate, a surfactant component of Corexit 9500
(Chakraborty et al., 2012), which in part explains its high
abundance on MOS in the study by Baelum et al. (2012). In
other studies, Colwelliaceae made up <1% of the community
in MOS particles formed at subarctic conditions (Suja et al.,
2017) and was detected at low abundances (max. 6%) in oil-
related aggregates formed in cold seawater (Netzer et al., 2018).
Whilst it is difficult to compare across experiments in which
more than one variable has changed, this difference might be a
function of differing methodologies, which include: (1) different
initial microbial communities present between the Gulf of
Mexico, Faroe-Shetland Channel and Norwegian Sea; (2) direct
addition of oil/dispersant vs. the use of water accommodated
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fractions; (3) different dispersant concentrations (Baelum et al.
(2012) used 60 ppm, Suja et al. (2017) used 17.6 ppm, and
Netzer et al. (2018) used 0.3 ppm), probably more so than
the type of dispersant used (Corexit 9500 and Superdispersant-
25); and (4) incubations remaining static or continuously mixed
(Supplementary Table 1). Again, it must also be borne in mind
that the concentrations of oil and dispersants used in most of
these experiments were much higher than those found in the
environment (Bejarano et al., 2014; Wade et al., 2016); lower
concentrations might have much smaller effects.

Obligate Hydrocarbonoclastic Bacteria
(OHCB)
Alcanivorax spp. are undetectable or at low abundances in
pristine marine environments, but they typically bloom to make
up a significant proportion of the bacterial community after an
oil spill (Coulon et al., 2012; Teramoto et al., 2013), and so
play an important role in the natural bioremediation of oil spills
worldwide (McKew et al., 2007a,b; Yakimov et al., 2007).

Suja et al. (2017) prepared MOS from surface waters of
the Faroe-Shetland Channel and 35,000 ppm dispersed oil,
enriching for Alcanivorax, Alteromonas, and Pseudoalteromonas,
which collectively represented 80% of the sequence reads at
2.5 weeks incubation. In a subsequent roller-bottle study using
surface water from the same environment, and similar high
concentrations of oil, a comparison was made between the
bacterial communities associated with MOS aggregates and
marine dispersant snow, a product of adding the dispersant
Superdispersant-25 to seawater in the absence of oil (Suja et al.,
2019). Both marine dispersant snow and MOS aggregates had
similar bacterial communities dominated by Alcanivorax with
a consistent but minor contribution from Oleispira, as well as
a range of other genera (Suja et al., 2019). Whilst the exact
formulation of commercial dispersants, such as Superdispersant-
25 used by Suja et al. (2017, 2019), are proprietary, they typically
consist of a mixture of solvents and surfactants. The solvent
fraction is usually a paraffinic or synthetic hydrocarbon, while
the surfactant fraction of at least some includes dioctyl sodium
sulfosuccinate, Tween 80, Tween 85, and Span 80 (Place et al.,
2010, 2016; Brakstad et al., 2018b). Some species of Alcanivorax,
as many other heterotrophs, are able to grow on components
of the surfactant fraction, such as Tween (Liu and Shao, 2005)
and likely the solvent hydrocarbon, so theAlcanivorax onmarine
dispersant snow aggregates may have been metabolizing the
solvent or surfactant fraction of the dispersant.

There are numerous biochemical and physiological
reasons why Alcanivorax has an ecological advantage over
other hydrocarbon degraders, which may explain their
frequent dominance in MOS particles, including: (1) cellular
hydrophobicity that allows attachment to oil (Godfrin et al.,
2018); (2) production of biosurfactants to facilitate their access
to hydrocarbons (Abraham et al., 1998; Yakimov et al., 1998;
Qiao and Shao, 2010); (3) biosynthesis of exopolysaccharides
(including alginate) and type IV pili whichmediate the formation
of biofilms (Schneiker et al., 2006; Sabirova et al., 2011), including
associations with marine plankton (Coulon et al., 2012; Yakimov

