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The variability of La Guajira upwelling system, in the south-central Caribbean Sea, is

strongly influenced by the intensity and location of the atmospheric Caribbean Low-Level

Jet (CLLJ), a near-surface branch of the easterlies, as well as by the regional ocean

circulation. During favorable conditions (i.e., strong easterlies blowing almost parallel to

the coast), upwelling is enhanced and a large amount of primary productivity occurs in

La Guajira area. In contrast, during relatively mild wind conditions, the CLLJ is misaligned

to the coast and the Caribbean Counter Current (CCC, locally also known as the Darien

Current), which forms as a branch from the Panama-Colombia Gyre, flows northeastward

over the continental shelf advecting waters from the southwestern Caribbean basin

toward La Guajira. The CCC has a clear signature at the surface layer that extends from

the Darien Gulf toward La Guajira peninsula during mild wind periods, while disappears

during the months of strong winds. The direction and the magnitude of the easterlies,

and more specifically of the CLLJ, control the position and pathway of the CCC, which

extends more than 900 km in the southern Caribbean Sea during May, June, August,

September, and October. The high concentration of chlorophyll-a at the sea surface

evidenced by satellite-based color images is semi-seasonally modulated by the CLLJ,

which during its relaxation phase allows the irruption of the CCC toward the east up to

La Guajira.

Keywords: Panama-Colombia gyre, La Guajira upwelling system, Caribbean Sea, Caribbean counter current,

Lagrangian pathways, self-organizing maps

1. INTRODUCTION

Upwelling systems are of paramount economic and ecological importance due to the influence they
have in the development of ecosystems with high primary productivity, which sets the basis for
the abundance of fishing resources and the reduction of atmospheric CO2 through the biological
pump (Rykaczewski and Checkley, 2008; Chavez and Messié, 2009). They are also of particular
scientific interest due to the complex coupling mechanisms between atmospheric forcing, ocean
circulation and biogeochemical cycles. The general structure of the oceanic circulation in typical
coastal upwelling situations consists of a coast-parallel wind stress component that generates an
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oceanic geostrophic current in the upper layer, which deflects
offshore with depth following an Ekman spiral. By mass
conservation, this causes a vertical injection of colder nutrient-
rich deeper waters to the euphotic layer.

Coastal upwelling in the southern Caribbean Sea is a well-
known process driven by the bi-modal annual variability of the
Caribbean Low-Level Jet (hereinafter CLLJ), which is a near-
surface branch of the easterlies that blows parallel to the northern
coast of Venezuela and Colombia until it reaches the Panama
isthmus, when it turns southeastward toward the northern Pacific
coast of Colombia. The interaction of these winds with the coast
generates a northward Ekman transport and the subsequent
upwelling of subsurface waters (Andrade and Barton, 2005;
van der Boog et al., 2019). Two main upwelling sub-regions
have been identified in the southern Caribbean Sea with different
upwelling intensity and variability: the western upwelling zone,
from 71 to 74◦W, characterized by an intense seasonal upwelling,
and an eastern zone, from 60 to 71◦W, with more persistent
but less intense conditions around the year (Correa-Ramirez
et al., 2020). Differences in these two upwelling sub-regions
are determined by the location of the maximum wind speed
in the CLLJ relative to the coastal orientation, as well as by
local differences in the vertical stratification of the water column
(Wang, 2007; Amador, 2008; Hidalgo et al., 2015).

This upwelling is especially intense off La Guajira (Colombia)
coastline, and its time variability and intermission (or inactivity)
periods have been previously studied (Andrade and Barton, 2005;
Correa-Ramirez et al., 2020). The upwelling enhances during the
dry and windy season (from December to March), and during
the also dry and windy month of July, and weakens during
the wet season (from August to November). Upwelling in La
Guajira is clearly identifiable with sea-surface temperature data
since strong cold anomalies appear (Bernal et al., 2006), and it
is closely connected with the distribution of high concentrations
of chlorophyll-a (hereinafter Chl-a) (Paramo et al., 2011). While
the inter-annual upwelling cycle has already been analyzed in
detail, semiannual and seasonal variabilities of this phenomenon
are still a subject of debate (see Montoya-Sánchez et al., 2018a,
and references therein).

On the basis of data obtained from oceanographic campaigns
(Andrade and Barton, 2005; Paramo et al., 2011), satellite
observations (Castellanos et al., 2002; Paramo et al., 2011; Rueda-
Roa and Muller-Karger, 2013), and ocean circulation models
(Jouanno et al., 2009; Santos et al., 2016; Montoya-Sánchez et al.,
2018b; van der Boog et al., 2019), some authors have tried to
describe the atmospheric and oceanic mechanisms associated
with upwelling in La Guajira. They found that its variability
responds to changes in the CLLJ and to the intense submesoscale
activity (mainly in the form of filaments) that develops in the
area. Other research studies have pointed out the role of warm
and low salinity waters from the Panama-Colombia Gyre in
enhancing the upwelling intensity in this region (Beier et al.,
2017; Correa-Ramirez et al., 2020). However, the effect of the
Caribbean Counter Current on upwelling (CCC, also known
as the Panama-Colombia Counter Current), a characteristic
eastward ocean current that flows up to a depth of ∼ 100 m
along the Colombian coast toward La Guajira, is still a subject

of debate. It is known that the seasonal variability of the CCC
is intimately associated with both the Panama-Colombia Gyre
dynamics and the strength of the easterlies (Sheinbaum Pardo
et al., 1997). For instance, the CCC is relatively weak from
December to March and intensifies during the midsummer
drought (June and July). Despite its suggested relevance, only
a few studies have attempted to investigate the influence of the
CCC on La Guajira upwelling, likely because of the historical
scarcity of available information to characterize the magnitude,
vertical structure, and variability of this current during the
upwelling period.

