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Global decline of coral reefs has led to a widespread adoption of asexual propagation
techniques for coral restoration, whereby coral colonies are fragmented and allowed to
re-grow before being returned to the reef. While this approach has become increasingly
popular and successful, many questions remain regarding best practices to maximize
restoration speed, efficiency, and survival. Two variables that may influence growth and
survival of asexually fragmented colonies include coral genet and growth substrate.
Here, we evaluate the effects of genet and substrate (commercially available ceramic vs.
in-house made cement) on the survival and growth of 221 microfragments of elkhorn
coral Acropora palmata over 193 days. All corals survived the experimental period,
and doubled their initial size in 45 days, with an average growth of 545% over the
study duration. Growth was generally linear, though the growth of some corals more
closely matched logistic, logarithmic, or exponential curves. Both genet and substrate
had significant effects on coral growth, though the two factors did not interact. Genet
had a stronger influence on coral growth than substrate, with the fastest genet growing
at 216% the rate of the slowest genet. Corals on cement substrate grew at 111.9%
the rate of those grown on ceramic. This represents both a significant cost savings and
elimination of logistical challenges to restoration practitioners, as the cement substrate
ingredients are cheap and globally available. Our work shows that both genet and
substrate should be considered when undertaking asexual restoration of Acropora
palmata to maximize restoration speed and efficiency.
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INTRODUCTION

Coral reefs, often characterized as underwater rainforests, are among the most biodiverse
ecosystems on Earth (Reaka-Kudla, 1997; Jaap, 2000) and perform critical ecological and economic
functions for millions worldwide (e.g., Moberg and Folke, 1999; Ferrario et al., 2014). However,
dramatic declines in coral cover globally over the past several decades (Gardner et al., 2003; Côté
et al., 2005; De’ath et al., 2012) have eroded the functionality of these ecosystems and gravely
threaten them and the services they provide (Jones et al., 2004; Alvarez-Filip et al., 2011). These
declines have been driven by both natural and anthropogenic stressors such as overfishing, disease,
storms, nutrient pollution, coastal development, and climate change (e.g., Gladfelter, 1982; Hughes,
1994; Bruno et al., 2007; Burke et al., 2011; Walton et al., 2018). Reefs will continue to decline as
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stressors such as bleaching, ocean acidification, and overall
impacts of climate change become more prevalent (Hoegh-
Guldberg et al., 2007; Albright et al., 2010; Hughes et al., 2017).

The Florida Reef Tract (FRT), located at the southern terminus
of the Florida Peninsula spanning from the Florida Keys up the
eastern part of the state to Martin County, is the third largest
barrier coral reef on Earth and the only barrier coral reef in the
continental United States. As of 2015, the Florida Keys National
Marine Sanctuary located within the FRT produced an estimated
$4.2 billion in economic output to the state of Florida and
attracts over three million visitors each year (Tbd Economics,
LLC, 2019). However, like most Caribbean reef systems, the FRT
has suffered dramatic declines in coral cover from an estimated
25% in the 1980s to an average stony coral cover of 6% today
(Ruzicka et al., 2013). Among the several dozen coral species that
have dominated shallow water reefs in the western Atlantic for
hundreds of thousands of years, elkhorn coral, Acropora palmata,
was historically among the most abundant (Jackson, 1992; Precht
and Miller, 2007). However, like other coral species, A. palmata
has declined dramatically in Florida over recent decades. This
decline, driven largely by outbreaks of white-band disease in the
1970s (Gladfelter, 1982; Aronson and Precht, 2001) and more
recently by additional stressors including ocean warming, human
activities, and storm damage (Baums et al., 2003; Burke et al.,
2011; Williams and Miller, 2012; Williams et al., 2017), led to
A. palmata being listed as critically threatened by the IUCN in
2008 (Aronson et al., 2008). No significant signs of recovery
have been recorded (Miller et al., 2002; Johnson et al., 2011),
and recent data suggest that A. palmata populations are now too
sparsely distributed across the reef tract to successfully reproduce
without direct intervention (Knowlton, 2001; Williams et al.,
2008; Miller et al., 2018; National Academies of Sciences
Engineering Medicine, 2019). More broadly, because no other
Caribbean corals closely resemble A. palmata morphologically
or ecologically, the only way in which Caribbean coral reefs
could regain their architectural composition and structural and
biological function would be to restore A. palmata specifically
(Chamberland et al., 2015). Because species such as A. palmata
have experienced relatively rapid declines over the last several
decades (Bruckner, 2002; Miller et al., 2002; Sutherland and
Ritchie, 2004), it is important for practitioners to grow corals
quickly and efficiently to reach goals of population enhancement.

