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Search and rescue (SAR) modeling applications, mostly based on Lagrangian tracking
particle algorithms, rely on the accuracy of met-ocean forecast models. Skill assessment
methods are therefore required to evaluate the performance of ocean models in
predicting particle trajectories. The Skill Score (SS), based on the Normalized Cumulative
Lagrangian Separation (NCLS) distance between simulated and satellite-tracked drifter
trajectories, is a commonly used metric. However, its applicability in coastal areas,
where most of the SAR incidents occur, is difficult and sometimes unfeasible, because
of the high variability that characterizes the coastal dynamics and the lack of drifter
observations. In this study, we assess the performance of four models available in
the Ibiza Channel (Western Mediterranean Sea) and evaluate the applicability of the
SS in such coastal risk-prone regions seeking for a functional implementation in the
context of SAR operations. We analyze the SS sensitivity to different forecast horizons
and examine the best way to quantify the average model performance, to avoid biased
conclusions. Our results show that the SS increases with forecast time in most cases.
At short forecast times (i.e., 6 h), the SS exhibits a much higher variability due to the
short trajectory lengths observed compared to the separation distance obtained at
timescales not properly resolved by the models. However, longer forecast times lead to
the overestimation of the SS due to the high variability of the surface currents. Findings
also show that the averaged SS, as originally defined, can be misleading because
of the imposition of a lower limit value of zero. To properly evaluate the averaged
skill of the models, a revision of its definition, the so-called SS∗, is recommended.
Furthermore, whereas drifters only provide assessment along their drifting paths, we
show that trajectories derived from high-frequency radar (HFR) effectively provide
information about the spatial distribution of the model performance inside the HFR
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coverage. HFR-derived trajectories could therefore be used for complementing drifter
observations. The SS is, on average, more favorable to coarser-resolution models
because of the double-penalty error, whereas higher-resolution models show both very
low and very high performance during the experiments.

Keywords: model assessment, search and rescue, surface currents, Lagrangian trajectories, drifters,
high-frequency radar, Ibiza Channel

INTRODUCTION

Search and rescue (SAR) operators need the most accurate
met-ocean forecast models to respond the most effectively to
an emergency. In case of incident at sea, they run trajectory
models, mainly based on Lagrangian discrete particle algorithms,
to predict the drift of their target induced by the effect of
ocean currents, waves, and winds and define a search area
(Breivik et al., 2013; Barker et al., 2020). The skill of drift
prediction is highly dependent on the accuracy of the met-ocean
forecast data used to advect the Lagrangian model. In order to
cover diverse spatiotemporal scales and guarantee near–real-time
availability, different forecast products are made available to SAR
operators. When all model predictions agree (i.e., their simulated
trajectories are similar), there is a high level of confidence in
the prediction, and the search area is reduced. But if different
forecast models result in disparate trajectories, there are multiple
viable outcomes, and the level of confidence decreases. Therefore,
SAR operators need skill assessment methods to assess, within
the shortest possible time, which model is likely to give the
most accurate prediction at the moment and in the region
of the incident.

Discrepancies between ocean forecast systems can be
attributed to different numerical models, horizontal and vertical
grids, domains, forcing mechanisms (meteorological, tidal,
etc.), or data assimilation schemes. Field observations such
as satellite-tracked drifters, satellite observations, moorings,
and high-frequency radar (HFR) surface currents can all be
used to estimate errors in the forecast outcomes. Usually,
trajectories from drifter observations are used to evaluate the
drift prediction accuracy (e.g., Vastano and Barron, 1994; Smith
et al., 1998; Thompson et al., 2003; Price et al., 2006; Barron et al.,
2007; Brushett et al., 2011). Virtual particles are launched where
satellite-tracked drifters are observed, and the separation distance
between simulated and observed trajectories is evaluated during
a determined forecast time. This Lagrangian separation distance
is a direct measure of trajectory model skill: the smaller the
separation distance, the better the model skill. However, Liu and
Weisberg (2011) have shown that this metric fails to indicate the
relative model performance in areas characterized by different
dynamics. Indeed, the separation distance tends to be larger in
regions of strong currents than in regions of weak currents.

To overcome this, Liu and Weisberg (2011) proposed a new
Skill Score (SS) based on the cumulative Lagrangian separation
distance normalized by the cumulative observed trajectory length
(i.e., the cumulative distance traveled by the observed drifter).
The SS is a dimensionless index ranging from 0 to 1: the higher
the SS value, the better the model performance. After being

applied in the context of the Deepwater Horizon oil spill (Liu
and Weisberg, 2011; Mooers et al., 2012; Halliwell et al., 2014),
this metric has been one of the most widely used statistics
for trajectory evaluation. The SS has been used to evaluate
different parameterizations in operational oil spill trajectory
models (Ivichev et al., 2012; Röhrs et al., 2012; De Dominicis et al.,
2014; Berta et al., 2015; Wang et al., 2016; French-McCay et al.,
2017; Janeiro et al., 2017; Chen et al., 2018; Zhang et al., 2018;
Tamtare et al., 2019), to assess the impact of data assimilation
in the model’s Lagrangian predictability (Sperrevik et al., 2015;
Phillipson and Toumi, 2017), to estimate the accuracy of the
gap-filled method for HFR data (Fredj et al., 2017), to test the
ability of ocean models in simulating surface transport (Sotillo
et al., 2016), and to evaluate the relative performance of ocean
models and HFR surface currents in predicting trajectories for
SAR operations (Roarty et al., 2016, 2018).

In the context of SAR, the SS is indeed of particular interest,
as it provides information in a user-friendly way, by means
of an easily interpretable metric. However, to the best of our
knowledge, a sensitivity analysis of this metric to the length
of the time window during which trajectories are compared
is still lacking. The aforementioned studies all used different
forecast horizons, ranging from 9 h (Fredj et al., 2017) to
5 days (Pereiro et al., 2018), without discussing the SS sensitivity
to the choice of this time window. Liu and Weisberg (2011)
applied this method with a forecast horizon of 1, 3, and 5 days
and showed that there are more uncertainties for shorter time
simulations (e.g., 1 day), especially in the continental shelf
region (weak current region), because of small values of the
trajectory length. However, in SAR operations, the emergency
response has to be given in a shorter time frame (few hours).
Moreover, most SAR cases occur in coastal areas, within 40 km
offshore, and almost 50% within less than 3 km offshore
(statistical analysis from the data shown in Figure 1), where
small-scale dynamics often lead to complex trajectories, mainly
due to intense inertial oscillations (Millot and Crépon, 1981;
Salat et al., 1992; Tintoré et al., 1995), sea–land breeze-induced
currents, or semidiurnal tides. These trajectories may lead to the
convergence of the simulated and observed trajectories after a
certain time, which could result in an overestimation of the SS.
The determination of the appropriate forecast time is therefore of
primary importance, and the dependence of the SS to the forecast
horizon needs to be examined.

