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Networks of no-take marine protected areas (MPAs), where all extractive activities

are prohibited, are the most effective tool to directly protect marine ecosystems from

destructive and unsustainable human activities. No-take MPAs and MPA networks have

been globally implemented in coastal seas, and their success has been significantly

enhanced where science-based biophysical guidelines have informed their design.

Increasingly, as human pressure on marine ecosystems is expanding further offshore,

governments are establishing offshore MPAs—some very large—or MPA networks.

Globally, there are growing calls from scientists, non-government organisations, and

national governments to set global conservation targets upwards of 30%. Given that

most of the ocean is found either in the high seas or offshore within national Exclusive

Economic Zones, large offshore MPAs or networks of MPAs must be a major component

of these global targets for ocean protection. However, without adequate design, these

offshore MPAs risk being placed to minimise conflict with economic interests, rather

than to maximise biodiversity protection. This paper describes detailed biophysical

guidelines that managers can use to design effective networks of no-take MPAs in

offshore environments. We conducted a systematic review of existing biophysical design

guidelines for networks of MPAs in coastal seas, and found consistent elements relating

to size, shape, connectivity, timeframes, and representation of biophysical features.

However, few of the guidelines are tailored to offshore environments, and few of

the large offshore MPAs currently in place were designed systematically. We discuss

how the common inshore design guidelines should be revised to be responsive to

the characteristics of offshore ecosystems, including giving consideration of issues

of scale, data availability, and uncertainty. We propose 10 biophysical guidelines

that can be used to systematically design offshore networks of MPAs which will

also contribute to the global goal of at least 30% protection globally. Finally, we

offer three priority guidelines that reflect the unique conservation needs of offshore

ecosystems: emphasising the need for larger MPAs; maximising the inclusion of
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special features that are known and mapped; and representing minimum percentages

of habitats, or, where mapped, bioregions. Ultimately, MPA guidelines need to be

embeddedwithin an adaptivemanagement framework, and have the flexibility to respond

to emerging knowledge and new challenges.

Keywords: marine reserves, oceanic, pelagic, marine conservation, ecological principles, marine protected areas,

design, guidelines

INTRODUCTION

Our oceans are immensely valuable, both intrinsically and
to our economies, societies, and cultures. However, human
pressures are causing significant and, in some cases, catastrophic
declines in marine species (Duarte et al., 2020). Marine
protected areas (MPAs), especially no-take MPAs that prohibit
extractive use (Sala and Giakoumi, 2017), are considered
among the best tools available to protect marine species and
habitats from exploitation and damage, and to conserve marine
biodiversity (Graham et al., 2011; Costello, 2014; Roberts
et al., 2019). Common biophysical goals of MPAs are to
maintain or restore native species diversity, habitat diversity
and heterogeneity, keystone species, connectivity, and important
ecological processes (McCook et al., 2010; Green et al., 2013,
2014). Usually, achievement of these biophysical and ecological
goals allows the consequent achievement of socio-economic and
cultural objectives, including, for example, the protection or
restoration of fisheries, food security, and cultural landscapes
(Gilman et al., 2011).

Whilst MPAs and MPA networks have been broadly
established in the world’s coastal seas, the application of spatial
protection to offshore environments is much newer (Ban et al.,
2014a). For the purposes of this paper, offshore waters (also
referred to as the open ocean or deep sea) are defined as
all marine areas (benthic and pelagic) beyond the seaward
edge of the geomorphic continental shelf, which is often at a
depth of ∼200m. Where there is no continental shelf (e.g.,
oceanic islands and atolls), offshore waters are understood to
be marine areas beyond the 80m depth contour, which is
a generally accepted depth limit of light-dependent habitat-
building organisms (Bongaerts et al., 2011; Bridge et al., 2011;
Althaus et al., 2017; Lesser et al., 2019; Beger et al., 2020).
We use the word “offshore” as an umbrella term to encompass
benthic, demersal, and pelagic habitats both within the exclusive
economic zones (EEZs) of nations and in areas beyond national
jurisdiction (ABNJ), as long as they are beyond marine areas
that are under the jurisdiction of local communities (i.e., beyond
the scope of community-managed marine areas), beyond the
continental shelf break or deeper than 80m around oceanic
islands. The legislative, economic, and practical requirements
of establishing MPA networks by individual States within their
EEZs are different from those of the international community
when protecting ABNJ (Merrie et al., 2014). However, whilst
important, those considerations are beyond the scope of this
paper. This paper focuses on biophysical design guidelines
only. These guidelines are not intended to replace existing

design principles applied in coastal seas (e.g., Green et al.,
2014), and they will most likely be tempered by socio-
economic and cultural considerations, national legislation and
international agreements.

The open ocean contains a wide variety of ecosystems and
species assemblages, from the pelagic habitats at the surface to
the deepest realms of the seabed. The view that the deep sea
is physically and biologically homogeneous has been dispelled
(Herring, 2002; Benoit-Bird et al., 2016), and the deep sea is
now known to host levels of biodiversity that rival those of
shallow-water coral reefs (Van den Hove et al., 2007).

Far from being resilient, the open ocean and the deep sea
are home to some of the most long-lived and vulnerable marine
animals, habitats and ecosystems on earth (Verity et al., 2002;
Glover and Smith, 2003; Roberts et al., 2019). The open ocean
is under increasing pressure from human impacts, especially
overfishing, bycatch of non-target species, destructive fishing
methods, noise, pollution and litter from land (including plastic),
shipping (including cruise shipping), derelict fishing gear, deep
sea mining for non-renewable resources and climate change
(Verity et al., 2002; Halpern et al., 2008; Ramirez-Llodra et al.,
2011; UN, 2015; UN Environment, 2017; Harris, 2020).

As coastal fisheries become depleted and technological
improvements allow fishing vessels to venture further offshore,
pelagic fish stocks and deepwater seabeds are more at risk
of overexploitation than ever (Baum et al., 2003). Numerous
heavily exploited offshore species are now of conservation
concern, including some tuna, billfish, and sharks (Ferretti
et al., 2010; Collette et al., 2011). In the open ocean,
overfishing affects not just targeted stocks but also by-catch
species, community composition, habitats, trophic functioning,
and ecological linkages, in both the horizontal and vertical
dimensions (Roberts, 2002; Worm and Tittensor, 2011; Ortuño
Crespo and Dunn, 2017). The relatively low productivity, weaker
governance, and data deficiency of the open ocean make it
difficult to determine what level of fishing activity targeting
pelagic and deep-sea species is sustainable (Collette et al., 2011;
Norse et al., 2012; Ortuño Crespo and Dunn, 2017; Palomares
et al., 2020; Pauly et al., 2020). Furthermore, the two-way
coupling between offshore benthic and pelagic systems means
that impacts in the upper parts of the open ocean, which are
more commonly fished, cascade through the entire vertical span
of offshore assemblages (Grober-Dunsmore et al., 2008).

While there are large gaps in knowledge (Palumbi, 2004;
Claudet et al., 2010; Dunne et al., 2014), increasing evidence
shows that no-take offshore MPAs can offer effective protection
against human exploitation and damage (Mills and Carlton,
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1998; Koldewey et al., 2010; Davies et al., 2012). Large offshore
MPAs and MPA networks can protect pelagic ecosystems along
with deep-sea benthic and demersal ecosystems that are highly
fragile and closely inter-linked (Norse, 2005; Davies et al., 2007;
Williams et al., 2010b; Huvenne et al., 2016). In fact, recent
research suggests that offshore no-take MPAs can not only
promote the recovery of highly mobile species (e.g., tuna) and
protect large swathes of habitat, but also enhance fish stocks and
help to stabilise catches outside MPA boundaries (Boerder et al.,
2017). There is an increasing body of scientific research devoted
to understanding the offshore environment (e.g., Schmidt Ocean
Institute, 2020); much of this research identifies the need to
define design guidelines for offshore networks ofMPAs to achieve
conservation and other management goals (Leathwick et al.,
2008; Ban et al., 2011; Berglund et al., 2012; Chaniotis et al., 2020).

Currently, 2.7% of the global ocean is fully and/or highly
protected within no-take MPAs; the proportion of countries’
EEZs under MPA protection is higher (5.7%) than ABNJ
(<1%; Marine Conservation Institute, 2020). In recent years,
partly due to increased knowledge, the number of large-scale
offshore MPAs has grown (Lewis et al., 2017; Duarte et al.,
2020), and, worldwide, there are now over 30 no-take MPAs
larger than 150,000 km2. Existing very large (>150,000 km2)
offshore MPAs were shown to encompass at least 10% of
the range of 26.9% of all species assessed worldwide; the
remaining 73.1% of species fall short of a target of 10%
coverage within these MPAs (Davies et al., 2017). The failure
to meet species conservation targets is thought to be because,
so far, very large MPAs have been opportunistic and placed
mostly in remote areas to avoid interfering with commercial
interests, rather than systematically designed to adequately
protect the full range of habitats and species found within
a given area (Leenhardt et al., 2013; OSCA, 2016; Devillers
et al., 2020). The need to design offshore MPA networks
according to robust biophysical guidelines is clear (Ban et al.,
2014b; Davies et al., 2017; Lewis et al., 2017; IUCN-WCPA,
2018).

In 2011, the Convention for Biological Diversity (CBD)
formulated the Aichi targets, of which Target 11 states that
“By 2020, at least 17 per cent of terrestrial and inland water,
and 10 per cent of coastal and marine areas, especially areas of
particular importance for biodiversity and ecosystem services, are
conserved through effectively and equitably managed, ecologically
representative and well-connected systems of protected areas and
other effective area-based conservation measures, and integrated
into the wider landscapes and seascapes.” (CBD, 2011). This
target has been reiterated, in 2015, by all United Nation
members in the Sustainable Development Goals (specifically
SDG14; UNDP, 2021). In 2016, members of the International
Union for the Conservation of Nature (IUCN) at the World
Conservation Congress approved new global target for MPAs,
calling for 30% of each marine habitat to be set aside in highly
protected MPAs and other effective area-based conservation
measures by 2030 (IUCN, 2016a). Since then, this call has
been echoed by various scientists, non-government organisations
and national governments, including the UK Government who
recently celebrated over 40 countries joining the UK-led “30

by 30” Global Ocean Alliance Initiative (UK Government,
2021), an international commitment to protect at least 30%
of the global ocean in MPAs by 2030, through the UN
Convention on Biodiversity in 2021 (O’Leary et al., 2019). In
parallel, United Nations representatives are in the process of
negotiating a treaty that would, among other things, create a
mechanism to establish marine protected areas on the high
seas (Gjerde, 2007). This mechanism includes an increasing
expectation that global targets of 30% must be met in order
to safeguard biodiversity, avoid fishery collapse and build
ocean resistance to climate change (Partridge, 2009; O’Leary
et al., 2019; Visalli et al., 2020). With most of the ocean
found either in the high seas or offshore within national
Exclusive Economic Zones, large offshore MPAs or networks
of MPAs are integral parts of reaching global targets for
ocean protection.

Generally, establishing anMPA or a network of MPAs consists
of a series of steps that include defining objectives, planning,
design, consultation, declaration, andmanagement (Kelleher and
Kenchington, 1992). This paper focuses upon the “design” step
in the context of the global objectives referenced above. We
describe detailed biophysical guidelines that managers can use
to design effective networks of no-take MPAs in offshore waters.
The systematic review that led to the definition of these guidelines
sought to answer the following questions:

(1) What are the existing design guidelines for no-take MPA
networks, largely applied to shallow coastal ecosystems?