et al., 2019); (4) expression of permeases and iron-scavenging
siderophores that concentrate nutrients in oligotrophic marine
environments (Schneiker et al., 2006; Sabirova et al., 2011;
Denaro et al., 2014; Kem et al., 2014); (5) the ability to use both
branched and linear alkanes as growth substrates (Yakimov
et al., 2007; Gregson et al., 2019). Nevertheless, Alcanivorax is
not universally detected in studies which generated MOS, e.g.,
with surface (Arnosti et al., 2016) and deep-sea (Baelum et al.,
2012) water from the Gulf of Mexico. Some Alcanivorax species
are piezosensitive, so higher pressure in the deep-sea may have
inhibited their growth (Scoma et al., 2016a,b); however other
species of Alcanivorax are piezotolerant (Liu et al., 2019).

Members of the genus Oleispira are known to flourish in
cold, oil-contaminated seawater (Yakimov et al., 2003, 2007;
Coulon et al., 2007; Tremblay et al., 2019). Oleispira were
dominant in deep-water samples following the MC-252 spill
(Hazen et al., 2010; Mason et al., 2012), and on MOS formed
in mesocosms using seawater from the deep-sea of the Gulf
of Mexico (4.8◦C; Baelum et al., 2012), the Faroe-Shetland
Channel (8.7◦C; Suja et al., 2017, 2019) and the Trondheim
Fjord (6–8◦C; Netzer et al., 2018). The type strain, Oleispira
antarctica RB-8, is a psychrophilic alkane degrader with a broad
growth optimum of 1–15◦C (Yakimov et al., 2003). It uses
multiple mechanisms to compete at low temperatures, such as
changes in the flagella structure/output to overcome increased
viscosity, switching of flagella rotation to accumulate cells in an
environment where it can outcompete other bacteria, and proline
metabolism to counteract oxidative stress (Gregson et al., 2020).
These psychrophilic adaptations of Oleispira most probably
explain its absence fromMOS generated from 25◦C surface water
collected following the MC-252 spill (Arnosti et al., 2016). This
single trait of temperature requirement for growth highlights
the importance of understanding the succession of microbial
communities, and hydrocarbon-degradation potential, in MOS
that sinks from warm surface waters to cold hadal depths.

Biodegradation of PAHs in oil-contaminated marine
environments is usually associated with Cycloclasticus spp.
(Dyksterhouse et al., 1995; McKew et al., 2007a; Teira et al.,
2007). Arnosti et al. (2016) demonstrated, using 1% floating oil,
that bacterial communities on MOS particles were distinct from
those in surrounding seawater and dominated by a Cycloclasticus
phylotype that was nearly identical in 16S rRNA sequence
to PAH-degrading Cycloclasticus strain TK8 (Gutierrez et al.,
2013b) and C. pugetti (Dyksterhouse et al., 1995). This highly
enriched Cycloclasticus phylotype in the MOS was distinct
from Cycloclasticus found in the experimental inoculum and
the water column following the MC-252 spill (Valentine et al.,
2010; Redmond and Valentine, 2012; Yang et al., 2016a) [for
phylogenetic analysis see Yang et al. (2016b) and Redmond and
Valentine (2019)].

In the aforementioned study by Suja et al. (2017), the relative
abundance of Cycloclasticus in the community after 4 weeks
was 3.5-fold higher in MOS particles than in surrounding
seawater, although it contributed only 1.6% of total sequence
reads. Doyle et al. (2018) demonstrated that Cycloclasticus was
sensitive to chemically dispersed oil at high concentrations
(i.e., chemically enhanced water-accommodated fraction) but
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thrived in lower concentrations of physically dispersed oil. Also,
given that most Cycloclasticus spp. from the identified clade are
able to metabolize only aromatic hydrocarbons, in some cases
they are outcompeted by aliphatic hydrocarbon degraders (e.g.,
Alcanivorax) for nutrients, and do not reach high levels until after
the aliphatic fraction of the oil is depleted (Röling et al., 2002).
There is now evidence that some Cycloclasticus phylotypes do not
degrade PAHs but are capable of short-chain alkane degradation
(e.g., mussel endosymbionts; Rubin-Blum et al., 2017), and that
others may degrade both types of hydrocarbon (see Gutierrez
et al., 2018; Redmond and Valentine, 2019), and so interpretation
of the function of Cycloclasticus from 16S rRNA sequences alone
requires caution.