At the time of an emergency, SAR operators need to receive
information about the reliability of the different ocean model
predictions in the most efficient way, to make decisions as quickly
as possible. This information should therefore be understandable
at first glance. An effective way to display this information could
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FIGURE 1 | Map covering the four specific SAR areas of responsibility from the Spanish Maritime Search and Rescue Agency showing the location of the SAR
incidents from 2019 colored based on their distance to the closest coastal point (as indicated in the color bar). The seven operational HFR systems available within
the area are marked with red boxes. Information source: Spanish Maritime Search and Rescue Agency.

be by means of a model ranking based on the averaged model
performance over the area of interest. This can be addressed
by computing the spatiotemporal average of SS considering
all available drifter observations during a specific period of
observations (as in Röhrs et al., 2012; De Dominicis et al., 2014;
Roarty et al., 2016; Sotillo et al., 2016; French-McCay et al., 2017;
Phillipson and Toumi, 2017; Roarty et al., 2018). However, we
show in this article that averages of the SS should be applied
and interpreted with caution. Moreover, drifter observations only
provide an estimation of the model’s performance along their
drifting paths, i.e., over the area and during the time period
when they are available. The reliability of this method thus
strongly depends on the availability of trajectory observations
at the location and at the moment of the incident, or shortly
after it (near–real-time evaluation). As this is not always possible
because of the scarcity of drifter observations in coastal regions
(Tintoré et al., 2019), most of the time there is no alternative
but to use the latest observations available in the region, which
are not necessarily representative of the dynamics occurring at
the moment of the incident. However, in coastal regions, HFR
surface currents are now available over wide areas (Figure 1) and
provide continuously gridded velocities at the resolution required
to tackle small-scale processes. Trajectories derived from HFR
could therefore be used to complement drifter observations for
evaluating the ocean model predictions in these areas.

In this study, we assess the skill of four ocean forecast
systems available in the Ibiza Channel (Western Mediterranean
Sea) and evaluate the applicability of the SS in such coastal
risk-prone regions seeking for a functional implementation in
the context of SAR operations. The surface circulation in this
region, mainly driven by local winds (Lana et al., 2016), is
highly variable over a wide range of temporal and spatial scales
(Robinson et al., 2001; Pinot et al., 2002; Ruiz et al., 2009)
and strongly influenced by the intense frontogenesis driven by
the confluence of the Liguro-Provençal-Catalan Current and
the Atlantic inflow (García-Lafuente et al., 1995; Heslop et al.,
2012; Sayol et al., 2013; Hernández-Carrasco et al., 2018a, 2020).
We use 22 drifters deployed during three experiments carried
out by the Balearic Islands Coastal Observing and forecasting
System (SOCIB) and analyze the sensitivity of the SS to different
forecast horizons ranging from 6 to 72 h. These experiments
were conducted during different seasons, under distinct oceanic
conditions, allowing to evaluate the SS sensitivity under diverse
dynamical scenarios. Furthermore, we evaluate the validity of
applying averages to the SS for comparing the relative average
performance of the models, and make recommendations for
obtaining an accurate model ranking with this method by
introducing the novel SS∗. Finally, addressing the sparseness
of drifter observations that reduces the robustness of the
methodology and our capacity to assess the skill of operational
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systems, we evaluate the use of HFR-derived trajectories for
assessing the model performance.

The article is organized as follows. Section “Data and Models”
presents the multiplatform observations used for the assessment
and the ocean forecast systems evaluated. In section “Model
Skill Assessment Methodology,” we provide a description of the
methodology developed by Liu and Weisberg (2011) and the skill
assessment design applied in this article. The results are presented
and discussed in section “Results” and the conclusions are drawn
in section “Summary and Discussion.”

DATA AND MODELS

Satellite-Tracked Surface Drifters
We use 22 drifters deployed in the Ibiza Channel during three
experiments carried out by SOCIB (Tintoré et al., 2013, 2019)
in the context of calibration exercises of the HFR system, in
September–October 2014 (Tintoré et al., 2014), July–August 2016
(Reyes et al., 2020c), and November–December 2018 (Reyes et al.,
2020b) (Figure 2).

On September 30, 2014 (Tintoré et al., 2014), 13 drifters
were released at four different locations in the Ibiza Channel
(Figure 2), as described by Lana et al. (2016). Most of the drifters
went northward, trapped by the Balearic current along the
northern coast of Ibiza, whereas two drifters went northeastward
and crossed the narrow central isthmus between Ibiza and
Formentera. Those drifters were of different types (Figure 3):
four CODE (cylindrical hull of 10 cm in diameter with a drogue
consisting in four sails made of plasticized nylon arranged in a
cross-like shape, Davis, 1985), five MDO3i drifters (cylinder of
10 cm in diameter and 32 cm in length, with only 8 cm above
the sea surface, with a drogue attached at 0.5-m depth, Callies
et al., 2017), and four ODI (spherical hull of 20 cm in diameter
and low weight (3 kg), with a drogue of 2 kg attached at 0.5-m
depth, Callies et al., 2017). All these configurations ensure that
the drifter’s path represents the current within the first meter of
the water column, and we indeed do not find clear differences in
our results in terms of drifter types (not shown).

On July 28, 2016 (Reyes et al., 2020c), four ODI drifters were
launched at four different locations (Figure 2). That time, all
drifters went northward, trapped in the Balearic Current, and got
outside the Ibiza Channel in less than 3 days. After 2 days, one of
the drifters stopped emitting data (after July 29, 22:00), so we can
only consider its trajectory during the first 2 days. Consequently,
its trajectory cannot be considered for forecast times longer than
48 h. To ensure a correct comparison of the models at different
forecast times of up to 3 days, this drifter is excluded from the
sensitivity analysis.

On November 15, 2018 (Reyes et al., 2020b), five CARTHE
drifters (Novelli et al., 2017; D’Asaro et al., 2018) were released
within a circular area of 2 km in diameter, offshore of Formentera
Island (Figure 2). CARTHE-type drifters are biodegradable
drifters (Figure 3) and are representative of the upper 0.6 m.
In this experiment, the drifters were entrapped in small-scale
circulation patterns. During the first week, all drifters followed
the same path and went eastward and then northward. Then,

FIGURE 2 | Maps of the trajectories of satellite-tracked drifters available in the
Ibiza Channel from the experiments carried out in September–October 2014
(upper panel), July–August 2016 (middle panel), and November 2018 (lower
panel). Black stars indicate start locations, and color shows the date
associated with drifters’ position, as indicated in the color bar of each panel.
The black line shows the contour of the HFR gap-filled surface current
coverage.

two drifters went westward and then took opposite directions,
whereas the three other drifters got trapped in eddies in the
northern part of the Ibiza Channel.

As the purpose of our article is not to evaluate the Lagrangian
model simulation, we do not consider the errors in drifter
observations (e.g., O’Donnell et al., 1997). However, quality-
control tests have been applied, following the procedure of the
SOCIB-Data Centre Facility (Ruiz et al., 2018). CODE drifters
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FIGURE 3 | Photographs of the different drifters used in the experiments.
(A) CODE (image from the manufacturer Metocean at
https://www.metocean.com/product/codedavis-drifter/), (B) ODI from
Albatros Marine Technologies (image from the manufacturer at
https://issuu.com/eduardvilanova/docs/odi_iridiumoceandriftersolar),
(C) MD03i from Albatros Marine Technologies (images from the manufacturer
at https://issuu.com/eduardvilanova/docs/minidrifteriridium_md03i), and
(D) CARTHE from Pacific Gyre (image from the manufacturer at
https://www.pacificgyre.com/carthe-drifter.aspx).

provide positions every 10 min, whereas MDO3i and ODI drifters
provide positions not evenly distributed in time, every 5–15 min.
Linear interpolation is therefore applied to the drifter positions
in order to work with equally spaced hourly time series.