(2) How do the differences between coastal and offshore
ecosystems and species inform tailoring of those guidelines to
offshore environments?

MATERIALS AND METHODS

Existing literature that contained design principles or guidelines
for MPAs were collated using online search engines (Web
of Science Core Collection, Scopus), Google Scholar and the
internal search functions of conservation organisation websites.
The search term (“marine protected area∗” OR “marine reserve∗”
OR “no-take”) AND (guideline∗ OR principle∗ OR criteria)
was initially tested on 10 key documents (5 peer-reviewed
and 5 “grey literature” reports), to ensure it was capable of
detecting the relevant literature. Equal weight was given to
grey literature in the literature search, in recognition that MPA
principles or guidelines often appear in documents designed
for use by management agencies, rather than for academic
purposes. All results were uploaded to the online software
Cadima (www.cadima.info), through which we specified the
research question in terms of Population/Outcome, and which
automatically detects duplicates and assists with screening and
data extraction (O’Leary et al., 2016a). After the initial literature
search and duplicate exclusion, the resulting 795 documents were
screened for relevance first by title, then by abstract and lastly
by full-text articles, resulting, initially, in 264 articles included
for data extraction (Table 1, Supplementary Information 1).
Of these, 177 documents contained information about design
principles or guidelines for MPA design. The data extracted from

Frontiers in Marine Science | www.frontiersin.org 3 July 2021 | Volume 8 | Article 634574

www.cadima.info
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ceccarelli et al. Biophysical Guidelines for Offshore MPAs

TABLE 1 | Systematic review results of literature search per search string and database (see also Supplementary Information 1).

Search string Source Results Date

(“marine protected area*” OR “marine reserve*” OR “no-take”) AND

(guideline* OR principle* OR criteria)

Web of Science Core Collection 667 2020-08-22

(“marine protected area*” OR “marine reserve*” OR “no-take”) AND (“design

guideline*” OR “design principle*”)

Web of Science Core Collection 30 2020-08-22

(“marine protected area*” OR “marine reserve*” OR “no-take”) AND (“design

guideline*” OR “design principle*”)

Google Scholar 128 2020-08-23

marine protected area guidelines Various government and organisation websites 12 2020-08-26

Total records 839

Records after duplicate removal 794

Records screened at title level 478

Records screened at abstract level 342

Full-text articles assessed for eligibility 275

Included articles 263

Articles with MPA design guidelines 176

these documents included the author(s), year, title, geographic
location, specific MPAs, individual guidelines or principles,
relevance to networks of MPAs (as opposed to individual MPAs)
and relevance to offshore environments.

Each guideline or principle relevant to MPA network design
was then assessed as to its applicability to an open ocean context
and the guidelines tailored accordingly to be offshore-specific.

MPA DESIGN GUIDELINES – RESULTS OF
THE SYSTEMATIC REVIEW

One hundred and seventy seven articles, published between 1992
and 2020, contained information aboutMPA design (Table 1). Of
the 177 articles:

• 52 included a clear list of guidelines or principles, although
28 were more general in nature and did not provide
explicit recommendations on, for example, the magnitude or
percentage (of habitats, bioregions, etc.) to include in the
MPA design;

• 23 included quantitative guidelines such as sizes, distances,
and/or % protection targets;

• 49 were about MPAs in general and discussed or presented
guidelines in a theoretical sense. The other 128 documents
were about specific regions of the world, or specific MPAs;

• 129 (73%) were relevant to networks, rather than just
individual MPAs;

• 89 (50%) had some direct relevance to offshore environments;
• 53 (30%) only considered one guideline or principle; adding

those papers that considered only two principles brought the
number to 77 (44%);

• the most commonly cited guidelines were representation of
habitats (103 documents, 58%), connectivity (91 documents,
51%), and size (70 documents, 40%);

• Of the 52 studies (of the 177) that had a list of
guidelines/principles, 25 possible guidelines or principles were

presented in various combinations. Not all were biophysical,
and this paper does not consider these non-biophysical
guidelines further.

• 16 of the 23 papers that provided quantitative design
guidelines referred to overarching % targets for no-take
protection without specific targets for particular attributes of
the environment (e.g., habitats, bioregions). Most others either
referred to the Convention on Biological Diversity (CBD) 10%
target (Arcos et al., 2012; Balbar and Metaxas, 2019), or used
MARXAN (a conservation planning software tool to guide
systematic MPA design) or a similar tool to explore ways in
which to target a range of area percentages for conservation
(e.g., Proudfoot et al., 2020). We note that papers referring to
overarching percentage MPA targets recommend a range from
10 to 50% (e.g., Thomas and Shears, 2013; Dunn et al., 2018)
and that, largely, the per habitat- or per bioregion-specific
targets mentioned in other work, if implemented, would sum
to these overarching targets.

TAILORING THE GUIDELINES TO
OFFSHORE ECOSYSTEMS

The applicability of guidelines found throughout the literature to
offshore waters is detailed in the sections below. Guidelines are
listed in order of priority (Table 2).

Offshore Guideline 1: Make MPAs Larger
Size is one of the most important design considerations when
implementing MPAs, especially in data-poor areas (Halpern,
2003; Gilman et al., 2011). In coastal seas, the representation
of habitats and/or bioregions tends to be prioritised over size.
However, the ethos of “bigger is better” is one of the five
characteristics that has led to the greatest realised benefits
of no-take MPAs globally (Edgar et al., 2014), and often
incidentally enhances connectivity (Álvarez-Romero et al., 2018;
see Guideline 5). Very small, permanent, no-take MPAs can
be effective in coastal seas, and especially when designed for
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TABLE 2 | Summary of biophysical guidelines for the design of offshore networks of no-take MPAs.

Design guideline Conditions Rationale - summary References

1. Make no-take MPAs

50–200 km in diameter.

Tagging studies show that large pelagic predators (tunas,

billfish, blue and shortfin mako sharks, dolphinfish,

wahoo, penguins) can move 1,000s of kms, but that the

majority of the populations remain within 250 to 1,000 km

of their release location. Modelling studies show that

protecting 50% of the range of wide-ranging species,

especially if critical habitat is included, can benefit the

entire population. Additionally, these species can act as

“umbrella species”; protecting enough area for them will

automatically benefit a large diversity of more sedentary

pelagic species and the seafloor below.

Clark, 1996; Hampton and Gunn, 1998; Lauck

et al., 1998; Kingsford and Defries, 1999;

Sedberry and Loefer, 2001; Kohler et al., 2002;

Sibert and Hampton, 2002, 2003; Worm et al.,

2003; Bromhead et al., 2004; Micheli et al.,

2004; Clear et al., 2005; Alpine and Hobday,

2007; Theisen et al., 2008; Holdsworth et al.,

2009; Cosgrove et al., 2010; McClain and

Hardy, 2010; Sepulveda et al., 2010; Read

et al., 2013; Schaefer et al., 2014; Howey et al.,

2016; Huvenne et al., 2016; Robinson et al.,

2016; Della Pella et al., 2017; Gary et al., 2020

2. Ensure that no-take

MPAs include critical

habitats and biologically or

physically special and/or

unique sites and species.

This may include, for

example, unique

geomorphologic or

hydrodynamic features (see

Table 5), areas important

for aggregation, nurseries,

spawning, foraging, offshore

nesting sites, migratory

staging points, mammal

calving areas, areas with

high biodiversity, endemism,

productivity or with

threatened, isolated or rare

species or habitats.

Features are

mapped

For an MPA network to comprehensively and adequately

protect biodiversity, known special or unique areas must

be included in no-take MPAs.

Productive areas are important due to their contribution to

ecosystem functioning and potential for high biodiversity;

they are usually “hotspots” for multiple species. Areas that

are critical to large species are often automatically

important for a large variety of other, smaller, more

sedentary pelagic or benthic species. It is important to

note that for threatened or endangered species,

protecting 30% of their habitat niche may be insufficient

to prevent extinction. Thus, some habitats may require

100% protection while others can endure with less.

Glover and Smith, 2003; De Santo and Jones,

2007; Hobday et al., 2011; Hooker et al., 2011;

Ban et al., 2014a; Clark et al., 2014; Maxwell

et al., 2014; Asaad et al., 2017; Ceccarelli

et al., 2017, 2018c,d; Lundquist et al., 2017;

Rigby et al., 2019

3a. Protect 35% of each

habitat type or feature listed

in Table 5 within no-take

MPAs.

No bioregions

defined

When there is no definition of bioregional boundaries,

there is often still at least an approximate understanding

of habitats present. When Guideline 4 cannot be applied,

capturing a larger proportion of each habitat enhances

the likelihood of capturing unknown and therefore

unmapped within-habitat variability.

Hyrenbach et al., 2000; Belkin et al., 2009;

McClain and Hardy, 2010; Harris et al., 2014;

Miller and Christodoulou, 2014; O’Leary et al.,

2016b; Chaniotis et al., 2020

3b. Include a percentage of

each habitat type or feature

as indicated by Table 5,

within no-take MPAs.

Include adjacent habitats as

buffer zones.

Bioregions defined

at an appropriate

scale so Guideline

4 also applies

Mappable features of the open ocean are known areas of

high productivity, diversity, or significant ecological

processes. To ensure future sustainability of offshore

marine environments, examples of the full range of known

and mapped biophysical habitats should be included in

no-take MPAs.

Hyrenbach et al., 2000; Sibert and Hampton,

2002; Alpine and Hobday, 2007; Williams

et al., 2010a

4a. Represent at least

20–30% of marine

bioregions in no-take MPAs

Bioregions defined

at an appropriate

scale

Protection of all habitats, flora and fauna, ecosystem

function, integrity and resilience requires that adequate

examples of every bioregion are included in no-take

MPAs. The best available science informs that at least

20–30% of each marine bioregion should be included in

no-take areas, especially if aiming to protect species with

lower reproductive output or delayed maturation (e.g.,

many large offshore and deep-water species), or in areas

that host diverse, unassessed, or poorly regulated

fisheries, as is common offshore.

Worm et al., 2006; Proud et al., 2017; Beger

et al., 2020

4b. If 4a can be

implemented, represent at

least 20–30% of marine

bioregional transition

boundaries in no-take MPAs

Bioregions defined

at an appropriate

scale

Boundaries and transition zones between bioregions in

the open ocean tend to aggregate a high diversity and

density of open ocean species. Bioregions in the open

ocean are often much more extensive than in coastal

marine habitats.

Hyrenbach et al., 2000; UNESCO, 2009; Block

et al., 2011; Clark et al., 2011; Reygondeau

et al., 2012; Kanaji et al., 2017

(Continued)
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TABLE 2 | Continued

Design guideline Conditions Rationale - summary References

5. Distance between

no-take MPAs should be

between 20 and 200 km.

Because of the wide-ranging or widely distributed nature

of offshore populations, genetic connectivity is possible

across very large areas. However, as the bulk of the

population is usually less mobile, MPAs to ensure

demographic connectivity will need to take into account

the mean or median distances found in tagging studies

(see also Guidelines 1 and 7).