DOES THE USE OF DISPERSANT
ENHANCE OR INHIBIT MOS FORMATION?

Dispersants lower the interfacial tension between water and
oil, and so reduce the energy required to convert a slick (or
plume) into small oil droplets in the water column where
they undergo rapid biodegradation (Prince, 2015b; Brandvik
et al., 2019). However, there is currently a debate over whether
dispersants have an effect on the biodegradation of crude-
oil constituents (Kleindienst et al., 2015b, 2016; Prince et al.,
2016b), with conflicting reports in the literature showing it
can be enhanced (Baelum et al., 2012; Techtmann et al., 2017;
Tremblay et al., 2017), inhibited (Hamdan and Fulmer, 2011;
Kleindienst et al., 2015a,b), or essentially unaffected (Prince
et al., 2013; McFarlin et al., 2014; Louvado et al., 2019). In
part this reflects a misunderstanding of the scale at which
dispersants are designed to operate—they are formulated to
encourage the dispersion of oil at sea that would otherwise
remain as a floating slick, thereby dramatically increasing the
surface area available for microbial colonization. Laboratory
experiments cannot mimic this behavior at environmentally
relevant concentrations unless oil is prevented from dispersing
by corralling it in an appropriately scaled boom (Prince and
Butler, 2014). Most of the studies listed above were conducted
under conditions where the added oil dispersed regardless of
the presence of dispersant, and the small stimulations and
inhibitions reported are of no environmental significance. The
substantial stimulation of biodegradation by dispersants (many-
fold) occurs after oil goes from a floating slick to small dispersed
droplets (Prince and Butler, 2014; Prince et al., 2017). Once
dispersed, the different surfactants of the dispersant leave the
droplets at different rates (Riehm and McCormick, 2014), and
are biodegraded quite rapidly (Brakstad et al., 2018a,c; McFarlin
et al., 2018).

Equally, the effect of oil on MOS formation, and any
additional effects of dispersant application are a major point
of contention. Some workers have found that dispersant alone
generates MS (Baelum et al., 2012; van Eenennaam et al., 2016),
and that adding dispersant with oil stimulates flocculation (van
Eenennaam et al., 2016; Doyle et al., 2018; Bretherton et al.,
2019), albeit sometimes only when extra nutrients were added
(Kleindienst et al., 2015b). Wirth et al. (2018) saw larger, more

stable MOS in the presence of Corexit, but other work suggests
that dispersants inhibit MOS (Passow, 2016; Passow et al., 2017),
while others claim they were essential for their formation (Suja
et al., 2017, 2019).

A major problem seems to be that many of these studies
are far-removed from the conditions found at sea. Perhaps the
first thing to consider is how much dispersant and oil was
available during the MC-252 oil spill response to cause an
effect. Dispersants are typically applied at a nominal rate of 5
gallons (US) per acre; 47 liters per hectare or 4.7 ml/m2 (a
teaspoon/m2), which when diluted into the top meter of the
sea becomes a concentration of 4.7 ppm [The critical micelle
concentration—the concentration above which the dispersant
forms micelles—for Corexit 9527 is about 400 ppm (Singer et al.,
1995)]. Such dilution is generally accepted to occur within hours,
with continued dilution as time progresses (Lunel, 1995; Bejarano
et al., 2013, 2014; Lee et al., 2013). Claims that “the average
Corexit concentration in the water after the Deepwater Horizon
spill was estimated at 0.5%” (Passow, 2016) cannot be correct.