The dire state of coral reefs worldwide has led to a surge
in active coral restoration efforts. These efforts, which have
become increasingly effective (Young et al., 2012; Carne et al.,
2016), provide a critical capability to help coral reefs survive
the Anthropocene until the drivers of coral loss can be directly
addressed. Generally, coral restoration efforts are classified either
as sexual restoration, where individual genets are fertilized,
grown, and released (or “outplanted”) into the wild, or asexual
restoration, in which larger colonies are broken into clonal sub-
fragments. Though hobbyists have been asexually fragmenting
aquarium corals for many decades, the asexual restoration
approach known as “coral gardening” has only been in use for a
quarter century (Rinkevich, 1995). This approach, which involves
raising corals in nurseries before ‘outplanting’ them back onto
reefs, is practiced worldwide (e.g., Montoya-Maya et al., 2016),

and includes over 150 programs in more than 20 countries in
just the Caribbean and Western Atlantic alone (Lirman and
Schopmeyer, 2016). Coral gardening has reached ecologically
meaningful scales with 10,000s of coral grown in nurseries and
outplanted each year (Lirman and Schopmeyer, 2016). To date,
most restoration practitioners focus on asexual coral production
through fragmentation (fragment size of several to many cm2) or
microfragmentation (fragment size of ∼1 cm2) in part because
it is relatively straight-forward in methodology, inexpensive, and
can produce large amounts of biomass within short periods of
time thus increasing the capability of restoring reefs at large
scales. Another advantage of asexual restoration is the capability
to propagate “winning” genets at large scales, maximizing the
probability of restoration success and reef persistence.

Despite the large number of coral restoration practitioners
now operating worldwide, and the environmental and social
benefits of sharing best practices, and specific coral propagation
methods are often poorly documented. Indeed, such methods
often remain unpublished, or are relegated to hobbyist forums
or gray literature (Barton et al., 2017), hampering effective,
evidence based coral restoration (Boström-Einarsson et al.,
2020). Accordingly, the publishing of best practices, failures,
benchmarks, and even raw restoration data has been identified
as a critical need to help develop the rapidly evolving
field of coral restoration (Lirman and Schopmeyer, 2016;
Boström-Einarsson et al., 2020).

There are many questions that remain regarding the best
practices of coral restoration; among those are identifying how
genet and substrate type alter the growth and survival of
microfragments. Identifying superior growth substrates is critical
for scaling up production at restoration facilities while keeping
costs low. Similarly, understanding the various strengths and
weaknesses of genets (including growth potential, resilience to
disturbance, and reproductive potential) is particularly critical for
asexual propagation programs, which often propagate fragments
from a small number of genets in their nurseries. As new
genets are obtained, practitioners may need to evaluate the
characteristics of these genets (e.g., growth rate, stress tolerance)
against those in the collection to prioritize propagation and
outplanting. While genetic difference in growth across other
species has been documented (Osinga et al., 2011; Lirman et al.,
2014; Drury et al., 2017), the effects of genet or substrate on the
growth rate of A. palmata in restoration facilities are unknown.
To help fill this knowledge gap, we performed an experiment to
determine the effect of substrate, genet, and their interaction on
the growth and survival of A. palmata microfragments during the
first six months of life following fragmentation. We hypothesized
that coral will grow faster on commercially available ceramic
disks than cheaper in-house made cement disks, and that growth
rate would significantly differ among genets.

MATERIALS AND METHODS

Coral Housing
We housed the experimental corals in an outdoor 681 L
flow through system (raceway) under a constant flow of
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2.5 L/min drawn from a 24 m well. Prior to entering the
raceway, water passed through a forced draft degasifier (R&B
Aquatic Distribution, Inc., TX, United States), was aerated in
a holding tank and mechanically filtered through sand. Water
was further aerated within raceways using an air wand (Pentair
plc, Minneapolis, MS, United States). We tested water quality
twice daily with a YSI Professional Plus handheld multiparameter
meter (Yellow Springs, OH, United States). Water remained
within the restoration facility’s optimal zones (∼26–28◦C, ∼7.7–
8.0 pH, ∼38 psu). We used permanent overhead shade cloth
(∼67% light reduction), with additional plastic UV lids covered
with ∼67% shadecloth (added daily from 12:30 pm to 7:30 am)
to maintain raceway temperature and reduce afternoon sunlight.
Photosynthetically Active Radiation under the shade cloth was
ambient; corals were exposed to a monthly average maximum
of 186 µMol/m2/s (January) to 520 µMol/m2/s (July). To
reduce fouling and overgrowth by filamentous algae, we added
Lithopoma tectum snails as grazers.