In the case of an emergency, SAR operators need to know
the accuracy of the model predictions in an area of up to a few
kilometers around the location of the incident. Moreover, the
ocean being highly variable in both space and time, the evaluation
of ocean models needs to be performed over a reduced area
and period. For this reason, and to ensure the availability of
multiplatform observations, we focus on the region around the
Ibiza Channel [0.5◦E–2◦E; 38.35◦N–39.35◦N] (Figure 2), where
an HFR system is available. Moreover, in 2014 and 2018, we
only consider the first 14 days of the experiment, including 88%
and 76% of the original dataset, respectively. However, the same
conclusions are reached when considering the whole trajectories
of the drifters, which extend further north over the Balearic Sea.

High-Frequency Radar System of the
Ibiza Channel
High-frequency radar is a shore-based remote-sensed technique
that relies on the Bragg resonance phenomenon (Barrick et al.,
1977). The HFR of the Ibiza Channel is part of the multiplatform
observing system operated by SOCIB (Tintoré et al., 2013,
2019). The HFR system consists of two CODAR SeaSonde radial
stations, transmitting at a center frequency of 13.5 MHz with a
bandwidth of 90 KHz (Lana et al., 2015, 2016). Hourly radial

velocity maps (i.e., velocities toward or away from one antenna)
from both stations are combined to form vector surface current
velocities on a regular 3× 3 km grid, with a range of up to 65 km
from the shore (Tintoré et al., 2020).

The increased availability of continuous high-resolution
HFR surface currents is providing new possibilities for the
application of Lagrangian methods to understand small-scale
coastal transport processes (Berta et al., 2014; Solabarrieta et al.,
2016; Rubio et al., 2017; Hernández-Carrasco et al., 2018b).
However, hardware and software failures or environmental
conditions can result in incomplete spatial coverage or periods
without data. This particularly occurs at the baseline which
joins the two stations and at the outer-edge domain, where
the Geometrical Dilution of Precision (GDOP) error is higher
(Chapman et al., 1997; Barrick, 2006).

With the purpose of obtaining HFR-derived Lagrangian
trajectories (see section “Use of HFR-Derived Trajectories”), the
generation of HFR gap-filled products are required (Solabarrieta
et al., 2016; Hernández-Carrasco et al., 2018a,b). To do this,
we use the Open-Boundary Modal Analysis (OMA) method,
implemented by Lekien et al. (2004) and further optimized
by Kaplan and Lekien (2007), using the modules of the
HFR Progs MATLAB package1. OMA is based on a set of
linearly independent velocity modes that are fit to the radial
data. These modes (189 in our case) describe all possible current
patterns inside a two-dimensional domain (considering the open
boundaries and the coastline). OMA considers the kinematic
constraints imposed by the coast by setting a zero normal flow.
Depending on the constraints of the methodology, it can be
limited in representing localized small-scale features, as well as
flow structures near open boundaries. Also, difficulties may arise
when the horizontal gap size is larger than the minimal resolved
length scale (Kaplan and Lekien, 2007) or when only data from
one antenna are available, which was not the case during the
periods considered here. To avoid the occurrence of unphysically
fitted currents, gaps are filled only if they are smaller than the
smallest spatial scale of the modes (Kaplan and Lekien, 2007).

Global and Regional Ocean Models
Four ocean forecast systems available operationally in the Ibiza
Channel are evaluated: the global model (Lellouche et al., 2018)
from the Copernicus Marine Environmental Monitoring Service
(CMEMS)2, the two CMEMS regional models of the IBI (Iberia-
Biscay-Ireland; Sotillo et al., 2015) and MED (Mediterranean)
regions (Simoncelli et al., 2014; Clementi et al., 2017), and
the regional model of the Western Mediterranean Operational
(WMOP) Forecasting System from SOCIB (Juza et al., 2016;
Mourre et al., 2018). Table 1 summarizes the main characteristics
of these models. They will be referred hereinafter to as GLO,
IBI, MED, and WMOP.

IBI and MED are nested inside GLO, whereas MED is
the parent model of WMOP. CMEMS models are forced
with 3-hourly atmospheric fields from the European Center
of Medium Weather Forecast (ECMWF) Integrated Forecast

1https://github.com/rowg/hfrprogs
2http://marine.copernicus.eu/

Frontiers in Marine Science | www.frontiersin.org 5 March 2021 | Volume 8 | Article 630388

https://www.metocean.com/product/codedavis-drifter/
https://issuu.com/eduardvilanova/docs/odi_iridiumoceandriftersolar
https://issuu.com/eduardvilanova/docs/minidrifteriridium_md03i
https://www.pacificgyre.com/carthe-drifter.aspx
https://github.com/rowg/hfrprogs
http://marine.copernicus.eu/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-630388 March 22, 2021 Time: 13:50 # 6

Révelard et al. Sensitivity of Skill Score Metric

TABLE 1 | Main characteristics of the four Operational Ocean Forecast Systems evaluated.

GLO IBI MED WMOP

Experiment 2014 2016, 2018 2014 2016, 2018 2014 2016, 2018 All

Product Reanalysis Oper. system Reanalysis Oper. system Reanalysis Oper. system Oper. system

Temporal resolution Daily Hourly Hourly Daily Hourly 3-hourly

Spatial resolution 1/12◦ (∼9 km) 1/12◦ (∼9 km) 1/36◦ (∼3 km) 1/16◦ (∼6 km) 1/24◦ (∼4 km) ∼1/50◦ (∼2 km)

Model solution NEMO NEMO NEMO ROMS

Atmospheric forcing 3-hourly from ECMWF NWP
1/8◦ resolution

3-hourly from ECMWF NWP
1/8◦ resolution

3-hourly from ECMWF NWP
1/8◦ resolution

hourly from
AEMET-HARMONIE
5-km resolution
(3-hourly before March
2017)

Boundary conditions None CMEMS-GLO CMEMS-GLO CMEMS-MED

Tidal forcing No 11 harmonics No No

System, whereas WMOP was forced for the periods considered
in this study by 5-km resolution HIRLAM model atmospheric
fields (3-hourly in 2014 and 2016 and hourly in 2018) from the
Spanish Meteorological Agency (AEMET). All these systems are
run operationally, producing several-day forecasts of a number
of physical parameters, including ocean currents. In this article,
the historical best estimates of 24-h-forecast horizon are used,
except in 2014 when CMEMS forecast estimations were no longer
available and their reanalysis is used.

While GLO and MED include data assimilation from satellite
altimetry and Argo floats over the whole period of study, IBI
and WMOP prediction systems have only implemented data
assimilation in March 2018 and November 2018, respectively.
The drifter trajectories are not assimilated in any of the models.
All models include river runoff, and none of the models includes
tidal forcing except IBI, with 11 tidal harmonics (M2, S2, N2,
K1, O1, Q1, M4, K2, P1, Mf, and Mm) built from FES2004
(Lyard et al., 2006) and TPXO7.1 (Egbert and Erofeeva, 2002)
tidal model solutions.

MODEL SKILL ASSESSMENT
METHODOLOGY

Normalized Cumulative Lagrangian
Separation Distance and SS
The Normalized Cumulative Lagrangian Separation (NCLS)
distance, developed by Liu and Weisberg (2011), is defined
as the cumulative summation of the separation distance
between simulated and observed trajectories (i.e., the cumulative
separation distance, referred to as D), weighted by the length of
the observed trajectory accumulated in time (i.e., the cumulative
observed trajectory length, referred to as L), as follows:

NCLS =
D
L
=

∑N
i=1 di∑N
i=1 loi

(1)

where di is the separation distance between observed and
simulated trajectories at time step i, loi is the length of the

observed trajectory at time step i, and N is the forecast horizon.
All distances are calculated using the plane sailing formula.