The amount of oil in dispersed oil “plumes” is similarly
dilute—immediately after dispersion the concentration will be
several hundred to thousands of ppm (Bejarano et al., 2013,
2014), but this mixes and dilutes to less than a ppm within a
day. The vast majority of samples collected in the vicinity of MC-
252 during the spill contained only background levels of total
petroleum hydrocarbons, despite the 3.19 million barrels spilled
(Barbier, 2015); only 5% of the 1,372 samples had more than
250 µg of total petroleum hydrocarbons per liter (250 ppb), and
only 24 had above 3 ppm (Wade et al., 2016). These amounts
are in line with the concentrations of oil residue found at the
bottom of the Gulf of Mexico; Stout et al. (2017) estimated that
the heavily biodegraded residue of ∼233,000 bbl of fresh oil was
deposited on ∼1,470 km2 of Gulf deep-sea sediment. This is the
residue of an initial 25ml fresh oil/m2. If 80% of the oil is GC-
detectable, and the residue is 80% degraded (Stout et al., 2017),
this is 6.25 g of extensively biodegraded oil residue in the top 1–
3 cm per m2 in the sediment. By extension, a total of 18.75 g of
hydrocarbon had been consumed in the 1 m2 × 1,500m water
column, or in the sediment after deposition. Data from sediment
traps is also consistent: Stout and German (2018) estimated that
the biodegraded residue of 10 barrels/km2 fell through the water
column some 58 km northeast of the MC-252 site during the
blowout—this is equivalent to the residue of 1.6ml fresh oil per
square meter of sediment,∼0.3 ml/m2 of weathered oil.

As pointed out by Brakstad et al. (2018b), the majority of
papers claiming to provide insight into the effects of dispersants
on oil degradation and on MOS used concentrations that are
substantially higher, typically by several orders of magnitude.
This becomes especially important when discussing whether
marine snow is generated from oil and/or dispersants, or whether
the surfactants in dispersants might have disruptive effects
on MOS.

Another confusing aspect is the use of Water Accommodated
Fractions (WAF) instead of oil-in-water dispersions. WAF were
developed by toxicologists in an attempt to distinguish true
chemical toxicity from physical smothering (Widdows et al.,
1982; Singer et al., 2000). Essentially the oil is stirred into seawater
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for a defined time, allowed to “settle” (i.e., for oil droplets to
coalesce and float), and then WAF is drawn off from below the
slick (see Prince et al., 2016a). If dispersant is also present, the
liquid is known as Chemically Enhanced Water Accommodated
Fraction (CEWAF), and other abbreviations abound to describe
dilutions, higher energies of mixing, etc. While such methods
do provide a way of reproducibly preparing samples for toxicity
testing, say for comparing different species, their composition is
specific to the precise conditions used; WAF and CEWAF are
indeed “accommodated” fractions, including both truly soluble
compounds and tiny droplets. The concentration of the latter
depends on the mixing energy and the “settling time,” which
in turn defines how much of a reservoir the drops provide
for resupplying soluble compounds should they be consumed
from the aqueous phase by biodegradation or evaporation.
WAF with nominally similar concentrations have significantly
different concentrations of soluble compounds if they are made
directly at the nominal concentration, or by dilution from a
more concentrated “stock” (Prince et al., 2016a), and one cannot
readily predict the chemical composition of either. In contrast,
while oil-in-water dispersions may have variable droplet sizes
depending on the energy used to generate the dispersion, the
chemical composition of what is in the vessel is reproducible
anywhere, and is readily calculated. Another major confusion
of such work is that CEWAF have much more hydrocarbon
per volume than WAF; without dilution to equivalent oil
concentrations it is impossible to disentangle any effects of
the presence of dispersants from the presence of more oil.
Nevertheless, few papers address this issue, and assume any
effects are due to the dispersants rather than the extra oil.

The widespread use of WAF/CEWAF in MOS experiments
may be due to the fact that crude oil adheres to the walls and lids
of the roller bottles. To overcome this issue several modifications
can be made to the experimental setup, including pre-treatment
of glassware (Brakstad et al., 2015a), use of hydrophobic seals/lids
(Prince, 2015a), and slower rotation (Brakstad et al., 2015a;
Netzer et al., 2018; Henry et al., 2020, 2021).

Clearly there needs to be a concerted effort to make sense
of the disparate conclusions described above. All of the papers
claim to be aimed at understanding what happens to spilled
oil after a major oil spill, but few are done at environmentally
relevant conditions. While there is much to be learned from
careful studies with well-characterized and appropriate microbial
isolates, the diversity already revealed (e.g., Passow et al., 2019)
indicates that extrapolating to the real world remains premature.