Coral Fragmentation and Mounting
In June 2019, we microfragmented 22 ramets from four genets of
A. palmata to create the 221 replicate colonies for the experiment
(Supplementary Table 1). All ramets were captive, having been
settled and raised at Mote Marine Laboratory’s Elizabeth Moore
International Center for Coral Reef Research and Restoration
in Summerland Key, FL, United States. Corals had been raised
within the common garden land-based nursery since fertilization
in 2013 and 2014.

We cut each original ramet, measuring ∼7 cm2 in size,
using a wet C40 diamond band saw (Gryphon Corporation, CA,
United States) into microfragments averaging 0.57 ± 0.12 cm2

SD (range 0.32–0.91 cm2) using previously described methods
(see Page et al., 2018). We then used cyanoacrylate glue (Bulk
Reef Supply, MN, United States) to adhere the microfragments to
one of two substrates: a commercially available ∼7 cm2 ceramic
plug (Boston Aqua Farms, MA, United States), or a similarly sized
concrete composite plug made in-house from a 3:12:7 ratio mix
of commercially available playground sand, portland cement, and
fresh water set in a rubber mold (see Supplementary Material
for plug construction specifics and Supplementary Figure 1).
Finally, we labeled the bases where microfragments were glued
(hereafter “plugs”) with unique identifiers and placed them on
plastic racks in haphazard orientation. We held racks in a shaded
recovery raceway for 3–4 days to stabilize post-fragmentation,
then moved the corals to experimental raceways.

Data Collection and Analysis
We assessed coral growth by analyzing photographs taken at
c.a. 2-week intervals in the photo analysis program ImageJ
(Schindelin et al., 2012). Each photo included a scale bar, which
was used in conjunction with the trace tool to calculate total coral
area (Figure 1). Photos were analyzed by two trained observers; in
the rare case the area calculations were not within 5% agreement,
a third observer was used and the two most similar measurements
averaged. Because coral plugs differed in their height relative to
the scale bar, we applied plug-specific correction factors to reduce

FIGURE 1 | Example of corals on ceramic and cement plugs at the start and
end of the 193 day experiment. Corals in the bottom panels are outlined in
white to differentiate them from fouling organisms on the plug.

growth estimate biases related to plug height. This provided an
accurate and precise estimate of coral growth.

We assessed the effects of genet and substrate type and
their interaction on coral growth using a linear mixed effects
model, model selection, and model weighting using R 3.6.1 (R
Core Team, 2019) and RStudio 1.2.1578 (RStudio Team, 2015).
Linear models were used as the vast majority of corals exhibited
roughly linear growth rates over time (Supplementary Figure 2).
Models were run using the nlme and MuMIn packages (Bartoń,
2020; Pinheiro et al., 2020) following Anderson (2007) and
Zuur et al. (2009). The data were right skewed, so we applied
a log10 transformation to approximate normality of residuals.
General observation during the experiment suggested that ramet
(i.e., parent colony) may affect growth. Because ramet was a
potentially important source of variability that might otherwise
obscure real effects of genet, substrate, or their interaction,
we evaluated whether adding ramet as a random effect would
improve the model. Four models were compared via AIC until
we arrived at the optimal random effects structure: no random
effects, ramet only, an interaction of ramet with substrate, and an
interaction of ramet with genet (Supplementary Table 2). The
optimal model included ramet alone as the random intercept, so
it was added to all models that evaluated the fixed effects. To
assess the significance of fixed effects, we compared the full model
which included substrate, genet, and their interaction to three
smaller nested models- one including genet only, one including
substrate only, and one including substrate and genet but not
their interaction. To complement the binary acceptance/rejection
of model parameters and to minimize the problematic use of
artificial thresholds (i.e., p = 0.05) to assess significance (Halsey,
2019; Hurlbert et al., 2019), we applied the dredge function from
the MuMIn package (Bartoń, 2020) to determine the relative
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importance of genet, substrate, and their interaction on coral
growth rates. Finally, we calculated summary statistics including
daily rate of growth and area doubling time for each group
retained in the final models.

RESULTS

All corals in this experiment survived and experienced positive
growth over the course of the experiment. On average, corals
grew from a starting size of 0.57–3.08 cm2, an increase in size
of 545% (Table 1).