In contrast with the simple separation distance, the NCLS is
able to estimate the relative performance of a model in strong and
weak current regions. However, as a measure of trajectory model
performance, the NCLS is counterintuitive to the conventional
model skill scores (e.g., Willmott, 1981; Liu et al., 2009). Indeed,
the smaller the NCLS value, the better the model performance.
Thus, Liu and Weisberg (2011) proposed a new SS defined as
follows:

SS =
{

1− NCLS
n , (NCLS ≤ n)

0, (NCLS > n)
, (2)

where n is a nondimensional, positive number that defines the
tolerance threshold for no skill. This threshold corresponds to
the criterion that the simulation is considered as having no skill
(i.e., SS = 0) if the growth of the predictability error is larger than
n times the mean flow displacement, i.e., D ≥ n × L. Larger
(smaller) n values correspond to lower (higher) requirements to
the model. In general, n is set to 1 (e.g., Röhrs et al., 2012; De
Dominicis et al., 2014; Berta et al., 2015; Roarty et al., 2016).
However, some studies selected the n value heuristically, in such
a way that a small percentage of the SS values are negative and set
to zero (e.g., n = 2 in Sotillo et al., 2016).

Hence, the formulation of the SS contains two preliminary
defined parameters: the forecast horizon N, and the threshold n.
In this study, we address the importance of the proper choice of
both parameters, based on a sensitivity analysis.

Design of the Skill Assessment Method
Virtual particles are launched hourly along the successive
positions of the observed drifters and for a forecast horizon
of N = 72 h. Pairs of observed and simulated trajectories
are then compared hourly at each time step i = 1, 2, . . .N,
and the SS is computed as a function of N. To ensure an
exact comparison at different forecast times, the exact same
temporal length of the observed trajectories is considered for all
forecast times (i.e., the observed trajectories minus the last 72 h
of observation).
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The virtual trajectories are computed using the COSMO
Lagrangian model described by Jimeìnez Madrid et al. (2016),
which is a free software available in GitHub repository3 (version
from June 5, 2019, doi: 10.5281/zenodo.3522268). COSMO
consists of a fifth-order Runge-Kutta advection scheme (RK5)
with a time step of 1 h, with a bicubic interpolation in space
and a third-order Lagrange polynomial interpolation in time, and
does not include diffusion, Stokes drift, or beaching. This article
focuses on the methodology for comparing the performance
of different ocean models in predicting trajectories, but does
not focus on the performance of the trajectory model itself.
For this reason, we use a very simple trajectory model and
do not consider the errors in Lagrangian modeling (e.g., van
Sebille et al., 2018). However, it has been verified that the
trajectories simulated by COSMO using WMOP currents agreed
with the ones simulated using CDrift (Sayol et al., 2014), as
shown in Reyes et al. (2020a).

RESULTS

Spatiotemporal Distribution of the SS
We start analyzing the spatiotemporal distribution of the SS of
each model considering the case of a high skill model requirement
(n = 1) and two typical time horizons for model predictions
(N = 72 h and N = 6 h). Figure 4 shows that the SS at
72 h exhibits high spatiotemporal variability, with very different
values, depending on the model and the period considered.

In 2014, WMOP outperforms the other models in the region
of strong frontal dynamics along the northern coast of Ibiza
(SS > 0.6, Figure 4D). On the contrary, GLO shows no skill in
this region (SS ∼ 0, Figure 4B), but obtains the best performance
among models in the south of the Ibiza Channel, and shows
similar skill to WMOP in the northeastern side of the Ibiza-
Formentera Islands (SS ∼ 0.4− 0.8, Figures 4B,D). IBI also
outperforms its parent-model GLO along the northern coast of
Ibiza (Figure 4A), but shows similar or even lower skill elsewhere.
In the Ibiza Channel, WMOP shows both instances of low (SS ∼
0) and very high performance (SS > 0.8, Figure 4D), revealing
the high temporal variability of the model predictive capability.
Indeed, low SS values are obtained over the positions observed
at the beginning of the experiment (September 30 to October 2,
2014; see Figure 2), whereas very high SS values (the best among
models) are obtained a few days later, on October 6–8, 2014. We
come back to this point in section “The Averaged SS”.

In 2016, all models perform better than in 2014 and 2018,
probably because all drifters were entrapped in the density-
driven Balearic current (Ruiz et al., 2009; Mason and Pascual,
2013), which is generally better represented in the models.
However, spatial differences are also observed: WMOP shows
high performance north of 38.8◦N (SS > 0.7) but lower
performance in the southern part (SS ∼ 0.3, Figure 4H), in
agreement with past studies that have shown that WMOP has
a larger bias in the southern part of the Ibiza Channel (e.g.,
Aguiar et al., 2020). On the other hand, MED shows higher

3https://github.com/quimbp/cosmo

performance in the Ibiza Channel (SS > 0.7) than in the
northern part (SS ∼ 0.4, Figure 4G). Similarly, GLO exhibits
lower SS values in the westernmost part (Figure 4F), and IBI has
lower skill in the vicinity of Ibiza (Figure 4E).

In 2018, it is striking that GLO shows the highest SS over
the entire region (SS ∼ 0.3− 0.7, Figure 4J), despite its lower
spatial resolution compared to the other models (Table 1). On
the opposite, its child-model IBI shows the lowest performance
(SS < 0.4 in most cases, Figure 4I). In some areas, WMOP
obtains very high SS [e.g., in the northern part, where drifters got
trapped in an eddy (Figure 4L)], being able to improve its parent-
model MED (Figure 4K). However, WMOP also obtains lower
SS than MED in other regions (e.g., on the westernmost part of
the trajectories).

We now compute the SS with a forecast horizon of
N = 6 h (Figure 5), which is more consistent with
the duration of the search that maximizes survivors in
SAR missions (US Coast Guard Addendum, 2013). Although the
regional differences observed in Figure 4 are still present (e.g.,
WMOP shows better performance along the northern coast of
Ibiza than in the southern part of the Ibiza Channel in both
2014 and 2016, Figures 5D,H), the SS exhibit lower values
and more irregular patterns. The case of GLO in 2018 is still
striking: whereas GLO clearly exhibits the best performance
with a forecast horizon of 72 h (right panels of Figure 4),
its performance is much lower at 6-h forecast (Figure 5J vs.
Figure 4J), providing only slightly higher SS than the other
models (right panels of Figure 5).

Sensitivity to the Forecast Horizon
To further understand the SS dependence on forecast horizon,
we analyze the cumulative separation distance D, the cumulative
observed trajectory length L, the NCLS, and the SS obtained
along each drifter path, for each model, and for different forecast
horizons N. Since GLO in 2018 exhibits a striking rise of the
SS, we show in Figure 6 this analysis for GLO along the path of
one drifter in 2018. However, similar results are obtained for all
drifters and all models (not shown).

As observed in Figure 6A, L is, on average, always larger
than D, and L grows with advection time at a much higher rate
than D: whereas they are of the same order of magnitude after
6 h of simulation (D ranges from 0.7 to 26 km with a mean
value of 8.8 km, and L ranges from 1.7 to 35 km with a mean
value of 11.3 km), L is almost twice D after 72 h of advection
(D ranges from 245 to 1403 km with a mean value of 753 km,
whereas L ranges from 694 to 2,220 km, with a mean value of
1,372 km). In other words, the cumulative absolute dispersion
of the observed drifter grows much faster than the cumulative
separation distance.