Clark, 1996; Hampton and Gunn, 1998; Lauck

et al., 1998; Kingsford and Defries, 1999;

Sedberry and Loefer, 2001; Kohler et al., 2002;

Sibert and Hampton, 2002, 2003; Worm et al.,

2003; Bromhead et al., 2004; Micheli et al.,

2004; Clear et al., 2005; Alpine and Hobday,

2007; Green and Mous, 2007; Theisen et al.,

2008; Holdsworth et al., 2009; Cosgrove et al.,

2010; Kahng et al., 2010; Sepulveda et al.,

2010; Green et al., 2014; Maxwell et al., 2014;

Schaefer et al., 2014; Hilário et al., 2015;

Hillman et al., 2018; Gary et al., 2020

6. Include whole features

within no-take MPAs.

Features are

mapped

Mapped features of the open ocean are often areas of

high productivity, diversity or significant ecological

processes, and need to be protected in their entirety to

allow for the full range of ecological processes to take

place.

Hyrenbach et al., 2000; Sibert et al., 2000;

Sibert and Hampton, 2002; Alpine and

Hobday, 2007; Grober-Dunsmore et al., 2008;

Sutton et al., 2008; Long et al., 2013; Garrigue

et al., 2015; Rigby et al., 2019; Lecours et al.,

2020

7a. Have at least three

replicate no-take MPAs:

within bioregions; of very

large features (e.g.,

topographic or

hydrodynamic features); and

of known habitats and

ecological processes.

Features are

mapped

Replication of protection minimises the risk of losing all

examples of a habitat, population or assemblage in the

case of disturbance. Areas that remain intact or healthy

may act as a refuge, and a source of larvae for the

recovery of damaged areas. Replication also helps

enhance representation of biological heterogeneity within

poorly known habitats, as is commonly the case in the

open ocean.

Maxwell et al., 2014; Rigby et al., 2019

7b. Include no-take MPAs

at, at least, three points

(ideally aggregation sites)

along the migration path of

migratory species or within

the range of other highly

mobile species.

Where it is not possible to protect an entire migration

pathway, placing several replicate no-take MPAs at critical

points along the migration route can disproportionately

benefit the whole population. Replication of protection

minimises the risk of encountering damaging agents (e.g.,

purse seiners, longliners) along the entire route.

Gell and Roberts, 2002; Roberts and Sargant,

2002; Block et al., 2011; Briscoe et al., 2017

8. Choose simple shapes. Simple shapes such as squares or “squat” rectangles

maximise the area protected, reduce edge effects and

make compliance easier.

Halpern, 2003; Halpern and Warner, 2003;

Roberts et al., 2010; Fernandes et al., 2012;

White et al., 2012; Rodríguez-Rodríguez et al.,

2016

9. Choose permanent

protection over temporary

protection.

Permanent protection enhances the likelihood of recovery

of populations and habitats, even if they are very

long-lived, slow-growing or heavily damaged. However,

MPAs should be subject to review over time.

IUCN-WCPA, 2008; Williams et al., 2010b;

Fernandes et al., 2012; Abesamis et al., 2014

10. Reduce or eliminate

threats across the entire

MPA network area, e.g., by

applying other types of

marine managed areas.

Reducing threats to other categories of MPAs and to

surrounding areas will enhance the effectiveness of

no-take MPAs and the area as a whole. Given the

data-poor nature of the open ocean, threat reduction in

general can protect areas, features or species not yet

identified as requiring protection.

Dunn et al., 2011; Jessen et al., 2011; Brock

et al., 2012; Maxwell et al., 2014; Lewis et al.,

2017

the replenishment of fisheries target species through “spillover”
(Russ, 2002; Jones et al., 2007; Fernandes et al., 2012; Harrison
et al., 2012). However, larger areas can hold larger parts of
(or entire) populations, and have a greater chance of including
unknown habitats and species, bioregions, or special features,
and tend to have a degree of biological integrity. Larger areas
are more likely to be self-sustaining and therefore will persist
over time (Gaines et al., 2010). Larger MPAs also reduce the edge
effect, where human activities at the edges of an MPA, including
illegal entry and take within MPA boundaries, can be intensive
enough to undermine theMPA’s overall effectiveness (Lester et al.,

2009). The size of an MPA needs to be determined according
to the extent and location of the species, features, bioregions,
and ecological processes it is intended to protect (Green et al.,
2014). Recent research has provided design guidelines for no-take
MPAs based on known home ranges or distributions of shallow-
water species of interest (Green et al., 2014). For instance, a no-
take MPA designed to protect coral reef invertebrates and site-
attached fishes could be as small as 400 to 1,000m across, while an
MPA of more than 20 km would be required for offshore pelagic
species such as silvertip sharks (Carcharhinus albimarginatus) or
trevallies (Carangidae; Jones et al., 2007; Green et al., 2014).

Frontiers in Marine Science | www.frontiersin.org 6 July 2021 | Volume 8 | Article 634574

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ceccarelli et al. Biophysical Guidelines for Offshore MPAs

Coastal assemblages and sedentary oceanic species can benefit
from smaller MPAs, but larger, more mobile and migratory
species (as more often found offshore) require larger MPAs. In
offshore environments, there is less information about habitats
and bioregions. Additionally, habitats tend to be larger (e.g.,
deep-sea plains and plateaux compared to shallow reef systems)
and many offshore species have greater home ranges and larval
dispersal patterns (Herring, 2002). The larger information gaps
and scale of habitats means that size becomes even more
important for habitats protected within MPAs to have sufficient
integrity (Shanks, 2009; UN, 2015; Lewis et al., 2017; Weeks et al.,
2017). With ongoing and escalating discoveries of important
new species in offshore environments, larger MPAs also provide
greater insurance with regard to protecting that which remains to
be discovered (Bridge et al., 2016). Huvenne et al. (2016) found
that a deep-water (∼1,000m) no-take MPA of at least 30–40 km
in diameter adequately protected deep-water coral communities,
but where these corals were damaged, even these protected areas
could not mediate recovery. Roberts et al. (2010) suggested that
in English EEZ continental shelf waters beyond 12 nm, MPAs
that are intended to protect commercial species should be at
least 30 to 60 km in their minimum dimension. MPAs of >100–
1000,000 km2 have been recommended for the protection of large
sharks and rays whose home ranges extend beyond coastal areas
(Rigby et al., 2019). In offshore pelagic and benthic habitats,
the distributions of many soft-sediment (e.g., bivalves, elasipod
holothurians) and pelagic taxa (e.g., tuna, lanternfishes) cover
entire ocean basins, and many species are widely dispersed
(McClain andHardy, 2010; Reygondeau et al., 2012), even species
with a sedentary adult phase and restricted habitat preferences,
such as the mussel Bathymodiolus thermophilus at hydrothermal
vents (Maas et al., 1999). Another benefit of larger MPAs is that
in protecting the range, or part thereof, of a migratory or highly
mobile species, they automatically also protect a large array of
other species and features (Wilhelm et al., 2014).

The movement distance of marine organisms poses one of the
greatest challenges to MPA design. The dispersive larval stage
and sometimes far-rangingmovements or migrations of juveniles
or adults, differences in larval duration and metapopulation
dynamics mean that it is highly unlikely for individual offshore
MPAs to protect all life history stages of any one species, let
alone all species (Gruss et al., 2011). In offshore environments,
and especially in the deep sea, the difficulty of capturing
species’ ranges is compounded by the almost complete lack
of data on larval duration and behaviour traits (Hilário et al.,
2015). The dispersal of deep-sea organisms presents the added
complexity of vertical swimming behaviour (Afonso et al.,
2014), which can influence modelled dispersal distances by
up to an order of magnitude (Gary et al., 2020; see also
Guideline 5). If it is impossible to contain a species’ entire range
within one MPA, MPA networks that comply with connectivity
guidelines (Guideline 5), replication (Guideline 7) and minimum
percentage guidelines (Guidelines 3 and 4) can be combined to
protect as many of the species’ critical areas as possible, thereby
achieving the best possible outcome for a species or population.

The potential mobility of species may conflict with their
tendency for residency within a geographic location; many highly

mobile species with the ability to travel 100s or 1000s of kms have
smaller home ranges (10s of kms) once they settle. A tagging
study of several pelagic species (tuna, billfishes, sharks) showed
that most of them remained within the boundaries of the 450
km-radius British Indian Ocean Territory MPA (Carlisle et al.,
2019). The evolutionary selection for behavioural polymorphism
(Kaplan et al., 2014) is highlighted in the work of Mee et al.
(2017). This genetic modelling research has shown an evolution
of increased residency for highly mobile tuna species after
the establishment of MPAs, as individuals that choose more
sedentary behaviour pass on their genes to successive generations
more frequently than those that move beyond MPA boundaries
into fishing grounds (Mee et al., 2017). The model remains to
be tested, but in a practical sense, this means that the benefits of
offshore MPAs will grow over time, including over generations of
the target species of interest.

Where documents provided MPA design guidelines with
minimum size recommendations, these were highly variable,
both for coastal and offshore environments (Table 3). In Edgar
et al. (2014), the largest benefits were found in MPAs that
were at least 100 km2. In coastal areas, the most common
minimum size, and also the upper limit, was 20 km in diameter;
no minimum size was found for offshore MPAs, except in
Dunn et al. (2018), where the authors recommended 200 km.
In practise, almost all existing offshore MPAs are larger than
2,500 km2 (Marine Conservation Institute, 2020), suggesting that
a minimum diameter of 50 km is feasible.

In summary, the existing literature recommends that offshore
MPAs (as part of a network of MPAs) be 50–200 km in
minimum diameter.

Offshore Guideline 2: Include Special,
Unique, Rare Features and/or Species
Sites may be selected for inclusion within an MPA according
to criteria such as uniqueness, rarity, or special characteristics.
These attributes include areas that are important for particular
life stages of species, the presence of threatened, endangered or
declining species or habitats, keystone species, distinctive habitat
types, oceanographic or geological features, or places of especially
high biological productivity or diversity (Salomon et al., 2006;
Brock et al., 2012; Clark et al., 2014; Secretariat of the Convention
on Biological Diversity, 2014; Table 4). For example, a site may
be unique because there is a single population of an endemic
species not found anywhere else. Special characteristics can be
attributed to sites where key processes take place (e.g., spawning
and feeding grounds, nurseries, migratory corridors, hotspots,
etc.; Rigby et al., 2019). Sites can also be selected on the basis
of hosting higher productivity than the surrounding areas; these
“hotspots” can support high biodiversity, which is often also used
as a criterion for selecting sites for inclusion into MPAs or MPA
networks (Possingham and Wilson, 2005; Sydeman et al., 2006;
Briscoe et al., 2016). Areas that host a large variety of species
are important for the maintenance of resilience, evolutionary
potential and ecosystem services (Worm et al., 2006).

The inclusion of critical habitats and special or unique areas
as a design guideline for MPAs stems from the biophysical
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TABLE 3 | Summary of specific and quantitative MPA network design guidelines.