As a whole, colony growth was right skewed with a mean of
0.0125 ± σ 0.0062 cm2/day (0.08774 ± σ 0.0434 cm2/week)
and a median of 0.0109 cm2/day (0.0760 cm2/week)
(Supplementary Figure 3). There was significant variation
among microfragments, with the fastest growing microfragments
exhibiting an order of magnitude faster growth than the slowest
microfragment (daily growth of 0.0031 vs 0.0348 cm2/day or
0.0217 vs 0.2437 cm2/week). Growth was also more variable for
faster growing genets (Table 1 and Figure 2).

The addition of parent colony (i.e., ramet) as a random
intercept significantly improved model fit over a model with
no random effects, indicating parent colony had a significant
influence on coral growth (Likelyhood Ratio Test, L = 66.46,
df = 1, p < 0.0001). This model was also more parsimonious
than models which included a ramet effect that varied by genet
or substrate (Supplementary Table 1). Similarly, model selection
indicated that the optimal model included both genet and
substrate as fixed effects. This model outperformed both the genet
only model (LRT, L = 6.48, df = 1, p = 0.0055) and the substrate
only model (LRT, L = 12.72, df = 3, p = 0.0026). However, adding
an interaction between substrate and genet did not significantly
improve model fit (LRT, L = 3.25, df = 3, p = 0.1773). Multi-model
averaging indicated that out of all possible model configurations,
96.6% of model weights included genet as a factor and 91.2%

included substrate as a factor, but only 14.4% of model weights
included their interaction (Table 2).

Corals placed on in-house made cement plugs grew at 111.9%
the rate of corals placed on mass-produced ceramic plugs (0.0132
vs 0.0118 cm2/day, Table 1 and Figure 2). There were also
significant differences in coral growth rates between genets
(Table 1 and Figure 2), with corals from genet 14-3 growing at
216% the rate of corals belonging to genet XA.

DISCUSSION

Numerous factors can impact the outcomes of coral restoration
including coral growth, success/survivorship, and cost-efficiency
of coral propagation. Many of these factors are controllable
by restoration practitioners, and thus represent valuable
opportunities to optimize the restoration process. Here,
we isolated two such factors, plug substrate and genet, to
determine their effects on growth rates of Acropora palmata
microfragments. To our surprise, we found that there was
a slight, but significant increase in coral growth on cement
plugs compared with commercially available ceramic plugs.
Additionally, our cost calculations have determined that the
ceramic plugs cost more money than purchasing the materials
to produce cement plugs in house. Because of this difference, as
well as the availability of the cement supplies at various retailers,
the use of cement plugs produces an increase not only in coral
growth, but also in cost-efficiency and accessibility. This becomes
even more significant when considering that nascent coral
restoration operations, including those in remote areas or with
limited funding or resources, can use widely available materials
to produce cost-efficient coral substrates.

Despite the growth and cost advantages of cement plugs,
ceramic plugs still hold several distinct advantages. First, ceramic
plugs are smoother and more regular in construction. This
not only makes it easier to maintain labels on corals, but also

TABLE 1 | Summaries of growth rates, initial fragment sizes, and estimated doubling times (assuming linear growth from time = 0) of coral groups.

Genet Substrate Mean size (cm2)
at T = 0

Mean size (cm2)
at T = 193

Mean percent
growth

SD percent
growth

Mean growth
rate (cm2/day)

SD growth rate
(cm2/day)

Time to double
initial size

(days)

14-3 Ceramic 0.58 3.70 646 272 0.0161 0.0080 36

14-3 Cement 0.62 4.11 689 298 0.0171 0.0079 36

14-3 All 0.60 3.91 667 284 0.0166 0.0079 36

14-4 Ceramic 0.55 2.85 514 125 0.0123 0.0057 45

14-4 Cement 0.60 3.39 566 140 0.0137 0.0049 44

14-4 All 0.58 3.12 540 135 0.0130 0.0053 45

14-5 Ceramic 0.55 2.75 498 107 0.0112 0.0041 49

14-5 Cement 0.61 3.49 581 161 0.0136 0.0044 45

14-5 All 0.58 3.15 543 144 0.0125 0.0044 46

XA Ceramic 0.49 2.00 415 92 0.0075 0.0019 66

XA Cement 0.52 2.20 426 82 0.0080 0.0024 64

XA All 0.50 2.09 420 87 0.0077 0.0022 65

All Ceramic 0.54 2.83 520 185 0.0118 0.0062 46

All Cement 0.59 3.33 570 208 0.0132 0.0062 45

All All 0.57 3.08 545 198 0.0125 0.0062 45
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FIGURE 2 | Distribution of daily growth rates of corals between both substrate types (A) and genets (B). Dashed lines indicate mean growth rates within each group.
Untransformed data are shown here; data were Log10 transformed for statistical analysis.