Figure 6B shows the evolution of the NCLS distance (Eq. 1).
At 6-h forecast, the NCLS shows spikes, which are much less
pronounced after 24-h forecast, and nonexistent after 72 h. Those
spikes, as already noted by Liu and Weisberg (2011) for a 1-day
simulation, are due to the sudden decrease of the trajectory length
L compared to the cumulative separation distance D (Figure 6A).
Particularly, they are related to small-scale dynamical features
that induce slow currents and consequently a small displacement
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FIGURE 4 | Map of the Ibiza Channel showing the spatiotemporal distribution of the Skill Score obtained for each model as indicated in the figure title, using the
drifters of the experiments of 2014 (A–D), 2016 (E–H), and 2018 (I–L) and with a forecast horizon of 72 h. Note that IBI and MED spatial resolution is 1/12◦ and
1/16◦ in 2014, in contrast with the 2016 and 2018 experiment when IBI is 1/36◦ and MED is 1/24◦. The black line shows the contour of the HFR gap-filled surface
current coverage.

of the observed drifter and that are not well represented by
the models, such as inertial oscillations. However, removing the
inertial oscillations applying a 40-h low-pass filter leads to even
smaller values of L and consequently more occurrences of NCLS
spikes (not shown). As L becomes much higher than D as the
forecast time increases, there are more situations of significantly
large NCLS values at shorter forecast time than at longer forecast
time (Figure 6B). Considering n = 1, SS = 0 if NCLS > 1. As
the NCLS spikes are higher and more frequent at shorter forecast
times, the SS get more zero values and is thus more irregular after
6-h forecast than after 24 or 72 h (Figure 6C).

Another observation from Figure 6B is the decrease of the
NCLS distance with forecast time in most cases, dropping from
an average of 0.84 at N = 6 h to 0.55 at N = 72 h, resulting
in the increase of the SS (Figures 6C,E,F,G), rising from an
average of 0.25 at N = 6 h to 0.45 at N = 72 h. This
tendency is directly related to the higher rate of L with respect
to D, as seen before (Figure 6A), and can result from two
different scenarios. First, this can result from the convergence
of the simulated and observed trajectories as the forecast time
increases, inducing a decrease of the separation distance. For
instance, during the first days of the experiment, GLO simulates
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FIGURE 5 | Same as Figure 4, for the experiments of 2014 (A–D), 2016 (E–H), and 2018 (I–L), but with a forecast horizon of 6 h.

northwestward trajectories, whereas the observed drifter goes
eastward then northward and then westward (Figure 6D). The
simulated trajectories launched during the first hours of the
experiment thus finally converge with the observed drifter path
after a certain time. As a result, the SS increases from SS ∼ 0.1 at
6-h forecast to SS ∼ 0.5 at 72-h forecast.

Second, the higher rate of L with respect to D can result
from rapidly evolving local structures such as small-scale eddies
that induce a large displacement of the observed drifter. As an
example, we show in Figure 7A a drifter trajectory between
November 25, 2018, 19:00 and November 28, 2018, 19:00, and
the corresponding simulations from the four models. While GLO
performs the best during the first 12 h and thus obtains the

highest SS (Figure 7D), its simulated trajectory deviates from
the observed one during the following hours. However, its SS
increases from SS ∼ 0.4 at 12-h forecast to SS ∼ 0.6 after
72 h because the distance traveled by the drifter strongly increases
when the drifter becomes entrapped in a highly energetic
structure, whereas the separation distance increases only slightly
(Figures 7A–C). Similarly, MED and IBI exhibit an increase of
the SS with forecast time (Figure 7D), although their simulated
trajectories go in the opposite direction than the observed one
(Figure 7A). On the other hand, the SS of WMOP increases with
forecast time because the resemblance between the simulated and
observed trajectories is better after the first 6 h of simulation.
This example illustrates the high dependence of the SS model

Frontiers in Marine Science | www.frontiersin.org 9 March 2021 | Volume 8 | Article 630388

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-630388 March 22, 2021 Time: 13:50 # 10

Révelard et al. Sensitivity of Skill Score Metric

FIGURE 6 | Temporal evolution of the (A) cumulative separation distance D between simulated and observed trajectories (solid lines) and the cumulative observed
trajectory length L (dashed lines) (in logarithmic scale), (B) NCLS distance and (C) SS obtained using n = 1 for the model GLO along the path of a drifter during the
2018 experiment, after 6 h (red lines), 24 h (blue lines), and 72 h (black lines) of simulation. The black dashed line in the b-panel shows the threshold n = 1.
(D) Maps of the 72 h–simulated trajectories (gray lines) released at hourly positions (for better clarity, trajectories are plotted only every 6 h) along the drifter trajectory
represented by color dots showing the date associated with drifters’ position. (E–G) Spatiotemporal distribution of the SS obtained along the drifter path after (E) 6,
(F) 24, and (G) 72 h of simulation. Black asterisks indicate start location.

ranking to the forecast horizon: whereas the SS of GLO is the
highest among models for a simulation time < 24 h, WMOP and
GLO obtain a similar value of SS ∼ 0.6 from 36 h of simulation
(Figure 7D).

The SS is therefore strongly dependent on the forecast horizon,
and an overly long forecast time can lead to an overestimation
of the SS. Hence, although a short forecast time leads to more
irregular SS patterns because of not well-resolved small-scale
dynamics, in coastal areas characterized by high variability of
the surface currents, a short forecast time should be applied
(e.g., 6 h). In the rest of this article, we therefore consider a
forecast horizon of 6 h.

The Averaged SS
We now examine the best way to obtain a model ranking based
on the spatiotemporal average of SS considering the whole period
of observations. However, in the definition of the SS, the negative
values are imposed to zero. The average of SS thus overestimates
the averaged model’s skill and can be misleading. In fact, the
negative values indicate how far is the NCLS to the tolerance
threshold n and thus give information on how far the simulated

trajectory is from the observation. These values should therefore
be included in the calculation.

For each experiment and each model, Figure 8 shows the
histogram of SS∗, which is defined as the SS, but without the
imposition of the negative values to zero, such as:

SS∗ = 1−
NCLS
n

, ∀ NCLS ∈ [0∞]. (3)

As in the previous section, we use n = 1. The average SS
and the average SS∗ are given in Figure 8 in blue and red,
respectively, together with their confidence intervals. These
confidence intervals have been estimated in two ways, providing
similar results. The first approach uses the bootstrap distribution
of SS∗ from 10,000 resamples, whereas the second method is
based on the Student t distribution.

In 2014, the SS∗ of IBI, GLO, and MED exhibit a nearly bell-
shaped distribution with a maximum occurrence of near-zero
values (Figures 8A–C). The average is therefore close to zero,
sometimes even negative, as for GLO (SS∗ = − 0.06 ± 0.02).
On the other hand, WMOP obtains a left-skewed distribution,
with a higher percentage of values in the range of [0.6–1]
compared to the other models, but also more occurrences of large
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FIGURE 7 | (A) Observed trajectory (black dotted line) of a drifter from
November 26, 2018, at 00:00 to November 29, 2018, at 00:00 and simulated
trajectories launched at the initial position and calculated with IBI (blue), GLO
(magenta), MED (red), and WMOP (green). Positions after 6, 24, 48, and 72 h
of forecast are indicated by asterisks. Lower panels: temporal evolution along
the forecast horizon, in hours, of the (B) separation distance between
observed and virtual trajectories (colored lines) and observed trajectory length
(black line), (C) cumulative separation distance D (colored lines) and
cumulative observed trajectory length L (black line) and (D) Skill Score as
defined by Liu and Weisberg (2011) obtained for each model using a
threshold n = 1.

negative values (SS∗ < − 1). Consequently, WMOP obtains
the lowest averaged SS∗ with a negative value of SS∗ = −

0.41 ± 0.05, strongly penalized by large negative values obtained
during the first days of the experiment, whereas it obtains the
highest performance a few days later, as seen previously in
Figure 5D.