UNDERSTANDING MOS FORMATION AND
BEHAVIOR BEYOND THE GULF OF
MEXICO

Investigations into MOS formation/deposition and the microbial
communities associated with these aggregates have focused on
the Gulf of Mexico with only a few studies in other areas (Suja
et al., 2017, 2019; Netzer et al., 2018). To be of value to oil spill
response in future spills, studies need to include other locations
with environmental features that may influence MOS processes,

such as areas with both deep-sea oil exploration/production
and periods with high biological productivity and/or inorganic
matter abundance. Overlaid maps of these features or their
proxies (oil platforms, chlorophyll, and suspended mineral
concentration) will help to predict locations where marine oil
snow sedimentation and flocculent accumulation may occur
(Murk et al., 2020), even as we are still unclear whether we can
limit or stimulate MOS formation. Many oil refineries operate
on estuaries, and gradients for MOS formation are expected
with distance from river systems as they supply nutrients/clay
to promote aggregation (Figure 2; Daly et al., 2016; Quigg
et al., 2020). The Arctic region has been predicted to be
extremely sensitive to MOS formation (Murk et al., 2020), and
the environmental conditions, especially temperature, light and
the presence of ice, will be very different from the Gulf of
Mexico. Dispersants may be the only possible oil-spill response
option in many cases (Lewis and Prince, 2018). Psychrophilic
hydrocarbon degraders are well-characterized (Brakstad et al.,
2015b; Gregson et al., 2020), and although overall biodegradation
of oil components may be a little slower in incubations with
polar compared with temperate seawater (McFarlin et al., 2014;
Garneau et al., 2016; Brakstad et al., 2018a,c), this may reflect
the particularly pristine waters that were used in these studies,
and the lower natural abundance of oil-degrading microbes.
In support of this, Coulon et al. (2007) showed that the oil-
degradation rate in North Sea microcosms at 4◦C was only
half that at 20◦C. Slower degradation would lead to increased
exposure of the (micro)biota to oil, but dilution of dispersed
oil would still dominate physical processes, and Arctic species
are no more sensitive to oil toxicity than temperate ones
(Bejarano et al., 2017).

FURTHER EXPERIMENTAL
CONSIDERATIONS

We have highlighted the overarching need to
employ environmentally relevant oil and dispersant
concentrations/ratios for experiments to be useful in modeling
the fate of oil in the sea. Oil concentrations of 0.3 to 3 ppm should
be sufficient for MOS formation, while also limiting depletion of
autochthonous nutrients and oxygen. Oil in sealed roller bottles
should be at least partially weathered to allow benzene and other
small hydrocarbons to evaporate, as they do in the field. Also,
where model microbes are used in MOS studies they must be
relevant marine species, and not as occasionally seen, surrogates
from terrestrial or freshwater environments. After all, no-one
interested in understanding apex predators on the savannah
of southern Africa would think that the best approach would
be to study Polar Bears, yet several papers use terrestrial and
freshwater microbes as surrogates for marine species. Here we
outline a number of other important factors that must be born in
mind when studying MOS.

Light
Light plays a central role in MS formation by stimulating the
growth of phototrophs and thus their exudates, but it also has

Frontiers in Marine Science | www.frontiersin.org 12 January 2021 | Volume 8 | Article 619484

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Gregson et al. Marine Oil Snow, a Microbial Perspective

a photochemical role by cross-linking EPS (Sun et al., 2017,
2018, 2019), and photooxidizing hydrocarbons (Prince et al.,
2003; Bacosa et al., 2015a; Aeppli et al., 2018). Passow (2016)
revealed that photooxidation of oil over a period of 3 weeks
promoted MS formation, but the particles were smaller and
more compact than MOS that accumulated at the sea surface
after the MC-252 spill (diameters of 2.5 vs. 7mm, respectively).
Presumably oil’s interaction with marine snow depends on how
the photooxidation changes specific oil compounds. Insoluble
compounds (e.g., high molecular weight n-alkanes and PAHs)
are incorporated into MOS within entire oil droplets, whereas
more soluble compounds (e.g., low molecular weight n-alkanes
(<C7) and simple aromatics) might be sorbed by cells in theMOS
(Wirth et al., 2018).