makes it easier to hold, clean, and outplant them, as their
stems are uniform in length, width, and angle. Ceramic plugs
also provide a more uniform growth surface which may reduce
variability during experiments. Furthermore, after cement plugs
are constructed, they must be soaked for approximately six weeks
before they are chemically inert and ready for use, a step that is
not necessary when using ceramic plugs. Indeed, corals mounted
on cement plugs initially grew slower than those mounted on
ceramic, only overtaking ceramic plugs around 90 days into
the experiment. While we did not explicitly test the reason for
this, it is possible that leaching of cement plugs may have not
been complete. This highlights the significant preparation time
required when using cement plugs and is of particular importance
for seasonal restoration efforts. Nevertheless, our results show
that cement plugs made on-site can be a viable alternative to more
expensive, ceramic plugs.

TABLE 2 | Results of multi-model averaging.

Model Int Sub Geno Sub*Geno df Log Lik

1 −1.835 + + 7 105.536

2 −1.845 + + + 10 107.162

3 −1.858 + 6 102.294

4 −1.945 + 4 99.174

null −1.969 3 96.008

Total Weight 91.20% 96.60% 14.40%

Parameters which are included in each model are designated by a (+) sign. Models
are arranged by their relative weight. Int, Intercept; Sub, Substrate; Geno, Genet;
Sub*Geno, Interaction effect between Substrate and Genotype; df, degrees of
freedom; Log Lik, Log Likelihood.

Coral growth significantly differed between substrates, but our
results also show that substrate effects are dwarfed by the effect of
genet. Faster growing genets can be fragmented more frequently,
producing greater numbers of potential outplants (Baums et al.,
2019). Identifying these fast-growing genets may help speed up
the restoration process and success of restoration programs,
maximizing output while minimizing cost. Additionally, because
colony size is one of the main criteria for sexual maturity in
corals, higher growth may allow corals to more quickly reach
sexual maturity and increase fecundity at the colony level due to
increased numbers of oocyte producing polyps (Álvarez-Noriega
et al., 2016). Finally, rapid growth can allow outplants to better
avoid size-specific mortality factors, such as corallivory or algae
overgrowth (Drury et al., 2017).

Though rapid growth is a desirable coral trait, growth rate
alone is not the only important consideration when choosing
coral genets. Indeed, genet impacts variables other than growth
(Williams et al., 2017; Pausch et al., 2018), and high growth
rates may correlate with tradeoffs in other areas such as recovery
from thermal stress (Ladd et al., 2017). Since the ultimate goal
of most coral restoration is to create resilient, self-reproducing
reefs, genets should also be screened for disturbance resilience
as well as fecundity when possible. If individual genetic “stress
testing” is not possible, coral gardening must be supplemented
with restoration activities using coral larvae to increase genetic
diversity (Lirman and Schopmeyer, 2016). With high genetic
diversity, mass die offs might not be as common as some
corals will be more thermally tolerant or disease resistant
(Muller et al., 2018).

While the results of this study contribute to knowledge
surrounding the efficient growth of A. palmata microfragments
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ex situ, they are not necessarily indicative of how these
microfragments perform as outplants in the wild. Indeed, since
genet performance can interact with environmental variables,
future work should consider the success and growth rates of
microfragments once they have been reintroduced to their
natural habitat, and individual practitioners should conduct
growth experiments similar to the one described here not only to
identify differences in growth rates within their own genet supply,
but also to ensure the substrate effect we describe also holds under
local environmental parameters. Importantly, if using growth
experiments for restoration optimization purposes, it is critical
to track growth rates over the same duration that corals are
going to be raised ex situ, since growth rates can change over
time and may interact with treatment group or season. Finally,
there is a need to expand such work to other coral species
used for restoration. As reefs continue to face increasing human
stressors, coral propagation will continue to be a critical tool in
maintaining reef survival and, eventually, restoration. Our study
shows that decisions such as which substrate or genets to choose
for restoration can have measurable and significant impacts
on restoration speed, efficiency, and cost. As coral propagation
expands, sharing such best practices will become increasingly
more important for coral restoration to become more efficient
and effective in the future.
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