Against this background, in this work we study the conditions
that favor upwelling in the surroundings of La Guajira
peninsula for different wind states derived from its seasonal and
subseasonal cycles. In particular, we analyze with more detail the
role of the CCC in the advection of waters from the southwestern
Caribbean Sea basin toward La Guajira coast when mild wind
conditions exist. To this end, we analyze in situ data taken in
La Guajira sector by two Acoustic Doppler Current Profilers
(ADCP) moored during years 2007 and 2008 by Petrobras
Colombia (Brazilian Petroleum Corporation) in collaboration
with Dimar (Dirección General Marítima, according to its
Spanish initials), together with Chl-a satellite concentration
images from MODIS/Aqua, ocean currents from the HYbrid
Coordinate Ocean Model—HYCOM (Chassignet et al., 2007),
and Cross-Calibrated Multi-Platform (CCMP) surface winds
(Wentz, 2015). In order to elucidate how the CCC influences La
Guajira upwelling system, data are analyzed from complementary
Eulerian and Lagrangian perspectives.

This article is structured into three main parts: first, the study
area (section 2) an https://www.overleaf.com/projectd data and
methods (section 3) are presented. In particular, we provide a
brief overview of the Self-Organizing Maps (SOM) technique,
which we use to establish the patterns and seasonal dynamics
of the southern Caribbean Sea. Section 4 shows and discusses
the link between the observed dynamics in La Guajira and the
mesoscale activity in the western basin, including an analysis
of the Lagrangian pathways between the Panama-Colombia
Gyre and La Guajira area. Finally, the main conclusions are
summarized in section 5.

2. STUDY AREA

The Caribbean is a semi-enclosed sea in the western Atlantic
Ocean, extending between a latitude of 8◦N–25◦N and a
longitude of 85◦W–60◦W (Figure 1, left panel). The main source
of water into the Caribbean is the inflow of relatively warm
equatorial south Atlantic waters transported into the eastern edge
of the Caribbean Sea by a boundary current along the South
American coast, and partly by eddies created by the retroflection
area of the North Brazil Current (Schott et al., 1998; Carton
and Chao, 1999; Rhein et al., 2005). When the boundary current
encounters the Lesser Antilles (Figure 1, left), it divides into a
coastal primary jet and a few narrower pathways that circumvent
the islands, which mostly rejoin later to form the Caribbean
Current (CC).
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FIGURE 1 | Bathymetry of the Caribbean Sea (left). The black box indicates La Guajira peninsula with the detailed bathymetry in the (right) and the red box the area

used for the SOM analysis. Red dots in the right panel indicate location of the two moorings.

The continental shelf in the southern Caribbean Sea is one
of the most productive areas in the whole basin due to the
continuous upwelling driven by the almost constant easterly
winds. Besides, the distribution of wind stress of the easterlies
forms a zonal pressure gradient in which the pressure center
is located at Central America, thus contributing to enhance the
eastward flow (Andrade and Barton, 2000).

The climate in the region is in part modulated by the
location of the Intertropical Convergence Zone (ITCZ) and by
the AmericanMonsoon System. As a result, there are twomarked
climatic seasons: the dry (or windy) season from December to
March, and the wet season from August to November. During
the dry season, northern easterlies dominate the area due to
the location of the ITCZ at a latitude between 0 and 5◦N. In
contrast, during the wet season southern easterlies are able to
reach the Colombian basin due to the migration of ITCZ toward
higher latitudes (between 10 and 12◦N). Moreover, during the
so-called transition season (from May to June), easterlies tend
to weaken, consistent with the bi-modal variability of the CLLJ
(Orejarena-Rondón et al., 2019).

Around 21 identified upwelling sites along the coast of
Colombia and Venezuela conforms the so-called Caribbean
coastal Upwelling System (CCUS) (Castellanos et al., 2002;
Paramo et al., 2011). The spatial and temporal variability of the
CCUS mainly depends on the intensification and intermittency
of the easterlies in the ITCZ because they contribute to rise
isotherms, as well as on the orientation of the coast and the level
of stratification of the water column (Andrade et al., 2003), e.g.,
due to the formation of barrier layers by vertical salinity changes
in the upper ocean (Pailler et al., 1999).

La Guajira peninsula is the northernmost area in South
America extending from 71.5◦W to around the south of
Santa Marta at 74◦W (Figure 1, right panel). Previous studies
developed in the area have explained the disruption of the
upwelling in terms of the effect that short term synoptic
perturbations have on the wind relaxation (Rueda-Roa and
Muller-Karger, 2013), as well as in the change in its direction
(Lonin et al., 2010). Here, we show that both, the weakening of
the wind as well as the change in its direction allow the CCC to
reach the remote areas of La Guajira, advecting continental water
masses from the western side of the southern Caribbean Sea that
the CCC encounters on its way. In this regard, Beier et al. (2017)
demonstrated that due to combined effect of precipitation and
runoff Caribbean Sea Water is more diluted in the southwest of
the basin, in the region of the Panama-Colombia Gyre, while in
the northeast, where the amount of runoff and rain decreases,
salinity tends to rise off La Guajira from December to May
because of upwelling.

3. DATA AND METHODS

3.1. ADCP Data
The General Maritime Directorate of Colombia (Dimar) in
agreement with Petrobras Colombia Limited, through theWoods
Hole Group, deployed a series of moorings to study ocean
currents off the northern coast of Colombia. One mooring
(ADCP1) was located in front of Nazareth at 11◦42′25′′ N and
73◦40′19′′ W at a depth of approximately 1,500 m, and another
mooring (ADCP2) was deployed in La Guajira area at 12◦48′44′′

N and 71◦40′31′′ W at a depth of 800 m (see mooring positions
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in Figure 1, right panel). Each mooring was equipped with a
Teledyne RDI 75 kHz Acoustic Doppler Current Profiler (ADCP)
at a depth of about 350 m in an upward looking position.
These moorings were originally deployed in April 2007 and
redeployed in June and September 2007, and in January 2008.
These moorings were recovered in February 2008. Instruments
were set to sample currents every 4 s and programmed to obtain
one averaged ensemble every 60 min measuring during 731 days.