Light intensity, spectrum, and photoperiod all have effects
on photosynthesis, phytoplankton communities, and the
metabolites produced (Schuback and Tortell, 2019), which lead
to changes in the associated heterotrophic communities (Bacosa
et al., 2015b). For example, incubations with sunlight (compared
with dark incubations) greatly reduced the abundance of
cyanobacteria, such as Synechocococcus and Prochlorococcus, in
seawater samples containing oil (200 ppm) or dispersant (10
ppm; Bacosa et al., 2015b). However, there was no analysis of
eukaryotic phototrophs in this study, and so we do not know
how the overall phytoplankton community responded. In the
presence of crude oil (+/– dispersant) and sunlight, Alteromonas
and Marinobacter were among the most enriched genera, and
had much higher relative abundance than in the equivalent dark
bottles (Bacosa et al., 2015b), suggesting an indirect effect of
light, perhaps as a consequence of the death of cyanobacteria
providing organic matter for the metabolically versatile
copiotroph, Alteromonas (Pedler et al., 2014) Alternatively
(or additionally) the growth of eukaryotic phytoplankton that
potentially thrived in the absence of cyanobacteria may have
changed the composition of released organic matter in favor
of this genus. The microbial communities formed by different
treatments (light vs. dark) may have contributed to the dissimilar
size and structure of MOS particles in Passow (2016), but
since community composition of the MOS particles was not
determined, this cannot be addressed.

Thus, future MOS studies need to mimic natural light
conditions, including light intensity, spectral composition, and
light-dark cycles, in order to assess the aforementioned direct
and indirect influences on MOS formation and fate. Due
consideration must be shown to the light intensity used—
it is very difficult to mimic noon sunlight in the laboratory,
and different glass bottles absorb different fractions of the UV
component of sunlight, so it may only be possible to mimic some
depth into the natural photic zone in the laboratory (Ryther,
1956).

Aeration
The natural concentrations of MOS and dispersed oil in the water
column are so low that aerobic seawater will remain oxygenated
during bottle experiments at environmentally relevant levels.
Surface seawater typically contains 200µM dissolved oxygen,
and although there is usually an oxygen minimum of about

120µM oxygen around 500m depth, most ocean waters are
aerobic throughout (e.g., Camilli et al., 2010, but see Paulmier
and Ruiz-Pino, 2009 for a discussion of truly low-oxygen water).
This is enough oxygen for the complete oxidation of several
ppm of oil, so sealed bottles with only a few ppm of oil will
remain aerobic even in the dark. Incubation in the light would
allow phototrophs to generate even more oxygen, for it is well-
known that the surface layers of the ocean are supersaturated
with oxygen during the day (Craig and Hayward, 1987). It is
noteworthy that the initial discovery of the subsea plume of
dispersed oil following theMC-252 spill included the detection of
local consumption (10%) of the indigenous oxygen as microbes
degraded the hydrocarbons (Hazen et al., 2010), but the plume
was far from anoxic.

Ocean sediments are typically anoxic within a centimeter
or two of the sediment surface even though the water itself
contains typically >100µM oxygen (Reimers et al., 1986). [The
oligotrophic deep-sea sediments are an exception (Fischer et al.,
2009) but are also unlikely to be impacted by oil.] Experiments
aiming to studyMOS and its effects once it lands on the sediment
should ensure that such conditions exist in the mesocosm before
adding MOS.