Size Overall % target Bioregions Habitats Special, unique

areas

Connectivity Replication Duration of

protection

Shape Inshore/

offshore

References

≥10 km in length

(10 x 10 km or 100

km2 )

– – 30% of each

habitat

– 50–200 km

apart

≥ 3 per

habitat

> 25 years – Inshore Munguia-Vega

et al., 2018

≥2 km in diameter 20% of fishable

waters in northern

Honduras

– 20% of each

habitat per

ecoregion

Protect all target

species

≥ 3 per

habitat

Permanent Compact Both Chollett, 2017

≥10–20 km in

diameter

– – 20–30% of each

habitat

– 15–20 km apart ≥3 per

habitat

– Simple Inshore McLeod et al.,

2009

Mixture of small

(40ha) and large

(4–20 km across)

∼35% of a given

area

– 20–30% of each

habitat

– 1–20 km apart ≥3 per

habitat

20-40 years,

preferably

permanent

Simple Inshore Fernandes et al.,

2012

10–60 km in

diameter

20–35% of fishing

area

– 20-30% of each

habitat

– 20–200 km

apart

2–5 per

habitat

– Regular shape,

minimise edge

Both Burt et al., 2018

≥20 km diameter

except in coastal

bioregions

33% of the Great

Barrier Reef

Marine Park

20% of each

bioregion

Habitat-specific %

targets

As much as

possible

– 3–4 per

bioregion

– – Inshore Fernandes et al.,

2009

≥5–20 km in

diameter

10–50% of marine

and coastal areas

– – – 50–100 km

apart

1–5 examples – – Both Lundquist et al.,

2015

≥20 km diameter

except in coastal

bioregions

33% of the Great

Barrier Reef

Marine Park

20% of each

bioregion

Habitat-specific %

targets

As much as

possible

– 3–4 per

bioregion

– – Inshore Fernandes et al.,

2005

≥100–200 km2 – – – – 100 km apart – – – Inshore Rachor et al.,

2001

– – – Proportional to the

% of an area to be

included in MPA

– – – – Inshore Roberts et al.,

2003

– 20% (Honduras),

10% (Mexico) of

territorial waters

– 20-30% of each

habitat

Yes – ≥ 3 per

habitat

> 20-40 years

or permanent

- Inshore Green et al., 2017

>150,000 km2 10% globally – Offshore Lewis et al., 2017

– 10% of territorial

waters

30% of each

bioregion

– – Spacing of up

to 200km

≥3 per

bioregion

– – Inshore The Ecology

Centre, 2009

Variable minimum

sizes, 0.5–20 km

across

– – 20–40% of each

habitat

Yes Spacing of

1–15 km

≥3 per

habitat

>20–40 years

or permanent

– Inshore Green et al., 2014

23–100 km2 Test of 10, 20, and

30% conservation

target

– 10–30% of each

habitat

– Spacing of

50–100 km

≥2 per

habitat

– – Inshore Arafeh-Dalmau

et al., 2017

23–100 km2 – – 10–30% of each

habitat

– Spacing of

50–100 km

≥2 per

habitat

– – Inshore Saarman et al.,

2013

– – – – – – – – Squares or

compact

rectangles

Inshore Meester et al.,

2004

(Continued)
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TABLE 3 | Continued

Size Overall % target Bioregions Habitats Special, unique

areas

Connectivity Replication Duration of

protection

Shape Inshore/

offshore

References

Various, 0.5 km in

diameter to 550

km2

20% of Canadian

Northern Shelf

bioregion

30% of each

bioregion

Various, range

10–40%

– Various, from

50 to 200 km

1–5 per

habitat

– – Inshore Ardron et al., 2015

Minimum length of

200 km along the

ridge line

30–50% of total

management area

– 30–50% of

habitats

100% – 5 per habitat – – Offshore Dunn et al., 2018

Variable minimum

sizes, 0.5–20 km

diameter

– – 20-40% of each

habitat

Yes Spacing of

1–15 km

≥3 per

habitat

>20–40 years

or permanent

– Inshore Green et al., 2014

Minimum length of

5–10 km diameter,

preferrable

10–20 km

10% of New

Zealand waters

– – – Spacing of

50–100 km

≥3 – – Both Thomas and

Shears, 2013

– 33% of

management area

30–40% of

each bioregion

20% of each

habitat

– Spacing of

10–20 km,

30 km at most

3–4 per

bioregion

– – Inshore McCook et al.,

2009

– Globally 10% by

2020, 30% by

2037 and 50% by

2044

– – – – – >21 years – Both Duarte et al., 2020

– – – 20% of each

habitat

Yes – ≥3 per

habitat

>20–40 years

or permanent

Compact

shapes

Both Rigby et al., 2019

Quantitative targets are provided with as much specificity as they appear in the literature. Size usually refers to the minimum diameter of any individual MPA.
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TABLE 4 | Some potential topographically or hydrographically unique, special or rare features of the open ocean.

Type Feature Characteristics Key sources

Topographic Seamounts,

knolls, hills,

guyots, ridges

Seamounts are “large isolated elevation(s), greater than 1,000m in relief above the sea floor, characteristically

of conical form”; knolls, hills, and guyots are slightly lower elevations of different shapes. Ridges are defined

as “elongated narrow elevation(s) of varying complexity having steep sides, often separating basin features.”

Seamounts and ridges have steep slopes which can cause the upward movement of nutrients from the deep

ocean (upwellings) and create hotspots of pelagic productivity and biodiversity, attracting deepwater and

pelagic species such as tuna, deep-water snapper, sharks, whales, and dolphins.

Morato and Clark,

2007; IHO, 2008;

Harris et al., 2014

Canyons,

trenches

Submarine canyons are steep-walled valleys with V-shaped cross sections. A trench is a long, narrow, usually

very deep and asymmetrical depression of the sea floor, with relatively steep sides. Ocean trenches are the

deepest parts of the ocean, commonly 6 to 10 km in depth. The steep walls of these features tend to create

upwellings that support high productivity and biodiversity. Deep-diving pelagic species tend to congregate in

the waters above these depressions to feed.

Shephard, 1964;

IHO, 2008; Harris

and Whiteway,

2011

Shelf breaks The shelf break is “the line along which there is a marked increase of slope at the seaward margin of a shelf.”

Shelf breaks can form fronts in the waters above them, and tend to be highly productive pelagic habitats.

Belkin et al., 2009;

Harris et al., 2014

Reefs, islands Oceanic reefs and isolated islands can form as rises and pinnacles from the deep seabed and break the

ocean surface. In their wake, there are often turbulent areas and eddies that entrain plankton and attract

larger pelagic species. The deep slopes off the islands and reefs support rich benthic communities that are

often habitat for feeding and breeding.

Rissik and

Suthers, 2000

Hydrographic Eddies Eddies are vortex-like circulations of water, usually spinning off major currents, and can occur at various

scales. Mesoscale eddies (typically less than 100 km across) tend to be predictable, and can revolve in

cyclonic or anti-cyclonic directions, depending on hemisphere. Anticyclonic eddies accumulate organic

matter within their cores and exhibit elevated microbial respiration and heterotrophic production. Cyclonic

eddies enhance nutrient inputs to the surface ocean increasing new production and chlorophyll

concentration. Current estimates suggest that ∼50% of the global new primary production may be caused

by eddy-induced nutrient fluxes.

Baltar et al., 2010

Fronts A front is a narrow zone of abrupt change in water properties (salinity, temperature, nutrients, etc.) that

separates broader areas with different water masses or different vertical structure. They can be a few metres

or many thousands of km long. Most fronts are almost stationary and seasonally persistent. The vertical

extent varies from a few metres to more than 1 km, with major fronts reaching depths exceeding 4 km. Major

thermohaline fronts are associated with fronts in other properties, such as nutrients, ocean colour,

chlorophyll, and turbidity.

Convergences of surface waters toward fronts contribute to elevated primary production known as “hot

spots” of marine life, from phytoplankton to apex predators, and serve as spawning, nursing, and feeding

areas for fish, sea birds, and marine mammals, with high biodiversity. The surface convergence can also lead

to concentrations of pollutants, thus endangering species frequenting the fronts.

Belkin et al., 2009

Upwellings

and

downwellings

Upwelling is a process in which deep, cold water rises toward the surface, usually bringing nutrients from

deeper pelagic layers and from the benthos to the upper layers. Downwelling is sinking of accumulated

high-density material beneath lower density material, such as colder or saline water beneath warmer or

fresher water. Downwelling occurs when warm surface water spins clockwise, creating surface convergence

and pushing surface water downwards.

Saldivar-Lucio

et al., 2016

operational principles for the Great Barrier Reef Marine Park
Authority (2002) and the Convention for the Protection of
the Marine Environment of the North-East Atlantic (OSPAR
Convention) List (OSPAR Commission, 2008), and was included
to ensure that special, unique areas were protected even if they
were not captured by the protection of percentages of habitats
or bioregions (see Guidelines 3 and 4; Great Barrier Reef Marine
Park Authority, 2002). It has since been adopted throughout
the literature for designing coastal MPAs (Fernandes et al.,
2009; Green et al., 2014; Table 3); seven of the 23 documents
(30.4%) that listedMPA design guidelines included this principle.
Currently, it is listed as one of the steps for marine spatial
planning processes adopted by multiple Pacific Island countries
(Ceccarelli et al., 2018a).

Criteria for selecting Ecologically and Biologically Significant
Areas (EBSAs) in offshore environments have already been
developed for some regions, such as the Azores and the

Southwest Pacific (CBD, 2009, 2014; Clark et al., 2014). Other
initiatives that have established criteria for protecting marine
environments specifically in offshore areas include the FAO’s
Vulnerable Marine Ecosystems, which seeks to identify and
protect marine areas in the high seas that are vulnerable to
deep-sea fisheries (FAO, 2019), and the IMO’s Particularly
Sensitive Sea Areas, which seeks to identify ecologically,
socioeconomically or scientifically valuable areas vulnerable to
damage by international shipping activities (IMO, 2006). Some
countries have also decided to describe special, unique marine
areas within their national boundaries using systematic criteria
for their identification and definition (Ceccarelli et al., 2018d).
The protection of special features was the first principle used in
the creation of the UK’s offshore MPA network (Chaniotis et al.,
2020).

Prioritising special features provides some insurance against
the declaration of very large offshore MPAs in areas that are of
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little value to commercial interests (Devillers et al., 2020). In fact,
to safeguard against the declaration of large MPAs in areas of
little value, this guideline could potentially be adopted first—
the scale of many offshore features and migratory or mobile
species ranges makes it highly likely that MPAs designed around
Guideline 2 would automatically also be large. In offshore waters,
uniqueness, rarity or special characteristics typically include
current systems and fronts, upwellings, seamounts, trenches,
deepwater coral or sponge assemblages, hydrothermal vents and
fluid seeps (Hyrenbach et al., 2000; Graham et al., 2011; Hooker
et al., 2011; Ban et al., 2014b; Lundquist et al., 2017; Barrie
et al., 2020; Table 4). The Darwin Mounds in UK offshore
waters, for example, is an area rich in the deep-water coral
Lophelia pertusa which, once discovered, was deemed of special
importance and protected from trawling, becoming the UK’s first
offshore MPA (De Santo and Jones, 2007). These features are
usually unique to a certain area and isolated from other similar
features or populations by sheer distance. The value of unique
and/or special features or areas stems from the fact that they are
not usually replicated elsewhere and therefore not replaceable
(Salomon et al., 2006), and they contribute disproportionately
to marine biodiversity and ecosystem function (Lundquist et al.,
2017). Their loss results in a reduction in overall biodiversity or
abundance of important species (Halpern et al., 2007; Palumbi
et al., 2008). For special and/or unique sites or features that may
be subject to particular stressors, it is important to understand
the spatial distribution of potential stressors or impacts (Halpern
et al., 2007; Brock et al., 2012). Any destructive activities taking
place within the area should be prohibited (see also Guideline
10). The larger the spatial scale at which special or unique features
typically occur, the greater the effect of their loss.