3.2. Ocean Currents From HYCOM Model
Horizontal ocean currents are obtained from the HYbrid
Coordinate Ocean Model, HYCOM (Bleck et al., 2002). HYCOM
is a primitive equation, general circulation model with isopycnal
coordinates in the open ocean, terrain-following in shallow
coastal regions, and z-level coordinates in the mixed layer and
unstratified areas. The version we use is the HYCOM + NCODA
Global Reanalysis (GLBu0.08/expt_19.1), which covers years
1995–2012 and has 32 vertical levels and yields a uniform grid.
Input fields of surface wind stress, heat flux and rainfall used
to force the model are based on the 1-hourly National Centers
for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR), which has a horizontal resolution of ∼ 1/3◦

and allows to reproduce well the diurnal cycle. This simulation
includes monthly river runoff and uses a 3D assimilation scheme
that includes satellite, and in-situ sea surface temperature as well
as in-situ vertical temperature and salinity profiles from XBTs,
Argo floats andmoored buoys (Cummings, 2005; Cummings and
Smedstad, 2013).

In agreement with the initial time of ADCP data, only
information for the period 2007–2012 is here used. The selected
area covers from 58 to 89◦W in longitude and from 7 to 24◦N
in latitude with a 1/12◦ resolution (213 × 389 grid points).
Moreover, we only use two vertical levels: at the surface and at
90 m. The surface layer yields information on the Caribbean
Current, while at 90 m it has been found the average depth of
the subsurface salinity maximum (van der Boog et al., 2019) and
is a depth that allows to capture well the subsurface Caribbean
Counter Current, which is strongest at around 100 m (Andrade
et al., 2003). Weekly averages of horizontal currents (u, v) and the
original 3-hourly fields are employed to perform Eulerian and
Lagrangian analysis in section 4, respectively. HYCOM data is
available at: https://tds.hycom.org/thredds/catalog.html.

3.3. Surface Wind Data
Ocean surface winds are based on the cross-calibrated multi
platform (CCMP) version 2.0 long-term data record. These
data have a spatial resolution of 0.25 × 0.25◦ in both latitude
and longitude coordinates, and are available at 6-h interval
from 1988 until near present-day. This product is constructed
with the variational analysis method (VAM) (Atlas et al., 1996;
Hoffman et al., 2003). CCMP version 2.0 is an improved product
that uses accurately intercalibrated winds from Remote Sensing
System (Wentz, 2013, 2015), which includes satellite winds
obtained from Tropical Rainfall Measuring Mission Microwave
Imager (TRMM TMI), QuikSCAT, QuikSCAT (SeaWinds),
WindSat, Special Sensor Microwave Imager (SSM/I), SSMIS,
Advanced Microwave Scanning RadiometerEarth Observing

System (AMSR-E) and other, in situ data frommoored buoys, and
background winds from the ERA-Interim reanalysis (Dee et al.,
2011). CCMP winds are chosen due to its high resolution and
long time sequence. They are freely available at: http://data.remss.
com/ccmp/v02.0/.

3.4. Chlorophyll-a Satellite-Based Data
Chlorophyll-a (Chl-a) is a photosynthetic pigment commonly
present in all phytoplankton species. It is used as a proxy of
surface phytoplankton concentration. Chl-a concentration is a
standard product from satellite-based optical sensors, usually
retrieved through empirical algorithms that combine reflectance
ratios at two or more wavebands. DailyMODIS/Aqua NIR-SWIR
ocean color images, available frommid 2002, were obtained from
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua. This product
provides surface Chl-a concentration at a spatial resolution
of 1 km2 by using the shortwave infrared (SWIR)-based
atmospheric correction algorithm developed by NOAA/NESDIS.
We use images of monthly mean sea surface Chl-a concentration
(unit in mg·m−3) to characterize La Guajira area.

3.5. Self-Organizing Maps
A Self-Organizing Map (SOM) is a visualization technique based
on an unsupervised learning neural network especially suited to
extract patterns in large datasets (Kohonen, 1982, 2001). SOM is
a nonlinear mapping implementation method that reduces the
high-dimensional feature space of the input data to a lower-
dimensional (usually two dimensional) network of units called
neurons. In this way, SOM is able to compress the information
contained in a large amount of data into a single set of maps.
The learning process algorithm consists of a presentation of the
input data to a preselected neuronal network, which is modified
during an iterative process. Each neuron (or unit) is represented
by a weighted vector with a number of components equal to
the dimension of the input sample data. In each iteration the
neuron whose weighted vector is the closest (more similar)
to the presented input sample data vector is called the best-
matching unit (BMU). Each BMU is updated together with
its topological neighbors located at a distance less than the
neighborhood radius Rn toward the input sample through a
neighborhood function (see Hernández-Carrasco and Orfila,
2018, for a schematic representation of the SOM algorithm).
Therefore, the resulting patterns will exhibit some similarity
because the SOM process assumes that a single sample of data
(input vector) contributes to the creation of more than one
pattern, as the whole neighborhood around the best-matching
pattern is also updated in each step of the training. It also
results in a more detailed assimilation of particular features that
appear on neighboring patterns if the information from the
original data enables it to do so. At the end of the training
process, the probability density function of the input data is
approximated by the SOM, and each unit is associated with a
reference pattern that has a number of components equal to the
number of variables in the dataset. Therefore, this process can
be interpreted as a local summary or a generalization of similar
observations. Compared to conventional statistical methods such
as the Empirical Orthogonal Functions, SOM is able to introduce
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nonlinear correlations and it does not require any particular
functional relationship or assumption on the data distribution,
e.g., distribution normality or equality of the variance (Liu et al.,
2006, 2016; Hernández-Carrasco et al., 2018). In this work we
compute SOMs in the spatial domain with a map size of 4 × 4
(16 neurons) and a hexagonal map lattice to have equidistant
neighbors and do not introduce anisotropic artifacts. Concerning
the initialization, we opted for random initialization since it is
faster and missing data are accepted. For the training process
we use the imputation batch training algorithm adapted for
data with missing values and a “Gaussian” type neighborhood
function. SOM computations have been performed using the
MATLAB toolbox of SOM v.2.0 (Vesanto et al., 1999) provided
by the Helsinki University of Technology (http://www.cis.hut.fi/
somtoolbox/, accessed October 14, 2020).

3.6. Lagrangian Pathways
Forward in time pathways are computed in section 4.4 with
OceanParcels (Lange and van Sebille, 2017; Delandmeter and
van Sebille, 2019) using a Runge-Kutta 4th order advection
scheme. Because the vertical component is not publicly available
in HYCOM dataserver the advection of passive particles will be
performed in 2D with u and v 3-hourly velocity fields. Only the
advective terms are considered in the computation of trajectories.
Advection internal timestep of the RK4 scheme is fixed to 60min.