Temperature and Pressure
The impacts of temperature on hydrocarbon bioavailability,
degradation rates and microbial communities are well-
established (e.g., Coulon et al., 2007), and so in-situ temperatures
are usually replicated in MOS experiments. However, there are
few studies that apply a decreasing temperature regime to mimic
the sinking of particles from warm surface waters to colder hadal
depths. Increases in pressure can reduce the rate of hydrocarbon
biodegradation (Prince et al., 2016c) and also alter microbial
communities, e.g., selecting against piezo-sensitive microbes,
such as some Alcanivorax (Scoma et al., 2016a,b). Although
high pressure can be simulated in the laboratory, it is less
straightforward to effect a gradual pressure change that would
allow piezotolerant microbes time to acclimate. Moreover, in the
marine environment MOS sinks into new waters, where particle
association is the normal mode of existence for microbes (Zhao
et al., 2020) and where they are adapted to low temperature and
high pressure. Thus, new microbes would attach to the MOS
during its decent, a phenomenon that would be challenging to
replicate experimentally.

Nutrients
Numerous papers have shown that the natural levels of nutrients
in seawater are enough for the rapid biodegradation of ppm
levels of oil (Prince et al., 2013, 2017; McFarlin et al., 2014;
Brakstad et al., 2015a, 2018a; Wang et al., 2016). Furthermore,
regulators are unlikely to allow the addition of nutrients to the
open ocean for fear of eutrophication (Altieri and Diaz, 2019).
Depending on the environment under investigation, experiments
intending to inform oil-spill response measures should either
not add nutrients or should supply them continuously at in-
situ concentrations in order to mimic replenishment in the
natural environment.
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Oil and Dispersant Type
The majority of studies investigating MOS have focused on
environmental effects (e.g., the presence of POM, the proximity
of river outflow providing clay minerals and phytoplankton
biomass, and the presence of EPS-producing biota), while
the influence of oil and dispersant type has not received
much attention.

Most MOS studies have used either oil collected directly
from MC-252 (Macondo oil) or closely related surrogates that
are similarly light and high in volatile hydrocarbons (Hemmer
et al., 2011; Wade et al., 2017), but other spilled oils can have
significantly different compositions and densities. For example,
the Bunker B fuel oil spilt from the Tsesis tanker in the brackish
(6‰) Baltic was a heavy (though lighter than water), viscous,
refined fluid, containing low levels of volatile hydrocarbons
(Boehm et al., 1982). We have no knowledge of whether such a
spill might lead to MOS. Passow et al. (2019) comparedMacondo
surrogate oil with a heavy California oil, and found that the
latter led to a greater reduction in diatom abundance, which
they predicted would negatively impact MOS formation, but the
mechanisms by which this would occur are obscure. Oils are
very complex mixtures, and some characterization of the oil,
focusing on the progress of its biodegradation, should be part of
all experiments.

By far the most studied dispersant is Corexit 9500 which
was used on the surface and injected at the well-head during
the MC-252 blowout (Atlas and Hazen, 2011). Other approved
dispersants stockpiled in large quantities around the world
include Finasol OSR 52 (Total Fluids, France) and SlickGone NS
(Dasic International Ltd, UK) (Carter-Groves, 2014). Korea used
HiClean II in the response to the Hebei Spirit spill (Jung et al.,
2009), and Superdispersant-25 is licensed in the UK (Scarlett
et al., 2005). The chemical composition of Corexit 9500 is known
(Riehm and McCormick, 2014; Place et al., 2016), whilst limited
information is available on the material safety data sheets for
the others. It would certainly be interesting to see whether the
different dispersants have different effects, with and without
different oils, on microbial communities at environmentally-
relevant concentrations. For example, several studies have shown
an increase in the abundance of Colwellia in experimental
incubations containing only Corexit 9500 (Kleindienst et al.,
2015b; Techtmann et al., 2017; McFarlin et al., 2018), likely
because they are degrading the Tween surfactant (Bowman,
2014) and the hydrocarbon solvent.