In 2016, differences between SS∗ and SS are much smaller
because all models perform better during this period, as already
seen in Figure 5, and only a few negative values are obtained

(middle panels of Figure 8). Both calculations indicate GLO
as the best model on average, although the SS∗ differences
between GLO, IBI, and MED are not statistically significant
at the 95% confidence level. In 2018, on the other hand, SS∗
and SS are strongly different. GLO is again significantly better
than the other models, obtaining a positive averaged score of
SS∗ = 0.14 ± 0.02, whereas the other models obtain negative
averaged SS∗ (right panels of Figure 8).

These results show that the imposition of a lower limit value
of zero for SS < 0 is not adequate if spatiotemporal averages are
computed afterward, as it would lead to a strong overestimation
of the averaged SS and could lead to an erroneous model ranking.
However, in the context of SAR operations, the SS∗ could be less
intuitive than the SS as it is in the range of [−∞ 1]. A solution
could therefore be to determine the appropriate threshold n
such that 100% of the SS∗ values are positive, obtaining a user-
friendly metric from 0 to 1. Figure 9 shows the percentage of
positive SS∗ values obtained by each model as a function of
n in the range [0.5–3]. As observed, the minimum value of n
from which 100% of positive values are obtained differs for each
model and experiment. While in 2016, a threshold of n = 2
is sufficient, in 2014 and 2018 a tolerance threshold of n > 3
would be necessary.

This scenario dependence of the appropriate threshold n
makes difficult its use in operational applications, where different
models have to be simultaneously evaluated in a systematic
routine manner. The use of SS∗ with n = 1 remains therefore
the safest solution. The percentage of positive values is an
interesting additional metric to provide, as in Phillipson and
Toumi (2017), as it is also an indicator of the level of
performance. For example, it is striking that in 2014 and 2018,
WMOP obtains the highest percentage of positive values among
models if a tolerance threshold of n = 0.5 is selected, meaning
that WMOP obtains the highest percentage of cases where
D < L

2 , although it obtains the lowest score on average in
2014, and the second lowest score in 2018. This again reflects the
high variability of WMOP performance, which can be in strong
disagreement with the drifters, but also in very good agreement,
in this case outperforming the other models.

Use of HFR-Derived Trajectories
We now analyze the use of HFR-derived trajectories to evaluate
the model performance. First, we evaluate the skill of HFR in
reproducing the drifter trajectories (Figure 10), and compare
the SS∗ of HFR with the one from the models (Table 2),
considering only the drifter observations available inside the HFR
coverage. As shown in Figure 2, this corresponds to the period of
September 30, 2014, to October 10, 2014 (10 days); July 28, 2016,
to July 31, 2016 (4 days); and November 15, 2018, to November
30, 2018 (15 days).

In 2014, HFR shows much higher skill than models, with
SS∗ = 0.32 ± 0.02 and 84% of positive values, whereas the
best model, IBI in this case, obtains SS∗ = −0.01 ± 0.02
with 57% of positive values. In 2016, on the other hand,
MED significantly outperforms HFR (SS∗ = 0.63 ± 0.04
and SS∗ = 0.42 ± 0.06, respectively), and GLO and
IBI also exhibit higher performance than HFR on average,
although the confidence intervals slightly overlap. In 2018,
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FIGURE 8 | Histogram of the values of the Skill Score SS* (defined by Eq. 3) in the range [−5, 1] with bins of 0.2, obtained for IBI, GLO, MED, and WMOP
(top-to-bottom panels) using the drifters of 2014 (A–D), 2016 (E–H), and 2018 experiment (I–L) after a simulation of 6 h. The averaged SS (as defined by Liu and
Weisberg, 2011) and the averaged SS* are given in blue and red, respectively.

GLO shows similar skill than HFR (SS∗ = 0.12 ± 0.03 and
SS∗ = 0.10 ± 0.04, respectively), but GLO obtains more
positive values (79% against 68%). This indicates that models
show sometimes better skill than HFR in reproducing the
drifter observations, as already noted in Roarty et al. (2016).
However, in 2018, the spatiotemporal distribution of the SS∗
reveals that HFR performs better than any of the models in
the center of the domain (Figure 10C vs. the right panels

of Figure 5), but shows very low performance in the outer
edges, where uncertainties in HFR data are higher because of
larger GDOP errors (Chapman et al., 1997) and where data
gaps usually occur.

Despite this limitation, HFR allows obtaining a larger number
of trajectories, improving not only the robustness of the SS
statistics but also the spatial and temporal assessment of the
model performance. From now on, we therefore use HFR-derived
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FIGURE 9 | Variation of the percentage of positive SS* values after 6 h of forecast in function of the threshold n in the range [0.5–3] for the experiment of 2014 (A),
2016 (B), and 2018 (C).

FIGURE 10 | Map of the Ibiza Channel showing the spatiotemporal distribution of the SS obtained for the HFR using all the drifters of the experiments of 2014 (A),
2016 (B), and 2018 (C) inside the HFR gap-filled surface current coverage area, and with a forecast time of 6 h.

TABLE 2 | Spatiotemporal average SS∗ and their confidence intervals obtained after a forecast of 6 h over all the trajectories inside the HFR coverage of the Ibiza
Channel.

2014 (l = 3,098) 2016 (l = 537) 2018 (l = 1,492)

HFR 0.32 ± 0.02 [84%] 0.42 ± 0.06 [89%] 0.10 ± 0.04 [68%]

IBI −0.01 ± 0.02 [57%] 0.52 ± 0.04 [97%] −0.60 ± 0.08 [34%]

GLO −0.06 ± 0.03 [55%] 0.46 ± 0.05 [93%] 0.12 ± 0.03 [79%]

MED −0.08 ± 0.03 [54%] 0.63 ± 0.04 [95%] −0.23 ± 0.06 [46%]

WMOP −0.73 ± 0.06 [35%] 0.28 ± 0.06 [82%] −0.25 ± 0.05 [44%]

For each period, the sample size l is indicated, and the best performance is marked in bold.

trajectories to evaluate the models (Figure 11). The methodology
consists in selecting the HFR grid points where there is 80% of
data availability during the period considered (as recommended
by Roarty et al., 2012). We obtain 287 points in 2014, 338 in

2016, and 277 in 2018. Virtual particles are launched hourly from
these grid points for a 6-h horizon forecast, and the trajectories
simulated by the models are compared against the HFR-derived
trajectories. In order not to mix different dynamics, we apply this

Frontiers in Marine Science | www.frontiersin.org 13 March 2021 | Volume 8 | Article 630388

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-630388 March 22, 2021 Time: 13:50 # 14

Révelard et al. Sensitivity of Skill Score Metric

method during a short time frame of 6 h. As an example, and
for comparison with the results obtained using the drifters, we
select the first 6 h of the experiments, i.e., from 13:00 to 19:00
on September 30, 2014, and from 13:00 to 19:00 on November
15, 2018. In 2016, this period corresponds to an exercise at the
radial sites, and the transmission was off for 4–5 h, decreasing
the data availability. We therefore choose the period just after the
exercise: from 00:00 to 06:00 on July 29, 2016. However, we reach
similar conclusions when computing the SS∗ hourly during the
first 3 days of observations instead of the first 6 h (not shown).