Unique or special species and populations in the open ocean
have life histories and adaptations specific to the pelagic or
deep benthic habitats they inhabit. Some large pelagic species
may range very widely, while deep-dwelling species may have
populations that are endemic or genetically disjointed due to
the distance between suitable benthic habitats (e.g., seamounts
or hydrothermal vents separated by large expanses of seafloor)
(Richer de Forges et al., 2000). Despite the wide-ranging
nature of many individuals within populations, large pelagic
species of conservation interest regularly use particular sites and
migration corridors that can be mapped, monitored, or predicted
(Ceccarelli et al., 2017, 2018c,d).

Geomorphic features that are known to aggregate life could all
be seen as special; mid-ocean ridges, seamounts, and submarine
canyons cover only four percent of the seafloor, making them
rare biodiversity hotspots within the vast extent of abyssal plains,
hills, plateaus, basins, terraces, troughs, valleys, escarpments, and
sedimented slopes that, according to current knowledge, tend to
be more sparsely populated (Glover and Smith, 2003; Table 5).
Many of these features are considered individual habitats or
habitat types, and may be seen as covered by Guideline 3
(representation of habitats), which is useful when very little
or nothing is known about a particular feature or habitat. For
example, if a series of ridges are known to exist within an
offshore area, with little or no information about their particular
attributes, they would be protected under Guideline 3.

In sum, where knowledge exists about areas that contain special,
unique, rare features and/or species in offshore environments, these
areas should be included, in their entirety, in theMPA network (see
Table 4).

Offshore Guideline 3: Representation of
Habitats
Any network of no-take MPAs, inshore or offshore, should
include representation of every known habitat type and bioregion
(see Guideline 4) to ensure that as many species as possible are
protected (Gilman et al., 2011; Day et al., 2012; Fernandes et al.,
2012). For habitats, adequate representation requires that they
are mapped and that habitat-specific “minimum amounts” of
protection can be defined (see, for example, Great Barrier Reef
Marine Park Authority, 2002). The concept of “representing”
habitats (as opposed to bioregions or other ways of classifying
the environment—see Guideline 4) is the most common specific
principle or guideline in the MPA design literature, appearing in
44 of 52 papers (88%). Per-habitat protection percentage levels
are often suggested to be 10–30% for coastal seas, and higher
in the following areas: (1) areas with less existing management
of activities outside the no-take MPA; (2) areas with more
destructive activities; or (3) areas where marine bioregions are
not defined (see Guideline 4).

Most documents that had percentage targets for coastal
habitat protection agreed that including 20–30% of each habitat
in no-takeMPAswould be sufficient for biodiversity conservation
and the protection of fisheries stocks (Table 3). Support for
the 20–30% target was originally gleaned from reproductive
theory, knowledge about the vulnerability of coral reef species to
exploitation, analysis of fishery failures, empirical, and modelling
studies of reserves and the precautionary principle (Bohnsack
et al., 2000). These targets were then used and sometimes
modified (down to 10% or up to 50%) for designing MPA
networks in the Great Barrier Reef Marine Park (Fernandes
et al., 2009), the California Channel Islands (Airamé et al.,
2003), Honduras (Chollett, 2017), across the Mesoamerican Reef
(Green et al., 2017), and in the Coral Triangle (Fernandes et al.,
2012).

Global adherence to Guidelines 3 and 4 in the context of
MPA design has been assessed by Fischer et al. (2019), who
found that only 18 of 66 Large Marine Ecosystems (LMEs)
contained greater than 10% of the marine geomorphic features
and benthic habitats (listed in Table 5) within existing MPAs;
hence MPAs in 48 out of 66 LMEs do not comply with the
guidelines, even using this 10% requirement, which is at the
lower end of the representation range. The OSPAR Convention
Guidelines, used to designate deep-water MPAs in the UK’s
EEZ, include the principle of representation of habitats, and this
led to the protection of representative examples of seamounts,
canyons, deep-water coral mounds, and other features (Chaniotis
et al., 2020). Representation of habitats was also one of
three principles (along with comprehensiveness and adequacy)
used for the designation of offshore MPAs in the Australian
EEZ under the National Representative System of Marine
Protected Areas Program (ANZECC, 1996; Commonwealth of
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TABLE 5 | Major habitats of open ocean environments and suggested minimum proportions for inclusion in no-take MPAs if Guideline 4 applies (representation of

bioregions).

Habitat Definition Suggested

minimum % for

no-take MPAs

Shelf valleys Valleys incised more than 10m into the continental shelf, greater than 10 km in length. 10%

Coral reefs beyond the

continental shelf

(Oceanic context) A ridge of calcium carbonate rock in the sea formed by the growth and deposit of coral,

surmounted by a living coral reef and rising directly from deep water.

25%

Oceanic islands beyond the

continental shelf

(Oceanic context) A ridge of rock in the sea, rising directly from deep water, usually at the apex of a seamount or

pinnacle.

25%

Basins (of various sizes, of

seas and oceans, perched

on the continental shelf,

plateau or slope)

A depression in the sea floor of variable extent. 10%

Shelf, slope, abyssal and

hadal sills

A sea floor barrier restricting water movement between basins. 20%

Slope terraces An isolated (or group of) relatively flat horizontal or gently inclined surface(s), sometimes long and narrow, which is

(are) bounded by a steeper ascending slope on one side and by a steeper descending slope on the opposite side.

10%

Slope, abyssal and hadal

escarpments

An elongated, characteristically linear, steep slope separating horizontal or gently sloping sectors of the sea floor in

non-shelf areas.

10%

Seamounts (of various

types, rising from all

depths)*

A discrete (or group of) large isolated elevation(s), greater than 1,000m in relief above the sea floor,

characteristically of conical form.

20% of each

seamount type*

Canyons (shelf incising,

connected to river systems)

Steep-walled, sinuous valleys with V-shaped cross sections, axes sloping outwards as continuously as river-cut

land canyons and relief comparable to even the largest of land canyons. Shelf incising canyons have heads that

cut across the shelf break, and in which there are landward-deflected isobaths on the continental shelf, and there

is a clear bathymetric connexion to a major river system.

10%

Canyons (shelf incising) Steep-walled, sinuous valleys with V-shaped cross sections, axes sloping outwards as continuously as river-cut

land canyons and relief comparable to even the largest of land canyons. Shelf incising canyons have heads that

cut across the shelf break, and in which there are landward-deflected isobaths on the continental shelf, without a

bathymetric connexion to a major river system.

10%

Canyons (blind) Steep-walled, sinuous valleys with V-shaped cross sections, axes sloping outwards as continuously as river-cut

land canyons and relief comparable to even the largest of land canyons. Blind canyons are those which have

heads that are wholly confined to the slope, below the depth of the shelf break.

10%

Ridges An isolated (or group of) elongated narrow elevation(s) of varying complexity having steep sides, often separating

basin features.

10%

Troughs A long depression of the sea floor characteristically flat bottomed and steep sided and normally shallower than a

trench.

10%

Trenches A long narrow, characteristically very deep and asymmetrical depression of the sea floor, with relatively steep sides. 15%

Bridges A geomorphic “bridge” across troughs or trenches; they may partially infill trenches and troughs. 10%

Fans A relatively smooth, fan-like, depositional feature normally sloping away from the outer termination of a canyon or

canyon system

10%

Plateaus Flat or nearly flat elevations of considerable areal extent, dropping off abruptly on one or more sides. 15%

Epipelagic zone The first 200m of open ocean, where planktonic primary producers receive enough light for photosynthesis, and

therefore form the basis of the food web.

20–30%

Mesopelagic zone From 200 to 1,000m, primary production is replaced by sinking organic matter (marine snow), including plankton,

as the primary food source.

20–30%

Bathypelagic zone Between 1,000 and 4,000m there is no sunlight penetration, and conditions in any one location are relatively

stable and uniform.

20–30%

Abyssopelagic zone From 4,000 to 6,000m is an area of immense pressure and very low temperature. 20–30%

Hadopelagic zone This habitat occurs in ocean trenches, below 6,000m, to a maximum depth of ∼11,000m in the deepest parts of

the ocean, the Marianas and Tonga Trenches.

20–30%

Any other habitats 20–30%

Habitat names and definitions adapted from Harris et al. (2014), definitions from Harris et al. (2014) and IHO (2008). Updated from Ceccarelli et al. (2018b), and based on biophysical

operational principles from the literature (see Table 3 and Guideline 3). *Seamount types further classified as per Macmillan-Lawler and Harris (2016).

Australia, 2003). There is therefore a strong precedent for
the use of this guideline in offshore environments (see also
Table 3).

Offshore environments have a multitude of static, recurring
and ephemeral habitats, both benthic and pelagic, that can be
mapped and used for spatial planning (Hyrenbach et al., 2000;

Frontiers in Marine Science | www.frontiersin.org 12 July 2021 | Volume 8 | Article 634574

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ceccarelli et al. Biophysical Guidelines for Offshore MPAs

Roberts et al., 2003; Belkin et al., 2009; Harris et al., 2014; Miller
and Christodoulou, 2014). These habitats occur at a variety of
scales and harbour different levels of diversity; for example,
expanses of relatively homogeneous and low diversity basins or
plains are very different from much smaller features, such as
seamounts, which may nevertheless host higher concentrations
of life. To a large extent, we still lack the knowledge to
differentiate similar-looking open ocean habitats from one
another. But we do know, for example, that not all seamounts are
equally productive and diverse (Samadi et al., 2006). Identifying
the location and mapping the extent of offshore habitats still
largely relies on proxies; habitats may be identified by analysing
the foraging distribution of higher predators (Hyrenbach et al.,
2000; Patterson et al., 2016; Hobday et al., 2017; Queiroz et al.,
2017), by making use of sophisticated real-time satellite imagery
(Game et al., 2009), by using maps of seabed geomorphology
(Harris and Baker, 2012; Harris et al., 2014; Beaman et al., 2016),
oceanographic attributes or some combination of the above and
other methods. In the context of spatial planning, lessons learned
from general design guidelines are more difficult to apply to
offshore waters, given the biophysically dynamic nature of pelagic
seascapes (Kavanaugh et al., 2016); static geological habitats are
more straightforward for MPA design (Table 5).

Given the relatively data-poor status of most offshore habitats,
and because marine bioregions are not usually defined at a
useful scale, (and therefore Guideline 4, below, cannot be
applied), research suggests that representing 30–40% of each
habitat in offshore no-take MPAs enhances the likelihood of
capturing unknown, and therefore unmapped, within-habitat
variability, and even unknown features (O’Leary et al., 2016b;
Table 3). Where there is some knowledge about offshore marine
bioregions at a scale useful within countries’ EEZs and in ABNJ,
Guideline 4 could be applied first, and subsequently 10–30% of
each offshore habitat can additionally be represented in no-take
MPAs as per Table 5.

In sum, the literature recommends that (a) where bioregions
are not defined, 30% of each habitat should be included in no-take
MPAs; and (b) where bioregions are defined, ensure that 10–30%
of each offshore habitat is represented in no-take MPAs.