4. RESULTS AND DISCUSSION

4.1. Characterization of Averaged Surface
Circulation and Mesoscale Activity
Mesoscale dynamics in the Caribbean Coastal Upwelling System
(CCUS) is assessed through a statistical analysis of the kinetic
energy budgets computed frommodeled ocean currents and their
spatial variability. According to the theory of random processes
for turbulent flows, we assume the flow to be statistically
stationary (Pope, 2001). This means that while the prognostic
variables vary in time, their statistics (mean and variance) are
time independent. Under such assumptions, the components of
the flow field u(t) = [u(t), v(t)] can be written as the sum of their
temporal mean u and a time-varying fluctuation u′(t). Therefore,
the instantaneous zonal and meridional velocity components at a
given time [u(t), v(t)] can be decomposed as:

u(t) = u+ u′(t), v(t) = v+ v′(t), (1)

where overbars represent the time-mean over the 6 years of
simulation and primes denote the time-dependent fluctuating
part (the eddy component of the flow). From the previous
formulation, the time averaged Kinetic Energy of the flow at
a given location can be decomposed into the sum of a Mean
Kinetic Energy (Km) and a time-averaged Eddy Kinetic Energy
(Ke). These terms, per unit volume, are defined as:

Km =
1

2
ρ0(u2 + v2), (2)

Ke =
1

2
ρ0(u′2 + v′2).

The total time-averaged Kinetic Energy, K can be readily
obtained from Equations (1)–(2) as:

K =
1

2
ρ0

(

u2 + v2 + (u′2 + v′2)+ 2uu′ + 2vv′
)

= Km + Ke,

(3)
since the mean flow and turbulent quantities do not correlate, the
last two terms inside the parenthesis are zero.

Following the definitions given in Equations (2), maps of
surface Km and time-averaged Ke (Ke) in the Caribbean Sea
are shown in Figure 2 for the period 2007–2012. The larger
signature of Km is given by the Caribbean Current (CC), whose
origin is associated with the flow of the North Equatorial
Current entering into the Caribbean Sea across the Lesser Antilles
channels (Figure 2a). This current flows west-northwestwards
until exiting to the Gulf of Mexico through the Yucatan Channel.
The mesoscale signature given by the Km also reflects at the
western side of the basin the deflection of the currents that
form the Panama-Colombia Gyre, which arises from an intense
interaction between the surface wind stress and heat fluxes
(Montoya-Sánchez et al., 2018a). By contrast, Ke shows a more
spread distribution with some areas of large activity detached
from the mean currents, mainly in the central basin and around
the Panama-Colombia Gyre area (Figure 2b). Mesoscale activity
is very high in the Caribbean Sea, where eddies tend to increase
in size as they move westwards, which enhances the available
Ke in the whole basin (van der Boog et al., 2019). The scattered
distribution of Ke reveals a high variability in the position and
intensity of mesoscale structures over time. In this regard, the CC
is known to display a well-defined pathway at the eastern edge of
the basin, also depicted by the Km, that becomes more unstable
as it moves westwards, when meanders and eddies shed from
the initial along-coast current toward the center of the basin, as
revealed by the high values of Ke found in the central areas of the
basin (Figure 2b).

At the northern part of La Guajira, Km depicts the signature
of the CC (Figure 2a), which is intensified off the western coast
of Venezuela). Ke shows large values of around 800 cm2 · s−2

at the northernmost part of La Guajira because of the strong
eddy-detachment from the mean current and values between 400
and 600 cm2 · s−2 south of this point indicating the importance
of mesoscale features in the dynamics of this area (Figure 2b).
As stated by Jouanno and Sheinbaum (2012), easterly winds
carried by the CLLJ vary semi-annually with maxima during
summer and winter, and minima during fall and spring. The
configuration of the pressure system in the basin at the beginning
of the year is mainly modulated by the North Atlantic Subtropical
High, although the Canadian High, the ITCZ located south of
the equator and the Iceland low at higher latitudes also play
a role (Lonin et al., 2010). This configuration changes during
summer, when the North Atlantic Subtropical High disappears
and is replaced by a low pressure system, which results in a
northward displacement of the ITCZ; while during the winter-
spring transition, abrupt changes in the wind direction appear
over the tropics. Unlike Km, which displays the main path of
the CC as well as the initial path of the CCC at the coast
of Panama, large values of Ke are distributed across the basin
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FIGURE 2 | (a) Mean Kinetic Energy (Km) and (b) Mean Eddy Kinetic Energy (Ke) for the daily surface velocities for the period between 2007 and 2012. A zoom of the

monthly mean values of Ke during (c) January, and (d) May in La Guajira area for the period 2007–2012 where dots indicate location of ADCP. Units in m2 · s−2.

showing the mesoscale activity areas in the basin. It is well-
known that instabilities in the CC drive the formation and
growth of mesoscale eddies in the basin (Andrade and Barton,
2000; Richardson, 2005; Jouanno and Sheinbaum, 2012). Large
seasonal differences are found spatially in the time averaged Ke

(Figure 2c for January and Figure 2d for May). During January,
the spatially averaged wind (over the area shown in Figures 2c,d),
is 6.9 m/s and correspond to strong Ke activity on the CC path
(Figure 2c). Conversely, during May (spatially averaged winds
between 2007 and 2012 of 5.2m/s), theKe activity is mainly found
around the CCC (Figure 2d).

Regarding the time variability, the spatial average of Eddy
Kinetic Energy < Ke > over La Guajira area (black box in
Figure 1), depicts a seasonal behavior with values ranging from
200 cm2 · s−2 to 1,500 cm2 · s−2 (Figure 3). Moreover, < Ke >

shows a semi-annual variability that modulates the seasonal
cycle (bar-plot in Figure 3). For the period analyzed, the larger
monthly values of < Ke > over la Guajira area are obtained
during June and October being an indicator of large mixing
activity during these months.