Figure 11 shows the spatial distribution of the temporally
averaged SS∗of each model during these 6-h periods. We use a
tolerance threshold of n = 1, and a lot of values obtained are
negative. In order to not conceal the negative values and observe
the spatial variability, the color bar is adjusted to [−1 1]. To
ease interpretation, the corresponding averaged surface currents
during the same periods from the different models and HFR are
shown in Figure 12.

In 2014, IBI shows the best performance (Figure 11A), being
able to improve its parent-model GLO (Figure 11B), with SS∗
values around 0.5 in most of the domain, in agreement with the
relatively good correspondence between IBI surface currents and
HFR observations (Figures 12A,B). On the other hand, MED
and its child-model WMOP simulate a northward circulation
(Figures 12D,E) and show therefore a strong disagreement,
especially in the western part, indicated by very low score values
(SS∗ < − 1, Figures 11C,D). Interestingly, SS∗ values are
higher (albeit close to zero) in the southeastern part, because the
models’ current amplitudes are much weaker (Figures 12D,E),
thus leading to smaller separation distances, even though the
model outputs do not match with HFR observations.

In 2016, MED shows the best performance in the central
and eastern part of the domain (SS∗ ∼ 0.6, Figure 11G).
The other models all show lower skills in this region
because their surface currents overestimate the eastward
component (middle panels of Figure 12). In the western
part, IBI exhibits the highest scores (SS∗ ∼ 0.5), while along
the island of Ibiza, WMOP shows the greatest resemblance
with HFR.

In 2018, IBI shows the best agreement with HFR in the
northern and southeastern parts (SS∗ ∼ 0.5, Figures 11I, 12K,L).
It is striking that, over the whole domain, GLO obtains globally
the best scores, albeit with low SS∗ values (Figure 11J), whereas
its surface currents do not resolve the small-scale features
observed by HFR (Figures 12K,M). This is because GLO surface
current intensity is much smaller compared to the other models,
leading to the shortest separation distances between GLO and
HFR trajectories, whereas the higher-resolution models exhibit
very energetic circulation features (Figures 12L,N,O), leading
to larger separation distances if the structures are not correctly
located. However, although these SS∗ values are the best among
models, they are still low (SS∗ ≤ 0.1) and therefore do not reflect
a good agreement between GLO and HFR.

To compare these results with the ones obtained using drifters,
we compute the spatial average of the SS∗ over the areas covered
by drifter observations during these 6-h periods (Table 3). As
the trajectories cover different regions in each experiment, the

areas selected do not cover the same region nor have the same
size in the three experiments (Figures 11, 12). In 2018, the area
selected is small because all drifters cover the same region during
the period considered, whereas in 2014 and 2016, the trajectories
are far away from each other. However, as the dynamics is quite
consistent over the region (Figure 12), the area covering all
trajectories is selected. Furthermore, similar results are obtained
if smaller regions are selected (not shown).

In all experiments, the same model ranking is obtained as
when using the drifter trajectories (Table 3). In 2014, GLO
outperforms the other models in the region selected, with
SS∗ = 0.21 ± 0.10 and SS∗ = 0.34 ± 0.05 obtained from
drifter and HFR, respectively. However, GLO and IBI skills are not
statistically different, in agreement with their very similar surface
currents in this area (Figures 12B,C). In 2016, MED obtains the
highest score over the region, with SS∗ = 0.55 ± 0.16 and
SS∗ = 0.46 ± 0.04 obtained from drifter and HFR, respectively.
In 2018, GLO performs the best with SS∗ = 0.01 ± 0.02
and SS∗ = −0.06 ± 0.01 obtained from drifter and HFR,
respectively. However, as seen previously, these values are low,
in agreement with the strong difference between GLO and
HFR surface currents in the area, in nearly opposite directions
(Figures 12K,M). None of the models is able to adequately
represent the ocean dynamics of the area during this period.

SUMMARY AND DISCUSSION

We have assessed the Lagrangian performance of four ocean
models in the Ibiza Channel applying the methodology developed
by Liu and Weisberg (2011) and using 22 drifter trajectories
from three different periods under diverse dynamical conditions.
The sensitivity of the SS has been analyzed for different forecast
horizons ranging from 6 to 72 h, further examining the best
way to obtain an average model performance, avoiding biased
conclusions, thus introducing the novel SS∗. Finally, we have
evaluated the skill of the HFR surface currents in reproducing
the drifter trajectories and analyzed the use of HFR-derived
trajectories for assessing the relative performance of the models.

Our analysis shows (see sections “Spatiotemporal Distribution
of the SS” and “Sensitivity to the Forecast Horizon”) that
the model performance is highly scenario-dependent and can
exhibit highly variable SS values over the same region if
the available trajectory observations sample different periods
dominated by diverse dynamical conditions. This highlights the
need of developing skill assessment methods to quantify the
models’ performance in a systematic routine manner. We have
also shown that the SS is very sensitive to the forecast length,
so the forecast horizon should be chosen with caution. At
short forecast times (i.e., 6 h), the SS exhibits a much higher
variability, with more occurrence of zero values. This is due
to the relatively short trajectory lengths L observed compared
to the separation distance D obtained at short temporal and
spatial scales not properly resolved by the models. Indeed,
for short forecast horizons, L can frequently be much smaller
than D in case of small-scale dynamical features that induce
slow currents and consequently a small displacement of the
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FIGURE 11 | Temporally averaged SS∗ obtained for each model as indicated in the figure title by comparing against the HFR-derived trajectories during a forecast
horizon of 6 h. Simulated trajectories are initialized hourly at each grid points on September 30, 2014, from 13:00 to 19:00 (A–D); on July 29, 2016, from 00:00 to
06:00 (E–H); and on November 15, 2018, from 13:00 to 19:00 (I–L). Black lines show the drifter paths available during the same periods, and the boxes indicate the
regions where the averages of Table 3 are applied. The box covers the region [0.9354◦E–1.1060◦E, 38.6152◦N–38.8662◦N] in 2014, [0.9384◦E–1.1208◦E,
38.6189◦N–38.8666◦N] in 2016; and [1.1297◦E–1.2234◦E; 38.6962◦N–38.7223◦N] in 2018. SS∗ values are only obtained in those grid points with data temporal
availability equal to or higher than 80%.

observed drifter and that are not well represented by the
models, such as inertial oscillations. However, removing the
inertial oscillations applying a 40-h low-pass filter leads to even
smaller values of L and consequently a higher variability of the
SS (not shown).