Offshore Guideline 4: Representation of
Bioregions
Using surrogates for patterns of biodiversity during spatial
planning allows for MPAs to capture close to 100% of the
diversity of marine life within a given area, despite imperfect
knowledge, and while requiring much less than 100% coverage
of the geographic area (Foley et al., 2010; Bridge et al., 2016).
Bioregions are commonly used surrogates that define areas
with relatively similar assemblages of biological and physical
characteristics, without requiring complete data on all species,
habitats and processes (Spalding et al., 2007; Costello et al.,
2017). Protecting an adequate proportion of bioregions within
no-take MPAs helps to manage for the uncertainty associated
with habitat and species distributions, and thus reduces the risk of
overexploitation of marine populations in areas that remain open
to extraction (Botsford et al., 2003; Gaines et al., 2010; Wilson

et al., 2011; Day et al., 2012; Fernandes et al., 2012; Green et al.,
2013; Ballantine, 2014).

Of the 52 studies that listed MPA design guidelines or
principles, 15 (29%) included the representation of bioregions,
indicating that habitats (included in 88% of studies) are more
commonly understood than bioregions, even in coastal seas.
Among studies that provided numeric guidance, only five
included proportions of bioregions, and only in coastal areas,
whilst 22 gave percentages of habitats to be included in no-take
MPAs (Table 3). In coastal ecosystems, the best available evidence
advises that at least 20–40% of each bioregion should be included
in no-take MPAs or MPA networks to ensure that representative
examples of marine biodiversity are captured (see also Guideline
3; Table 3). The percentage of each bioregion to be included in
MPAs should be increased in areas experiencing lessmanagement
generally (e.g., poor or absent fisheries management), or subject
to more destructive activities.

The logic pertaining to bioregion guidelines is equally
applicable to offshore environments. Management of the ocean
from a biodiversity protection point of view is usually undertaken
within the EEZ of individual countries, but most current
bioregionalisations span many countries and are too coarse
to undertake planning at a national level (UNESCO, 2009;
Clark et al., 2011; O’Hara et al., 2011; Reygondeau et al., 2012;
Watling et al., 2013; Proud et al., 2017; Sayre et al., 2017; Sutton
et al., 2017). Finer-scale marine bioregions need to be described
to support national planning processes (Etnoyer et al., 2004;
Reygondeau et al., 2012; Mannocci et al., 2015; Proud et al.,
2017). Recently, offshore marine bioregions have been defined at
an appropriate scale in some parts of the global ocean; that is,
they are described at a scale useful to the area being managed.
For example, multiple offshore marine bioregions have been
rigorously described within and beyond national jurisdictions
within Southwestern Pacific Island countries (Wendt et al.,
2018; Beger et al., 2020), Canada (e.g., Arafeh-Dalmau et al.,
2017), and Australia (Fernandes et al., 2005; Department of the
Environment and Heritage, 2006). Delineating bioregions at an
appropriate scale allows for their use in ensuring representation
of the range of offshore biodiversity in national-scale MPA
design. Guideline 4 therefore applies only to jurisdictions or
ABNJ where marine bioregions have been described at such an
appropriate scale (Gilman et al., 2011); for other jurisdictions or
ABNJ, see Guideline 3.

In sum, the literature recommends (a) the protection of 20–
40% of each bioregion within no-take MPAs, or (b) where areas
outside the MPA are subject to destructive activities or a lack of
management, the percentage should increase.

Offshore Guideline 5: Space MPAs for
Maximum Connectivity
Connectivity within a network of MPAs is important because it
ensures that if a population vanishes or a habitat is damaged
in one MPA, it can be restored through the movement
of larvae or adults from another MPA, or an undamaged
habitat upstream (Jones et al., 2007; Hilário et al., 2015).
Genetic connectivity (genetic exchange among individuals
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within and between populations) depends on the absolute
number of dispersers among populations, whereas demographic
connectivity (exchange of individuals between spatially separate
populations) depends on the relative contributions to population
growth rates of dispersal vs. local recruitment (i.e., survival
and reproduction of residents) (Lowe and Allendorf, 2010).
Demographic connectivity, which influences recruitment levels,
occurs over smaller scales than genetic connectivity. From a
genetic standpoint, connectivity ensures genetic diversity within
populations, which in turn ensures population persistence and
evolutionary potential (Jones et al., 2007).

Connectivity and spacing of MPAs in a network are included
in 28 (54%) of the 52 studies that explicitly discuss MPA design
guidelines or principles. In a functioning marine ecosystem,
populations or patches of similar habitat that are geographically
separate are linked through the movement of organic and
inorganic matter, nutrients, energy, larvae, juveniles and adults
(Cowen et al., 2007; Brock et al., 2012; Worboys et al., 2016;
Hillman et al., 2018). Larval connectivity within an MPA
network can occur between MPAs that are from 1 to 200 km
apart (Table 3), depending on the species, with inshore species
generally connected over smaller scales than offshore species
(Jones et al., 2007; Shanks, 2009; Gilman et al., 2011; Harrison
et al., 2012; Green et al., 2014). Larval connectivity research
on coastal coral reef fishes suggests that dispersal is a declining
function with distance, with many larvae settling in or close
to their natal reefs, and fewer travelling 10s to even 100s of
kilometres away (Harrison et al., 2012; Almany et al., 2013,
2017; Williamson et al., 2016; Abesamis et al., 2017; Bode et al.,
2019). On the Great Barrier Reef, reserves are commonly less
than 15km apart, which is clearly well within the dispersal range
for most coral reef organisms (Almany et al., 2009). A wide
range of reserve spacings have been recommended, including <

100 km apart (Sala et al., 2002), < 20 km (Shanks et al., 2003),
10–200 km (Palumbi, 2004), 40–80 km (Roberts et al., 2010), 1–
50 km (Jones et al., 2009), 1–15 km (Green et al., 2014), and 50–
200 km (Munguia-Vega et al., 2018). The accumulating empirical
research suggests that connectivity levels inMPAnetworks will be
robust to variation in reserve spacings in the ranges advocated,
largely because most species appear to have a long tail to their
dispersal kernels (Jones et al., 2007). While there is also clear
evidence that some marine larvae disperse distances in excess of
1,000 km (Manel et al., 2019), it is questionable whether reserves
spaced this distance apart would offer any demographically
significant connectivity.

In offshore waters, larger distances between populations or
habitats make connectivity more diffuse, but fewer barriers
to dispersal means that some populations are more widely
distributed than inshore (Maas et al., 1999).Migratory and wider-
ranging species have populations that are connected over small
scales as well as over 100s, and sometimes 1,000s of kilometres
(Lam et al., 2016). It has been shown that designing MPAs
with a focus on connectivity, rather than just for species or
habitats on their own, is especially important and has a greater
chance of success in pelagic ecosystems (Moffitt et al., 2011). The
scales of dispersal and connectivity for MPA design in the deep
sea are larger than those in shallow water, as suitable habitats

tend to be more isolated (Baco et al., 2016). As for inshore
and nearshore MPAs, offshore MPAs are likely to benefit from
placement that takes into account adjacent inshore or nearshore
MPAs, or areas with existing protection, such as areas in which
tuna fishing or the killing of sharks is already banned (Jones et al.,
2007). Furthermore, in offshore waters vertical connectivity is
as important as horizontal connectivity, and occurs through the
downward drift of organic matter (marine snow), deep-diving
ocean predators, and the vertical migration of deep-dwelling
species that move toward the surface to feed at night (Sutton,
2013; Afonso et al., 2014). MPA design needs to take into account
potential connectivity pathways along benthic and demersal
depth gradients (Papastamatiou et al., 2015). When designing
MPAs in offshore waters, it may be necessary to include MPAs
that serve as “stepping stones,” that play key roles in dispersal
or migration, by providing resting or feeding points (e.g., the
staging areas known in bird migrations). These may be otherwise
unremarkable habitats, but crucial to the persistence of species
of interest.

Movement occurs either passively with currents or actively,
through active dispersal, movement and migration. Within
networks of MPAs, movement ideally occurs between protected
areas (Roberts et al., 2010), and also between protected and
unprotected areas (Gaines et al., 2010). A study of larval dispersal
across a number of different habitat types found that species
in soft-bottom subtidal habitats have the greatest potential for
extensive larval dispersal (Grantham et al., 2003). However,
pelagic larval duration has been estimated for only 93 taxa that
reside in depths over 200m; deep-dwelling taxa have a range of
larval durations from 2 to over 200 days (Hilário et al., 2015). The
lack of knowledge about larval traits such as swimming ability
(both horizontal and vertical) and larval duration is a serious
impediment to predicting connectivity in offshore species (Gary
et al., 2020).

Dispersal in deep-sea larvae has the added complexity of
vertical swimming ability, which has a strong influence on
horizontal dispersal because of the vertical layering of different
currents (Gary et al., 2020). Dispersal strategies are also
important; deep-sea sessile organisms such as corals can have
either a dispersive larval stage or reproduce asexually, resulting
in either highly connected or isolated populations, similarly to
coastal species (Miller and Gunasekera, 2017; Strömberg and
Larsson, 2017). However, in the deep sea isolated habitats, such
as hydrothermal vents or deep-sea biogenic mussel reefs, are
much more widely dispersed than inshore habitats, and are
often largely self-seeding (Elsäßer et al., 2013). These discrete
habitats can be captured through the application of Guidelines
2 and 3, and MPAs can therefore be sized to allow for
self-replenishment and spaced at variable distances to allow
for significant levels of connectivity. Greater benefits to the
broader marine ecosystem are expected from MPAs that are self-
replenishing, interconnected and/or important source areas for
larvae (Krueck et al., 2017; Ross et al., 2017). The movement
of larvae, juveniles and adults across MPA boundaries can be
seen as negative because it implies a lower level of protection for
individuals that move into areas where they can be exploited (e.g.,
Gruss et al., 2011). However, this “spillover” restores populations
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and target species and can therefore benefit fisheries and the
broader ecosystem alike (Gell and Roberts, 2002; Harrison et al.,
2012; Kerwath et al., 2013).

The maximum spacing recommended between MPAs in
coastal networks is 200 km, with a wide range of distances
depending on the geographic characteristics (Table 3). For
offshore MPAs or in documents that included both coastal
and offshore environments, the most common spacing
recommendations were 20–200 or 50–100 km (Thomas and
Shears, 2013; Lundquist et al., 2015; Burt et al., 2018). Based on
these existing offshore guidelines and the current understanding
of offshore connectivity, this guideline adopts the entire range
(20–200 km) of existing spacing recommendations.

In summary, the existing literature recommends that offshore
MPA spacing should be in the range of 20–200 km. This distance
adequately encompasses the known range of dispersal distances
for offshore marine species (Green et al., 2014) and acknowledges
that network designs should be robust to a wide range of
reserve spacings.

Offshore Guideline 6: Represent Whole
Features
Some habitat areas and features (e.g., seamounts, submarine
canyons, etc.) tend to function as complete entities and have
a level of ecological integrity. The functioning of a habitat or
feature depends on linked processes that may occur in different
areas (e.g., the seamount summit vs. the slope), but are connected
across the entire habitat or feature. It is therefore important to
represent entire habitats or features within the same level of
protection and avoid “split zoning” (Day et al., 2012; Fernandes
et al., 2012; Rigby et al., 2019; Lecours et al., 2020). The concept
of split zoning is not often encountered in the coastal MPA
literature, as it is likely to reduce the ecological integrity of
an MPA and lead to problems of public understanding and
compliance (Day, 2002).