4.2. Seasonal and Semi-Annual Upwelling
To characterize the temporal variability of the potential surface
biological productivity in the study area, we analyze 2 years
(2007–2008) of daily images taken by MODIS-Aqua sensors in
the surroundings of La Guajira peninsula. Figure 4 shows the
monthly averages of Chl-a constructed with cloud free daily
images. As observed, the most productive months cover from
November toMarch. During thesemonths, easterlies blow almost
parallel to the coast, thus favoring an offshore Ekman transport

(we refer Supplementary Figure 1 to see the wind seasonality
over the Caribbean Sea). The magnitude of monthly wind
speed gradients are also shown in Figure 4 by the separation
distance between wind speed contours of 6, 8, and 10 m · s−1 As
seen, months with large gradients (a smaller separation between
isolines) and isolinesmore aligned to the coast show a higher Chl-
a concentration. By contrast, when the ITCZmigrates toward the
north the direction of easterlies is more perpendicular to the coast
and Chl-a concentration drops drastically, up to almost disappear
during April and May. Unsurprisingly, intense upwelling is seen
during the rainy season (from December to March, Figure 4).
More interesting are findings during June and October, when
despite wind conditions do not favor upwelling, a significant
amount of Chl-a is observed.

To further explore the properties of the ocean flow related
to the above described phytoplankton growth scenarios, we
analyze currents measured by two ADCPs during 2007 for the
months of June and December (strong upwelling), and May
(weak upwelling). As mentioned in section 3.1, instruments were
deployed during almost one year off Santa Marta and La Guajira
(ADCP1 and ADCP2 in Figure 1, right panel) at the continental
shelf. West-East and South-North u, v currents were rotated
following the Euler rotation matrix:

(

u′

v′

)

=

(

cosα sinα

− sinα cosα

) (

u
v

)

(4)

where α ≈ 57◦ is the angle that the coast forms with respect
to the Equator, and (u′, v′) are the parallel and orthogonal
velocity components with respect to the coast. Note that
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FIGURE 3 | Spatially averaged (over La Guajira, see black box in Figure 1A) Eddy Kinetic Energy, < Ke > between 2007 and 2012. For the sake of clarity a 10-day

smoothing has been applied. In the inset panel, the 6-year (2007–2012) monthly mean spatially averaged Eddy Kinetic Energy is shown with bars to better display the

semi-annual cycle.

FIGURE 4 | Monthly averaged chlorophyll-a (Chl-a) for La Guajira region for years 2007 and 2008. Black lines indicate the 6, 8, and 10 m · s−1 isolines of surface wind

speed. During October wind contours are below the 6 m · s−1 in the area of study.

u′ has been additionally multiplied by (−1) to more easily
identify simultaneous positive (negative) along-shore and cross-
shore values as upwelling (downwelling) processes. Positive

along-shore velocities are directed southwestward and positive
cross-shore velocities move northwestward (offshore). Figures 5,
6 show the along-shore (top panels) and cross-shore (bottom
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FIGURE 5 | Along-shore (top) and cross-shore (bottom) currents off Santa Marta (ADCP1, Figure 1) between 60 and 160 m of depth for May (left), June (center),

and December (right) 2007. Positive (negative) velocities are southwestward (northeastward) and northwestward (southeastward) for along-shore and cross-shore

components, respectively.

FIGURE 6 | Along-shore (top) and cross-shore (bottom) currents off La Guajira (ADCP2, Figure 1) during May (left), June (center), and December (right) 2007.

Positive (negative) velocities are southwestward (northeastward) and northwestward (southeastward) for along-shore and cross-shore components, respectively.

panels) velocity components of the upper ocean layer (y-axis,
from 60 m below the surface up to a depth of 160 m) for May
(left), June (center), and December (right) of year 2007. Based on

ADCP1 measurements taken off Santa Marta (Figure 5), during
May along-shore velocities are directed northeastward while
cross-shore velocities are onshore (southeastward), suggesting a
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FIGURE 7 | Monthly averaged cross-shore Ekman transport (squares) at ADCP1 (red) and ADCP2 (green) and monthly averaged surface Chl-a (dots) at ADCP1 (red)

and ADCP2 (green) for the period between 2007 and 2012. Surface wind data is described in section 3.3.

situation associated with downwelling. In May, average winds
in La Guajira are below 6 m · s−1 (see Supplementary Figure 1)
and the ocean flow is mainly controlled by the CCC, which flows
eastwards along the continental shelf at a depth between 50 and
150 m. During June, currents over 80 m of depth are mostly
northeastward and onshore except during 21–23 of June, when
the flow reverses and acquires offshore velocities. In parallel,
surface winds are of around 8 m · s−1 with a northward shift
with respect to the windy season. As mentioned above, this
unfavorable upwelling wind is accompanied by a significant Chl-
a concentration in the area (Figure 4), which indicates that this
high concentration is not directly related with the wind-induced
offshore movement of surface water. In contrast, below 100
m of depth and until June 22nd the along-shore component
is mostly southwestward and the cross-shore component is
offshore (Figure 5). However, these velocities are relatively small
with magnitudes below 5 cm · s−1, especially in the along-
shore direction.

During the first week of December the upper along-shore
flow is oriented northeastward and the upper cross-shore flow
moves onshore, then reverses for the next two weeks to display
intense southwestward along-shore and offshore cross-shore
components that reach 30 cm · s−1 at a depth of 60 m (the
intense offshore flow indicates favorable upwelling conditions).
As expected, the surface concentration of Chl-a increases (see
Figure 4, DEC), since the CLLJ moves southward strengthening
winds during the dry season.

At ADCP2 (located in the northernmost part of La Guajira
peninsula, Figure 1), during May the along-shore and the cross-
shore velocity components are also directed northeastward and
onshore, respectively. The main difference with respect to the
ADCP1 is found in June, when the along-shore and the cross-
shore components are southwestward and offshore in the upper
layers and during the whole month. Moreover, the magnitude
of both components is higher than for ADCP1 with values
reaching 0.3 m · s−1. The averaged winds for this month display
the maximum intensity in an area adjacent to La Guajira
peninsula (see Supplementary Figure 1), close to the location of
the mooring, thus showing a distinct situation to the one found
to ADCP1. During December, alternating southwestward and

northeastward along-shore velocities accompanied by offshore
and onshore cross-shore velocities are found. At the end of the
month, the flow is strongly upwelling favorable (southwestward
and offshore in the along-shore and cross-shore components,
respectively) in a situation that typically lasts until the end of the
wet season.