We have also shown that the SS increases with forecast time
in most cases (see section “Sensitivity to the Forecast Horizon”)
because the cumulative length of the observed drifter grows faster
than the cumulative separation distance (i.e., L >> D), without
necessarily implying a good model performance. This tendency

is explained, on the one hand, to the decrease of the separation
distance with time due to high variability of the surface currents
that lead to the convergence of the simulated and observed
trajectories after a certain time and, on the other hand, by the
strong increase of trajectory length L in case of intense small-
scale dynamics, which occur very often in coastal areas. An overly
long forecast time thus leads to an overestimation of the SS.
Hence, in coastal areas characterized by high variability of the
surface currents, a short forecast time should be applied (e.g., 6 h),
although it leads to more irregular SS patterns.
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FIGURE 12 | Temporally averaged surface current for each model and HFR OMA surface currents during the first 6 h of the experiments, i.e., on September 30,
2014, from 13:00 to 19:00 (A–E), on July 29, 2016, from 00:00 to 06:00 (F–J), and on November 15, 2018, from 13:00 to 19:00 (K–O). The boxes are the same as
in Figure 11 and indicate the regions where the averages of Table 3 are applied.
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TABLE 3 | Spatiotemporal average SS∗ and their confidence intervals obtained after a forecast of 6 h during the first 6 h of experiment and over the boxes indicated in
Figures 11, 12, using real drifters and HFR-derived trajectories.

2014 2016 2018

Drifters (l = 89) HFR (l = 50) Drifters (l = 28) HFR (l = 50) Drifters (l = 40) HFR (l = 23)

IBI 0.13 ± 0.07 0.30 ± 0.05 0.32 ± 0.14 0.13 ± 0.05 −0.45 ± 0.13 −0.36 ± 0.19

GLO 0.21 ± 0.10 0.34 ± 0.05 0.08 ± 0.20 −0.07 ± 0.05 0.01 ± 0.02 −0.06 ± 0.01

MED 0.01 ± 0.08 −0.21 ± 0.06 0.55 ± 0.16 0.46 ± 0.04 −0.08 ± 0.10 −0.16 ± 0.58

WMOP −0.42 ± 0.14 −0.84 ± 0.13 −0.06 ± 0.21 −0.06 ± 0.06 −0.40 ± 0.04 −0.94 ± 0.27

For each case, the sample size l is indicated, and the best model performance is marked in bold.

For SAR operation purposes, we examined the best way to
identify the model with the highest mean performance over an
area and along a specified period (see section “The Averaged
SS”). We have shown that the averaged SS can be misleading
because of the previous imposition of the negative values to
zero (Eq. 2). Indeed, whereas the original definition of the SS is
correct for analyzing its spatiotemporal distribution (as in section
“Spatiotemporal Distribution of the SS”), it is not adequate if
averages are going to be applied afterward, especially if a large
percentage of negative values are obtained. One solution can be
to determine the appropriate tolerance threshold n such that
100% of positive values are obtained. However, the appropriate
threshold is strongly scenario-dependent. Therefore, although
defining an appropriate n value is feasible for a specific case study,
it is not appropriate for an operational routine of model skill
assessment. In the aim of providing an easily interpretable metric
that could be averaged to provide an accurate model ranking,
we thus propose the introduction of the novel SS∗, which is
defined as the SS, but without the imposition of the negative
values to zero (Eq. 3). Moreover, the percentage of positive SS∗
values is an interesting metric to provide, as in Phillipson and
Toumi (2017). In addition, being the model performance highly
scenario-dependent, the average should be applied over the
shortest possible period in order not to mix different dynamics.

Whereas drifters can only provide assessment along their
drifting paths, and only when drifter observations are available,
HFR data have the advantage to be continuous in space and
time and to cover wide coastal areas. HFR-derived trajectories
could therefore be used to evaluate the models, providing
further information about the spatial distribution of the model
performance (see section “Use of HFR-Derived Trajectories”).
However, models show sometimes better skill than HFR in
reproducing the drifter observations, as already noted in Roarty
et al. (2016). The chaotic nature of the ocean implies that small
differences in the velocity field at the initial conditions can
drastically modify particle trajectories (Griffa et al., 2004). Hence,
the discrepancies between HFR-derived trajectories and drifter
observations can be due to Lagrangian model errors (spatial
and temporal interpolation), or because of observational errors,
especially along the baseline between the two HFR stations and at
the domain outer edge, due to larger GDOP errors. Moreover,
there can be errors in the reconstruction of the total velocity
vectors from radials, and HFR OMA data may contain significant
errors for some areas and/or periods. Besides, there are drifter’s

measurements errors: drifters are equipped with GPS receivers
with an accuracy of approximately 5–10 m (Berta et al., 2014)
and are subject to windage and slippage, which for CODE
drifters are estimated to be within 1–3 cm/s for winds up to
10 m/s (Poulain et al., 2009). Furthermore, the discrepancies
between HFR-derived trajectories and drifter observations could
be because of the different nature of the measurements: HFR
velocities are assumed to be uniform over cells of 3 km and over
time intervals of 1 h (Lipa and Barrick, 1983; Graber et al., 1997),
vertically integrated and representative of the upper 1 m of the
water column (at the operation central frequency of the HFR used
here), whereas the drifters represent the uppermost layer and the
very local dynamics (Berta et al., 2014).

Despite this, the model ranking based on HFR-derived
trajectories provides similar results to drifter observations,
demonstrating the great potential of this method for estimating
the model’s performance at operational basis. HFR could
therefore be used in combination with the available drifter
trajectories, if any. As HFR data are continuous in time, this
method can be applied in near–real time, which is a strong
advantage for evaluating extremely scenario-dependent models.
This is a very promising result and opens up the possibility
for implementing short-term prediction of HFR surface currents
(Zelenke, 2005; Barrick et al., 2012, Frolov et al., 2012; Orfila et al.,
2015, Solabarrieta et al., 2016, 2020, Vilibić et al., 2016; Abascal
et al., 2017) for SAR applications, although this is outside the
scope of this study.

Our analysis shows that downscaling models (e.g., IBI
and WMOP) are sometimes able to improve the Lagrangian
predictability of their parent models, as in 2014, but this is
not the case in the other experiments. This is in part because
of the double penalty error: regional higher-resolution models
generally produce better defined mesoscale structures, but due to
the chaotic nature of the ocean and the sparsity of measurements
available for assimilation, particularly in coastal areas, they may
contain small-scale features which are not present in the real
ocean or are mislocated in space or time (Sperrevik et al., 2017;
Mourre et al., 2018, Aguiar et al., 2020). Moreover, higher-
resolution models tend to create much more energetic dynamics,
thus leading to larger separation distances if the structures are
not correctly located. Consequently, the SS is on average more
favorable to coarser-resolution models, because the large-scale
structures are generally better represented in these models,
and because a smoother dynamic has less probability to be in
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strong disagreement with the drifter observations. This is why
WMOP obtains both very low and very high performance during
the experiments, whereas GLO obtains higher performance on
average in 2016 and 2018.

Finer temporal resolution may also contribute to a better
representation of the dynamics of the region. The higher
performance of IBI and WMOP in 2014 compared to their
respective parent models can be attributed to the low (daily)
temporal resolution of GLO and MED in 2014 compared to the
hourly and 3-hourly resolution of their respective child models.
In 2016 and 2018, on the other hand, WMOP might be penalized
by its 3-hourly resolution compared to the hourly resolution
of the other models. Moreover, its high spatial resolution of
2 km may be smaller than the distance traveled by a particle
in 3 h, generating numerical diffusion problems (not resolved
advective scales).

In this article, we do not consider the natural dispersion
of ocean particles, i.e., the fact that particles deployed at the
same location may follow different paths (e.g., Schroeder et al.,
2012). It is indeed not reasonable to talk about the path of a
single drifter, as that path is almost surely unequalled. To ensure
more robust statistical results, both single- and multiple-particle
statistics are required. The methodology described in this article
should therefore be applied to particle clusters, as in Bouffard
et al. (2014), applying the SS∗ to each individual trajectory and
then applying the average.
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