Representing whole features is equally important in coastal
and offshore ecosystems. Using a seamount example, primary
production and nutrient cycling that occur near the surface
produce food which is then distributed to deeper areas;
organisms from deeper areas may migrate vertically to feed at
night (Clark et al., 2014). Therefore, protecting only part of
a habitat or feature (such as a seamount) means that human
impacts would still be affecting ecological communities adjacent
to the no-take MPA, subjecting it to potential flow-on or
indirect effects such as changes in the abundance or behaviour
of organisms. Similarly, deeper parts of canyons are strongly
dependent on processes from shallower areas, and vice versa. In
the open ocean, habitats and features can be isolated by large
expanses of deep open water (e.g., seamounts, canyons, ridges) or
areas with hydrologically different characteristics (e.g., upwelling,
fronts), and protecting them in their entirety becomes even more
important than in inshore habitats for safeguarding ecological
functions and processes.

Vertical zoning (applying different management rules to
benthic and pelagic habitats of the same area) is also not
recommended (Grober-Dunsmore et al., 2008; Lausche, 2011).

Despite knowledge gaps around benthic-pelagic coupling (Day
et al., 2012), emerging evidence suggests that it is stronger than
previously thought (Grober-Dunsmore et al., 2008). Benthic
communities, especially around prominent undersea features,
provide food, shelter, and meeting points for pelagic species
(Morato et al., 2010; Garrigue et al., 2015), which, in turn, also
directly or indirectly regulate benthic communities. Passfield
and Gilman (2010) show that the feeding of predators around
seamounts affects seamount benthic ecology; vertical zoning
would disturb this coupling. Some tuna aggregations may be
present at an individual seamount for up to a period of weeks or
months, resulting in a significant contribution to biological and
ecological processes (Sibert et al., 2000). Similarly, bathypelagic
fish assemblages have been found directly associated with ridge
systems, where trophic linkages are likely to be bi-directional
(Sutton et al., 2008).

The trophic influence of pelagic species on demersal and
benthic communities may be largely indirect, such as large,
mobile pelagic species preying on the predators of benthic
prey, or preying on bentho-pelagic species (Allain et al., 2006).
There is also an ontogenetic link between pelagic and benthic
seamount habitats: most seamount benthic species have a pelagic
stage, usually as larvae (Allain et al., 2006). Depletion of pelagic
predators may therefore indirectly affect benthic communities
through release from predation of certain functional groups,
increasing prey species abundance and subsequently affecting
their interactions with benthic species, such as occurs in trophic
cascades (Estes et al., 2011). It could be argued that benthic
communities become ever more dependent on pelagic species
with increasing depth, as organisms in deeper waters become
almost entirely dependent on marine snow and sinking carcasses
of larger pelagic animals for food (Bochdansky et al., 2017).

Therefore, where possible, no-take MPAs should protect offshore
features in their entirety, both horizontally and vertically.

Offshore Guideline 7: Replicate Protection
of Bioregions or Habitats
The concept of replication in MPA design refers to representing
each feature, bioregion, or habitat more than once, or placing
multiple MPAs within a bioregion, geographic area or other
feature of interest, at the scale of the area for which the
MPA or MPA network is being designed. In the face of
climate change, replication across environmental gradients
increases the probability of survival, movement, regeneration,
range shifts, or even adaptation of community assemblages
and the species within them; this is just as relevant to
the deep sea as to shallow-water habitats (Danovaro et al.,
2017). Furthermore, representation of latitudinal or longitudinal
gradients is important for capturing the range of habitat types
and species compositions (Ministry of Fisheries and Department
of Conservation, 2008), which are not usually organised into
discrete areas, but blend into each other along such gradients.

The replication guideline is common throughout the literature
(18 out of 23 documents with a list of guidelines, or 78.3%),
and usually recommends protecting three of more examples of
a habitat within no-take MPAs (Table 3). The primary goal is
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risk-spreading, to provide some redundancy to protect against
unexpected disturbances or population collapse (e.g., Burt et al.,
2018). Protecting several spatially separated examples of similar
features (e.g., sites important for a population of a threatened
species, patches of similar habitat, breeding sites), reduces the
risk of losing the entire feature(s) of interest to disturbance,
poaching or even random temporal variability (e.g., recruitment
failure; cyclones; Gilman et al., 2011). Most destructive events
are spatially patchy, allowing some areas or individuals to escape
damage and provide a source of regeneration for damaged
areas or depleted populations (Salm et al., 2006). However,
while a number of papers provide modelled or empirical tests
of the effectiveness of size and spacing guidelines (e.g., Edgar
et al., 2014; Robb et al., 2015; Hargreaves-Allen et al., 2017),
the replication guideline is yet to be explicitly tested, even in
coastal MPAs.

Representing multiple examples of features or habitats in
MPAs can be both easier and more problematic in the open
ocean. On the one hand, larger MPAs are more feasible, which in
turn increases the likelihood of encompassing multiple examples
of a feature (e.g., multiple seamounts, canyons, hydrothermal
vents, etc.). Also, bioregions tend to be large (e.g., O’Hara et al.,
2011; Reygondeau et al., 2012), making it easier to include
replicate no-take MPAs within a bioregion. On the other hand,
and depending on scale, many features of interest in the open
ocean are very large and some are unique (e.g., the Tonga
Trench); in such cases, there are, effectively, no other features
with exactly the same attributes in existence (Richer de Forges
et al., 2000).

The replication guideline can also be used to protect
populations of protected species along movement and migratory
pathways. Migration pathways can cover entire ocean regions,
making replication of the whole migration pathway impossible,
but replicated sections of an individual pathway can be protected.
Migratory and wide-ranging species may focus their routes over
areas of high productivity, or they may rest or aggregate at
particular locations (Block et al., 2011); these types of locations
can also be replicated. Many populations of migratory species
have only one main migration pathway (e.g., migratory seabirds,
turtles that move between the western and eastern Pacific). MPA
networks can therefore be designed to protect several points
along each population’s known migration route. Where the
literature makes quantitative recommendations about replication
in offshore MPAs, the numbers range from one to five replicates,
but a minimum of three is the most common design guideline
(Table 3).

In summary, where possible, including 3–5 examples of each
feature, habitat or bioregion within the no-take MPA network
is recommended.

Offshore Guideline 8: Use Simple Shapes
The boundaries of an MPA need to be determined according to
the extent and location of the species, features, bioregions, and
ecological processes they are intended to protect. Additionally, to
maximise the ease of compliance, the boundaries of both inshore
and offshore no-take MPAs are best placed according to parallel

or perpendicular coordinates. Edges of MPAs can be subject to
intense fishing pressure and fishing incursions, and therefore
offer a weaker refuge than the core interior (Halpern, 2003;
Halpern and Warner, 2003). Therefore, the ideal MPA shape is
simple (Table 3) andminimises the edge effect by maximising the
protected area to boundary ratio (Roberts et al., 2010; Rodríguez-
Rodríguez et al., 2016). Squares or circles are considered to be
the most favourable shapes to protect biodiversity; the former,
or relatively “squat” rectangles, are preferable from a compliance
point of view (Fernandes et al., 2012; White et al., 2012).

Simple, squarish shapes both minimise edge effects and
simplify compliance.

Offshore Guideline 9: Choose Permanent
Over Temporary Protection
The duration of no-take protection depends on the objectives of
theMPA, but for biodiversity conservation objectives, permanent
protection is recommended (Dudley, 2008), as the benefits of
MPAs are known to increase measurably with age (Edgar et al.,
2014). In addition, permanent protection provides time for the
entire marine community to recover from human impacts as well
as ensuring permanent fisheries benefit from “spillover” effects
to be realised (IUCN-WCPA, 2008). Depending on the life cycle
of protected species, it can take many years for populations to
recover from exploitation (Russ, 2002); the re-establishment of
balance and stability within a whole ecosystem can take 10 years
or more even for shallow habitats (Johns et al., 2014). While
seasonal, rotational or temporary closures may be beneficial for
no-take areas designed for fisheries (Cinner, 2005; Kaplan et al.,
2010; Sadovy et al., 2011), those benefits are quickly eroded or lost
upon opening the area to fishing (Russell et al., 1998; Friedlander
and DeMartini, 2002).

In the deep sea, recovery can take between three times and
orders of magnitude longer (Huvenne et al., 2016; Fariñas-
Franco et al., 2018; Girard et al., 2018). Large pelagic species
of conservation interest and deep-water species tend to be
long-lived, slow-growing and late-reproducing (K-selected life
histories) compared to many of their coastal counterparts;
therefore, these populations, once exploited, take longer to
recover (Alcala et al., 2005; Hart, 2006). For example, the
orange roughy (Hoplostethus atlanticus) is highly sought after
by commercial deep-trawl fisheries, but its extraordinary
lifespan (up to 150 years) makes it extremely vulnerable to
overexploitation (Doonan et al., 2015). In the open ocean,
recovery may also occur over the scale of decades, as seen, for
example, in the case of the humpback whale populations after
the cessation of widespread whaling (Pavanato et al., 2017). The
rates of population increase of deep-sea elasmobranchs are less
than half those of shelf and pelagic species; once a stock has
been depleted, recovery is in the order of decades to centuries
(Simpfendorfer and Kyne, 2009). Therefore, offshore ecosystems
would especially benefit from permanent protection (Huvenne
et al., 2016; Mee et al., 2017).

In sum, implement permanent protection of offshore networks
of no-take MPAs.
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Offshore Guideline 10: Minimise Threats
Outside No-Take MPAs
The minimisation of threats to the marine environment as
a component of MPA design was included in 12 of the 52
documents (23%) with a list of guidelines; in many cases, one
of the tools proposed for threat minimisation was multiple-
use zoning. Both stand-alone MPAs and networks of MPAs can
allow for multiple-use zoning (Fraschetti et al., 2009), and for a
proportion of each MPA to be designated as no-take (Bohnsack
et al., 2004). This paper focuses on guidelines for no-take MPAs
because of the conservation and compliance advantages they
provide, but also due to the fact that most of the available science
focusses on no-take MPAs (Edgar et al., 2014). Recognising,
however, that other types of MPAs may also be useful for
political, cultural or socio-economic reasons, some guidance is
also given here for MPAs that allow some degree of human use.
Definitions for a range of types of MPAs exist; the IUCN sets out
categories for MPAs with different levels and types of permitted
use (Dudley, 2008; Day et al., 2012). Zoning for different levels of
use allows for the minimisation or exclusion of individual threats
from a wider area (Day, 2002; Grantham and Possingham, 2011;
Wilson et al., 2011).

Understanding the spatial distribution of potential stressors
or impacts can provide additional guidance for the placement
of other categories of MPAs (Halpern et al., 2007). The severity
and extent of the stressors may also inform the percentage of
an area to be included within MPAs of all categories, including
no-take. MPA zoning should also be based on an understanding
of cumulative impacts, which relies on the availability of both
spatial and temporal data. This understanding can also help
to assess the potential threats to future and existing MPAs, as
well as the threats to unprotected areas. Any highly destructive
activities should be prohibited within the area being managed
or considered for inclusion within an MPA, regardless of zoning
(Fernandes et al., 2012).