The Ekman transport can be readily obtained using the
horizontal wind components at 10 m above the sea level (section
3.3) as,

Q = −
τ ′x

ρwf
· 103, [m3 · s−1 · km−1] (5)

with ρw = 1025 kg m−3 the seawater density, f = 2� sin λ

the Coriolis parameters being � is the angular speed of earth
rotation, λ the latitude and τ ′x the along-shore wind stress
component computed as:

τ ′x = ρaCdu
′
w|vw|,

where Cd is the wind drag coefficient (set constant as 1.4 · 10−3),
ρa = 1.22 kg ·m−3 the density of air and v′w = (u′w, v

′
w) the

rotated 10 m wind speed using Equation (4). Figure 7 displays
the Ekman transport obtained from Equation (5) (squares) with
daily wind values at the location of ADCP1 (red) and ADCP2
(green). This transport is the volume transport per distance
unit of an across-shore cross section. Overall both sites have
the same seasonal variability with a bi-modal distribution and
maximum values in the dry season (Dec–Jan), and a second
peak in the transport during July. The two minimum values are
found duringMay and September–October, respectively. Because
during all months the Ekman transport at La Guajira (ADCP2)
is larger than at Santa Marta (ADCP1), we could expect a larger
amount of Chl-a induced by the wind at the location of ADCP2,
which is not always the case (Figure 4). Pictures of monthly
averaged surface Chl-a are displayed in Figure 4 for Santa Marta
(red) and La Guajira (green). As seen, surface Chl-a follows the
general tendency shown by the cross-shore transport with higher
concentrations fromDecember toMarch, but with peaks in Santa
Marta during June and most notably during October, being this
month the period with weaker winds over the area. Upwelling
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FIGURE 8 | Spatial patterns of surface currents given by a 4× 4 SOM analysis in the Caribbean Sea computed from weekly mean surface velocities over the time

period 2007–2012. The colorbar indicates the magnitude of the zonal velocity in m · s−1 (note that positive values are westwards). Yellow line indicates the

corresponding 8 m · s−1 wind contour as obtained from the wind SOM patterns (Figure 9). Each panel shows the probability of occurrence.

may induce re-suspension and transport elements from lower
layers to the surface potentially enhancing primary production
(Huhn et al., 2007). The variability of the upwelling processes
in La Guajira is mainly driven by the wind stress seasonal and
semi-annual cycles, with peaks during the dry and the drought
seasons (Fajardo, 1979; Andrade and Barton, 2000, 2005). In
the next sections we investigate the role of ocean currents as a
potential mechanism to explain the spatial distribution of Chl-a
not directly attributed to the wind to reconcile the simple view
given by the Ekman transport with observations.

4.3. Classification of the Eulerian Dynamics
Through SOM Analysis
SOM of Surface Currents and Winds
The spatial patterns at the surface over the southern Caribbean
Sea (see red box in Figure 1) are obtained by applying a joint
SOM over the weekly mean ocean horizontal velocities and
surface winds, for the period between 2007 and 2012 (both
included). Figures 8, 9 display the coupled 16 patterns obtained
from the 4 × 4 SOM neurons of surface velocities and surface
winds, respectively. Additionally, the monthly occurrence of

the patterns obtained from the best matching units (BMU)
are displayed in Figure 10. Occurrence probability is computed
through the identification of the BMU for each time step. The
BMU is obtained by comparing each sample of the velocity
time series with patterns P1–P16 and selecting the pattern
more similar to the sample (i.e., has the minimum Euclidean
difference). In this way, a time series of BMU can be used to
calculate the probability of occurrence of each pattern by dividing
the total count of the pattern identified as BMU by the length of
the sample time series.

Owing to the topology preservation of the SOMmethodology,
the resulting patterns are closely distributed in the neural
network over four different dynamical situations according to
their similarity. We found contrasting situations in the surface
circulation and surface winds (Figures 8, 9) represented by the
neurons located in the first and last row of the lattice. These
can be described by patterns P1 and P13 with probabilities
of 15.5 and 7.7%, respectively (at the two left corners) which
represent the blocking of the CCC and the developments of
the CCC up to La Guajira, respectively. The dominant spatial
structure, that is, the common configuration in all the neurons,
corresponds to the westward flow of the incoming Atlantic waters
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FIGURE 9 | Spatial patterns of surface winds given by a 4× 4 SOM analysis in the Caribbean Sea computed from weekly surface winds over the time period

2007–2012. The colorbar indicates the wind speed in m · s−1.

fed by the North Equatorial, North Brazil, and Guiana Currents
conforming the CC that transports water westward until reaching
the Panama isthmus, when it divides into two branches: one
that flows northwestward aligned to the Central American coast
toward the Yucatan Channel, and another one that recirculates
southeastward forming the aforementioned Panama-Colombia
Gyre and the CCC, which can extend eastward up to 72◦W
near La Guajira in the bottom row of the lattice. Note that
shading indicates a zonal velocity with positive (red color) values
directed westward, and the yellow lines depict the 6 m · s−1

wind speed contour obtained from the corresponding wind
pattern (Figure 9). As suggested by the displacements of the
wind speed contour in Figure 8, each pattern of surface current
is associated with a wind pattern given in Figure 9, thus we
can connect dynamical states in surface circulation with surface
wind configurations.

As seen in Figures 8, 9, situations in which patterns of
currents have a well-defined eastward coastal flow aligned
to the Colombian coast are associated to moderate wind
intensities (P12–P16), which are infrequent and tend to occur
in the transition months (see Supplementary Figure 1). The
explanation is that winds are mainly zonal blowing westward
with maximum intensities during February and July, thanks
to the regional amplification of the North Atlantic easterlies

associated with an anticyclone over the subtropical North
Atlantic, which intensifies the CLLJ (Munoz et al., 2008). In
contrast, this jet weakens during May and October (see wind
speed contours in Figure 4), favoring the extension of the CCC
toward La Guajira. Moreover, coastal upwelling can be disrupted
by changes in wind speed and direction (Enriquez and Friehe,
1995). Indeed there are two well-known physical mechanisms
responsible for the divergence in the Ekman transport and that
induce upwelling: (i) the coastal inhibition and (ii) the divergence
of the current (Fennel and Lass, 2007). In the case of the wind
curl (Supplementary Figure 2), it presents high values over La
Guajira area from January to April, decreasing during May and
June, intensifying again in July, and disappearing from August
to November to finally increase again during December thus
showing a clear semi-annual cycle that agrees well with the
periodicity of upwelling events in the region.