CONCLUDING REMARKS AND
RECOMMENDATIONS

MOS research abounds with controversies, mostly because of
extrapolations to the marine environment from experiments
employing unrealistic conditions, particularly oil/dispersant
concentrations/ratios. Despite the difficulties in both capturing
and investigating patchily distributed MOS in the deep sea and
mimicking in-situ conditions experimentally, our understanding
of MOS formation and fate has advanced over the last decade
in terms of the microbes present and their potential roles

in the formation of MOS and the fate of hydrocarbons
and dispersants. Nevertheless, an overarching concern for
practitioners is whether particular oil-spill responses, such as
dispersant application, will enhance or inhibit MOS formation
(Figure 2). Dispersants can reduce the overall stickiness of
particles through either destabilization of TEP precursors
(e.g., microgels; Chiu et al., 2017) or direct dispersal of
TEP (Passow et al., 2017). This means that particles may
collide but not stick together. However, dispersants also cause
microbes to alter both EPS abundance and composition (e.g.,
protein-carbohydrate ratio; Xu et al., 2018a,b, 2019). Protein-
rich/hydrophobic EPS shows more resistance to dispersion
and can facilitate MOS formation due to their high stickiness
(Chiu et al., 2019; Santschi et al., 2020; Shiu et al., 2020).
Therefore, MOS formation appears to be dependent on
the relative strength of opposing mechanisms (e.g., microgel
destabilization and TEP dispersion vs. changes in EPS release;
Figure 2). However, there is currently insufficient evidence that
results from these laboratory incubations will be replicated in
the field.

Oil spill responders would benefit from models of the fate
of hydrocarbons, from the formation of MOS to sediment
deposition (Passow et al., 2019; Daly et al., 2020; Quigg
et al., 2020), accounting for factors that influence MOS
sinking rate, such as the degree of hydrocarbon degradation
and loss. Due consideration should be given to how oil
degradation will change while sinking, given that: (1) less
structurally complex hydrocarbons will be degraded rapidly
first (rapid degradation earlier); (2) colonization, growth and
surfactant production by hydrocarbon-degrading microbes will
take time (rapid degradation later); (3) temperatures are
higher at the surface (rapid degradation earlier); (4) nutrient
concentrations are generally higher at depth (rapid degradation
later). More unpredictable features include: (1) the effects
of photic processes on the alteration of hydrocarbons that
could enhance their loss or diminish their biodegradability;
(2) the poorly studied impact of pressure on hydrocarbon
biodegradation; (3) changes in the buoyancy of MOS (e.g., due
to change in hydrocarbon composition; de-novo EPS production
as well as its consumption); (4) feeding on, and disaggregation
of, MOS.

A more fundamental understanding of the interacting
forces that influence MOS sinking rates and hydrocarbon
biodegradation will come from applying novel techniques.
For example, Fourier transform ion cyclotron resonance mass
spectrometry (FTICR-MS; Wozniak et al., 2019) and solid-
state 13C nuclear magnetic resonance (NMR; Hatcher et al.,
2018) allow detailed analysis of polar species, hydrocarbons and
their oxidation products. Synchrotron radiation-based Fourier
transform infrared (SR-FTIR) spectromicroscopy is particularly
valuable in illustrating the spatial organization in MOS of
microorganisms, biopolymers, oil, and its degradation products
(Baelum et al., 2012). Although many studies have described the
bulk microbial composition of MOS, more analysis of the active
microbial component is needed (e.g., via metatranscriptomics
and metaproteomics). Also, new methods are being developed
for studying MS that could be applied to MOS, which involve
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capturing (Duret et al., 2019), preserving, embedding and
imaging particles to investigate the spatial distribution of
microbes and polymers (Flintrop et al., 2018; Rogge et al., 2018),
and even allowing single-cell functional analysis by nanoscale
secondary ion mass spectrometry (nano-SIMS; Rogge et al.,
2018). However, such analyses must be coupled with realistic
experiments and/or in-situ investigations if they are to aid oil-
spill response.

It remains to be seen how important MOS is in the overall
fate of spilled oil in light of the roles of adhesion to mineral
and biological particles, and the simple loss of buoyancy as oil
droplets degrade. It is clear that dispersed oil degrades promptly
at sea, while undispersed and weathered oil can reach the
shoreline (for example as a black tide or as tar balls), where the
ecological impacts can be prolonged and the clean-up effort is
often expensive and time consuming. This alternate fate must
be borne in mind when addressing the environmental effects of
sunken dilute degraded oil.
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