The monthly occurrence of each of the surface currents and
wind patterns (Figure 10) shows an arrangement of patterns on
those months clearly associated in the literature with intense
upwelling (December–March), represented by those patterns that
reflect the CCC blocking and intense winds over La Guajira
peninsula (Figures 8, 9). August, September, and October,
periods where the upwelling is blocked, are mostly represented
by patterns in the bottom row with a developed CCC and weaker
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FIGURE 10 | Monthly BMU distribution of SOM patterns for surface currents and winds.

winds in the area. At this point, we want to remark that due
to the conservation of topology, the transition between patterns
is smooth, and thus similar patterns are grouped in the same
area of the neural network. The situation in May is clearly a
mixing of several patterns with predominance of patterns P6
and P16 and, with less occurrence, P7, P13, and P14, all of
them being patterns with relatively mild winds (see Figure 9) and
intense CCC (Figure 8). InDecember, when the upwelling season
begins, dominant patterns are P1, P3, P5 and with slightly less
occurrence P9. At the surface, the first three patterns display a
configuration with the maximum wind intensity at the north of
La Guajira peninsula (Figure 9), and westward current velocities
over La Guajira. Note that winds blow almost parallel to the
coast limited by the 6 m · s−1 isoline (Figure 8). Pattern P9 shows
a different situation with relaxed wind toward the northeast
direction and with near vanishing zonal ocean velocities at La
Guajira. In contrast, June is mostly represented by the neurons
located in the right side of the lattice (patterns P4, P8, P12,
and P15). All these patterns present at the surface in La Guajira
either a very small magnitude of westward ocean currents or an
eastward component where the flow is part of the CCC. It is
worth to note that the 6 m · s−1 wind contour in these patterns
follows the coastline in La Guajira, but around Santa Marta it
turns toward the interior Caribbean Sea, which supports the
lower Ekman transport found in ADCP1 with respect to ADCP2
(Figure 7). The corresponding wind patterns (Figure 9) mostly
showmoderate winds (76% of occurrence for the sum of patterns
P8, P12, P13, and P16).

Moreover, the most intense upwelling occurs during January,
February, and March and this period is mostly represented by

patterns P1, P2, and P3 characterized by the strongest winds over
La Guajira peninsula blowing parallel to the coast (Figure 9),
while currents are directed westwards with a magnitude at
the surface that reaches 0.4 m · s−1 (Figure 8). The evident
seasonality in the surface circulation, which has been already
noticed by other authors (Andrade and Barton, 2005; Correa-
Ramirez et al., 2019), is here clearly illustrated by the distribution
of BMU (Figure 10).

4.3.1. Subsurface Circulation at the Maximum Salinity

Depth
It is known that upwelled waters in the southern Caribbean Sea
are influenced by mesoscale features (Rueda-Roa Digna et al.,
2018). To get a better insight on the role of the Panama-Colombia
Gyre in the transport of water masses from the western side of
the basin toward La Guajira, we repeat the SOM analysis over
the weekly averaged modeled ocean velocities at the depth of
maximum salinity, which is on average at around 100 m (see
for instance Figure 7 in van der Boog et al., 2019). To this end,
we use again the same number of neurons (16). Figure 11 shows
the spatial patterns and their corresponding monthly occurrence
probability in Figure 12. It can be seen how the CC shifts
latitudinally; during January–April, months mostly represented
by the patterns located in the lower row (P13, P14, P15, and P16
in Figure 12), it extends toward the south with a southwestwards
direction. By contrast, from June to November, the representative
patterns are in the top row of the lattice (P1, P2, P3, and P4)
and show the northward displacement of the CC. The position,
strength, and direction of the CC modulates the eastward flow
along the central and south Caribbean Sea. In P1 and P2 the
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FIGURE 11 | Spatial patterns of HYCOM model ocean currents at 100 m depth given by a 4X4 SOM analysis in the Caribbean Sea computed from weekly mean

surface velocities over the time period 2007–2012. The colorbar indicates the magnitude of the zonal component of velocity in m · s−1.

eastward flow is intense forming two well defined eddies: one that
rotates cyclonically in the Mosquito Gulf, in front of Nicaragua
and Costa Rica coasts, and a second that rotates anticyclonically
in the Darien Gulf, within the Panama-Colombia Gyre. Patterns
P3 and P4 show a southward displacement of the CC, thus
disappearing the first eddy and shifting to the south the Panama-
Colombia Gyre, which allows waters from Central America to
reach a longitude of around 75◦W. Additionally, P8, P12, and
P13 show the southernmost position of the CC at this depth. In
these patterns the Panama-Colombia Gyre disappears allowing
waters from the central Caribbean to reach the northern part of
La Guajira. These patterns are representative of June, where the
Ekman transport off Santa Marta is lower than the one obtained
for April, but the concentration of Chl-a at the surface is larger
than in April (see ADCP 1 lines in Figure 7). It has been already
suggested that the CCC originates at the surface in the area of
the Panama-Colombia Gyre and progressively deepens reaching
a depth of approximately 100 m in the Colombian basin (Correa-
Ramirez et al., 2020) reaching the Guajira area (Andrade et al.,
2003). Our results suggest that this mechanism is responsible
for the transport of waters from the western basin toward La
Guajira. This region receives freshwater runoff of central America
rivers as well as the discharge fromMagdalena River (Colombia),
which could explain in part the large amount of surface Chl-a
concentration during periods of low wind intensity.

4.4. Lagrangian Dynamics
As explained above, the CCC seems to play an active role
in the advection of more diluted waters from the Colombian
basin (including nutrient-richer waters from Magdalena River
runoff area) toward the surroundings of La Guajira. Now, we
further study the potential impact of a strong CCC on passive
tracers from a Lagrangian standpoint. To this end, we deploy
massless particles at the 15th day of each month of year 2007
and advect them for a total time of 90 days. More than 6,000
passive particles are initially launched inside the yellow box in
the Panama-Colombia Gyre at a model depth of 90 m, near the
depth at which the strongest CCC has been found by Andrade
and Barton (2000) (Figure 13, top-left panel). Green solid lines
in Figure 13 depict the trajectories of those particles able that
cross the black box around La Guajira during the 90 days of
simulation, being the initial and the final positions indicated by
blue and red dots, respectively. As seen, the number of particles
that approach the surroundings of La Guajira varies from month
tomonth, being significantly larger for particles deployed in April
and May (N = 107 and N = 125 particles, respectively), as
well as for those deployed in October (N = 209 particles), than
during the rest of the year (N≤12 particles for other months).
This result is in good agreement with the strengthening of the
eastward CCC found with ADCPmeasurements which, as earlier
discussed, peaks during May (Figure 5, dark blue color) and
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FIGURE 12 | Monthly BMUs distribution of SOM patterns shown in Figure 11 derived from 100 m depth ocean currents.

during November (not shown) because of the weakening of the
Caribbean Low-Level Jet, as it has been previously shown with
the SOM analysis.

5. CONCLUSIONS

The variability of La Guajira upwelling system is strongly
influenced by the ocean mesoscale activity (mainly in the form
of filaments), and by the atmospheric Caribbean Low-Level Jet
(CLLJ). When the CLLJ blows parallel to the coastline induces an
offshore-integrated Ekman transport, thus favoring the upwelling
of relatively high nutrient-rich waters in an oligotrophic sea.
Surface values of Chlorophyll-a (Chl-a) can reach concentrations
of 3 mg·m−3 in the wide and shallow continental shelf mostly
during the windy season (Dec–March) in accordance with
(Corredor, 1979).

As it is known from other coastal upwelling systems,
coastal undercurrents may transport waters with low oxygen
and high nutrient concentration. Along the trajectory of such
undercurrents, part of the nutrients can be upwelled or mixed
with shallower waters. The magnitude and intensity of the
upwelling depends on both the magnitude and direction of
the wind that induces the vertical transport and the mixing
of nutrients that occurs below the Ekman layer. The spatial
average of the Eddy Kinetic Energy (< Ke >) presents a
clear seasonal signature with maximum values in la Guajira
during December-January and July, and minimum during May
following the variability of the CLLJ. In the case of La Guajira

here analyzed, the rate of upwelling, here described in terms
of Ekman transport, also presents a clear seasonality with a
bimodal distribution that reach maximum values during the wet
season from December to March and during the mid drought
season in July. In these periods, strong winds associated with
the CLLJ blow almost parallel to the coasts of Venezuela and
Colombia with maximum intensity near La Guajira peninsula
inducing a cross-shore transport at the Ekman layer that induces
the upwelling. Although the main driver for high nutrient
concentration at the surface is the seasonal variability of the
trade winds, nutrients are also measured in relatively low
wind conditions.

At the mooring in Santa Marta (the southernmost part
of La Guajira peninsula), currents below the Ekman layer
(> 60 m) indicate that the flow is mostly governed by
the Caribbean Counter Current (CCC) except when intense
winds reverse the flow (almost in the upper 160 m of depth),
inducing the upwelling. In the northern part of La Guajira
(ADCP2) currents are more intense so as the Km indicates
(Figure 2c).

The CCC has a clear signature at the surface layer that extends
from the Darien Gulf toward the southern part of La Guajira
peninsula during the mild wind periods. The 8 m · s−1 wind
contour controls the position and trajectory of the CCC covering
more than 900 km in the southern Caribbean Sea during the
mild wind seasons (May, June, and August to October mainly).
The signature of the CCC is more evident at the depth of
maximum salinity (at around 100 m), as during these months

Frontiers in Marine Science | www.frontiersin.org 14 February 2021 | Volume 8 | Article 626823

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Orfila et al. Panama-Colombia Gyre and La Guajira Upwelling

FIGURE 13 | Lagrangian trajectories of particles launched in the yellow box (> 6, 000 particles), within the Panama-Colombia Gyre. Pathways are computed forward

in time during 90 days. Initial (final) positions of advected particles are denoted by blue (red) dots, respectively. Particles are deployed at the 15th day of each month

during year 2007 inside the yellow box at the same positions. Only those that cross at anytime the black box around La Guajira are depicted. Tracking is performed

over HYCOM horizontal current velocities at a depth of 90m.

subsurface waters can reach La Guajira peninsula transporting
lighter waters from the western edge of the basin. A SOM analysis
for the HYCOM model data reveals that from the surface up
to 90 m depth, the CCC reaches La Guajira when the wind
is weaker. This current advects waters from the continental
shelf that are visible through the satellite-based color images
likely thanks to the high concentration of nutrients and sand
particles transported from the rivers to the sea. van der Boog
et al. (2019) found by combining model data and observations
that most of the waters upwelled in the southern CCUS came
from the subsurface CCC, which carries diluted waters. These
authors hypothesize that waters seem to come from the Panama-
Colombian Gyre traveling toward the east and reaching areas
4,400 km apart. The large amount of rivers are a source of
nitrate, nitrite, phosphate and organic matter that are available
in these upwelling systems and specifically in La Guajira due
to its geographical configuration. Here we have given further
evidence with observations and a realistic simulation of the key
role that the Panama-Colombia Gyre plays in the advection of

nutrient-rich waters toward the east and how its dynamics is
modulated by the easterlies.

Next steps should be addressed to the development of
submesoscale permitting numerical models in the area to
extend the Lagrangian analysis for relevant specific events,
and to explore the residence time and age of waters in the
southern Caribbean Sea. In addition, due to the importance of
the CLLJ in the control of the La Guajira upwelling variability,
a combination of skillful seasonal (e.g., Krishnamurthy
et al., 2019) and sub-seasonal (∼2 weeks to 1–2 months,
Vitart et al., 2017) forecasts of the CLLJ can help to co-
develop tailored predictions and services for decision makers
in the region. From a model diagnostics perspective, the
SOM approach used in this study can be applied—in a
similar way to that reported by Muñoz et al. (2017)—to
different ocean models, and compared against reanalysis or
observational data to help to analyse sources of model biases
and ways to improve representation of physical processes in
numerical models.
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