For the design of offshore MPA networks, a simplified version
of the IUCN categories will be less confusing for stakeholders
and easier for compliance monitoring and enforcement (Day
et al., 2012). The rationale and guidelines applied to no-
take MPAs should also apply, as much as possible, to other
categories (Day et al., 2012). Reducing threats by the application
of other categories of MPAs and other management to areas
surroundingMPAs will enhance the effectiveness of no-take areas
and enhance the ecological health of the management area as a
whole. These threats may include shipping, fishing, mining, and
other potentially destructive human uses (Halpern et al., 2007).
Given the relatively data-poor nature of offshore waters, threat
reduction in general can help secure areas, features, or species not
yet identified as requiring spatial protection (Jessen et al., 2011).

In sum, apply management to minimise threats overall, and
use globally accepted zoning categories that are recognisable
to stakeholders.

DISCUSSION AND CONCLUSIONS

Many of the same design guidelines used to protect
coastal regions apply in the open ocean (e.g., size, shape,

distance, replication, percentages), with specific tailoring and
prioritisation for the characteristics of oceanic ecosystems and
species. However, designing MPAs and MPA networks in the
open ocean requires a broader perspective than in coastal seas.
The main differences between protecting inshore and oceanic
areas are related to scale and distance, and are based on a lower
level of knowledge and larger uncertainties associated with the
open ocean (Table 2).

Next Steps: Applying the Design Guidelines
The guidelines developed in this paper are adapted for
offshore environments from existing guidelines for the design
and placement of inshore or coastal MPAs (Table 2). Whilst
detailed, specific offshore MPA biophysical design guidelines
have never been proposed before, the science about offshore
marine environments and the effects of offshore MPAs has
advanced enough for this initial set of guidelines to be developed.
Additionally, some offshore MPAs have already been designed
and implemented according to guidelines adapted from coastal
MPA design, setting a precedent that indicates the need for
a globally applicable set of offshore guidelines. These are
guidelines based on current knowledge, however, and should
not be interpreted as fixed targets (Agardy et al., 2003). Lessons
learned from the first offshore MPAs in the UK reveal three key
considerations: (1) offshore MPAs require a strong regulatory
basis with integration of fisheries and conservation and a
clear financial commitment to enforcement and monitoring; (2)
uncertainty and the need for precautionary approaches increase
with increasing distance offshore; and (3) transparency tends
to be reduced, calling for greater stakeholder engagement (De
Santo, 2013). The offshore MPA biophysical design guidelines
in this paper have been prepared for the use of practitioners,
and it is our hope that this paper may stimulate interest in
further adaptations and refinements. We suggest that the next
steps for operationalising the guidelines on an international level
are (1) setting them into a systematic marine spatial planning
framework; (2) prioritising guidelines for ease of application; (3)
considering uncertainty; (4) emphasising the need for adaptive
management; and (5) special considerations for monitoring in
offshore environments.

Systematic Planning
Systematic marine spatial planning refers to a multi-step
process that can be used to implement any network of MPAs,
including offshore MPAs, and includes stakeholder consultation,
application of design guidelines, strategies to incorporate
uncertainty and adaptive management systems (Kelleher and
Kenchington, 1992; Ehler, 2008; Ehler and Douvere, 2009;
Ceccarelli et al., 2018a). This paper acknowledges that biophysical
design principles for MPAs form only a small, albeit important,
part of the overall marine spatial planning process. For example,
the biophysical design guidelines presented here will need
to be applied in concert with cultural, social, and economic
considerations (Ehler and Douvere, 2009; Lewis et al., 2017).
Introducing them into a broader marine spatial planning context
will allow for their integrations into an existing regulatory
context (De Santo, 2013). Ultimately, compliance with any MPA’s
restrictions will be the most important contributor to MPA
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success and an effective planning process will stimulate a higher
degree of voluntary compliance (Edgar et al., 2014; Arias et al.,
2016).

Systematic spatial planning for offshore waters has the
same framework as in coastal ecosystems, but with larger
areas, different scales of human operations and ecosystem
functioning, higher uncertainty, and, in the case of ABNJ,
international collaboration (O’Leary et al., 2012). In the absence
of comprehensive information, it may be pragmatic to select
some sites for MPAs based on fragmented knowledge, or
scientific inference based on similar sites (O’Leary et al., 2012).
Comprehensive MPA network design guidelines, such as those
presented here, help counter and complement information
limitations and high uncertainty by incorporating design features
(e.g., minimum requirements, replication) that are robust to
potential knowledge failures (Langford et al., 2009).

The first consideration identified from the UK experience
suggests that the proposed biophysical guidelines need to be
applied within a larger process of marine resource management,
which may include other tools to managing large pelagic species,
ecosystems and fisheries (Dulvy, 2013; Duarte et al., 2020). Part
of broader toolbox may be multiple types of MPAs within a
network within which different levels of activity can continue
taking into account existing threats and endeavour to minimise
them across the entire network (Day et al., 2012). Ultimately,
no-take MPAs can only stop extractive uses, and must be
used in conjunction with other sectoral resource management
tools, pollution controls and actions to reduce greenhouse gas
emissions (Hilborn, 2016; Duarte et al., 2020).

Prioritising the Guidelines
Depending on the information available, the guidelines may
be more difficult to apply in different parts of the world, and
especially in ABNJ where reaching international agreements can
be a lengthy process. The challenge of wholly applying these
guidelines in poorly understood offshore environments under
pressure from unpredictable impacts (e.g., climate change) can
be more easily met by prioritising at least some guidelines
(Fernandes et al., 2009; Gilman et al., 2011; IUCN-WCPA, 2018).
We prioritise the “top three” guidelines as follows:

1) Guideline 1 (size), because maximising the size of MPAs
increases the likelihood of other guidelines being applied
automatically. In data-poor systems, it also provides insurance
against missing important, but as yet unknown, features
(Rodrigues et al., 2004).

2) Guideline 2 (special areas), because this ensures that large-
scale MPAs will not be placed in areas that are simply of less
commercial interest, but actually include features or species
that require protection (Devillers et al., 2020).

3) Guideline 3 (% representation of habitats) where bioregions
are not defined or Guideline 4 (% representation of
bioregions) where there are defined bioregions at an
appropriate scale (Fernandes et al., 2009). Representativeness
is prioritised because maximising the potential for
representativeness also maximises the biodiversity and

ecological processes that can be captured within no-take
MPAs (Harris, 2007).

Guidelines 1 and 2 together offer the best precautionary approach
to maximise the inclusion of offshore biodiversity in larger
offshore MPAs, while capturing special features/areas and thus
avoiding the protection of large areas of little commercial interest.
When data are absent or limited for Guideline 2, Guidelines 3 or
4 become more important.

Dealing With Uncertainty
Uncertainty is a pervasive problem in both inshore and offshore
marine resource management, because most marine areas are
still data-poor. Observed patterns are often governed by multiple
interacting factors at various spatial and temporal scales, many
of which are poorly understood. Overcoming uncertainty and
data challenges in offshore MPA design can include the use of
remote measurements of environmental conditions as biological
proxies, non-comprehensive data collected at different spatial
scales, surrogate species, marine community classifications such
as bioregionalisations, expert and stakeholder participatory
decision-making, regional-scale remote sensing studies or a
combination of these (Harris and Whiteway, 2009; Beger
et al., 2020). Furthermore, to achieve most marine resource
management goals in data-poor systems, it is prudent to be more
reliant on the precautionary principle, where the burden of proof
is shifted toward ecosystem protection first, followed by the proof
of no environmental damage by human activities (Clark, 1996;
Hooker et al., 2011).

A major source of uncertainty is the changing climate and its
future impacts on the ocean. Natural disturbance regimes are a
component of ecosystems that should also be considered in MPA
design (Harris, 2014). Resistance and resilience to disturbance,
or the ability to either absorb disturbance without change or
to return to pre-disturbance conditions, are becoming more
important as large-scale environmental impacts become more
pervasive (Game et al., 2008; Palumbi et al., 2008). In fact, 12
(24%) of the documents identified during the systematic review
that provided a list of design guidelines specified resilience or
adaptation to climate change as a criterion for selecting MPAs.
Identification of such areas can be difficult in data-poor systems,
because ascertaining these qualities typically requires time-series
data. Therefore, we have not included resilience as a specific
guideline for offshore MPAs or MPA networks. It is possible,
however, that the combination of guidelines, as presented, will
contribute to building ecosystem resilience. Katsanevakis et al.
(2020) suggest a risk assessment framework when implementing
MPAs and MPA networks, which is an effective way to deal with
uncertainty and is applicable in offshore ecosystems.

Adaptive Management
Other ways in which limited information and uncertainty
can be acknowledged and accounted for is with an adaptive
management approach (whereby management is altered if
emerging information deems it necessary; Gormley et al., 2015;
Weinert et al., 2021). Aside from knowledge gaps, management
will need to occur in an uncertain future governed influenced by
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climate change, shifting distributions, home ranges or migration
pathways; for these reasons also, MPA boundaries may require
revision over time (Gruss et al., 2011; Brock et al., 2012; Nickols
et al., 2019). The adaptive management cycle allows for flexibility
and responsiveness to new and improved information as
monitoring of the ecosystem reveals more information about an
MPA’s effectiveness. To allow for adaptive management offshore,
MPA zoning could combine permanent protection with flexible
approaches. Permanent protection is preferred (Guideline 9),
but boundaries could define zones within which certain known
destructive activities (e.g., industrial fishing, bottom trawling,
deep-sea mining) are always prohibited, while the effects of
other activities are monitored and their regulation tailored to
new information.

Monitoring
Although monitoring is an integral part of MPA management,
many offshore environments are lacking in even the most basic
baseline data. However, to meet global conservation targets,
it is impractical to wait until these data are collected before
proceeding withmarine spatial planning andMPA establishment.
The guidelines set out in this paper are designed to optimise the
placement of offshore MPAs and MPA networks using existing
data, and allowing for the incorporation of data collected in
the future.

To continue to improve the effectiveness of offshore networks
of MPAs, especially within an adaptive management framework,
effort must go into gathering and collating baseline data, followed
by performance monitoring. This will include the use of remotely
collected and centrally compiled biological and socio-economic
data. Global datasets on fisheries and oceanic habitats are
being compiled with ever increasing levels of spatial accuracy
(Harris et al., 2014; Pauly et al., 2020; Global Fishing Watch,
2021). Regional or national datasets may be more available
and appropriate to particular planning efforts and may inform
baselines for monitoring; data from ABNJ may be less readily
available. Information from monitoring can then feed into an
adaptive management cycle for existing MPAs (e.g., Dunn et al.,
2018) and broader offshore marine resource management efforts
as well as help refine and improve the design guidelines listed here
for new offshore MPAs.

Monitoring in the open ocean may rely more heavily on
proxies or surrogates than in inshore areas, since data collection
can be logistically challenging and expensive. Monitoring
populations of some of the more wide-ranging species of interest
in offshore MPAs will require a combination of methods,
such as satellite technology, drifting baited stereo-videography,
spotter planes, drones, horizontal acoustics, and vessel-based
sampling (Jaine et al., 2014; Bouchet and Meeuwig, 2015;
Letessier et al., 2017). Physical and chemical data can be easier
to obtain, and, when available, can be a good predictor for
the distribution of some open ocean species (Trebilco et al.,
2011; Reygondeau et al., 2012; Hewitt et al., 2015; Stephenson
et al., 2020). For example, Harris and Baker (2020) concluded
that “Sediment grain size/composition was found to be the
most useful surrogate for benthic communities in the most
studies, followed by acoustic backscatter, water depth, slope,

wave–current exposure, substrate type, seabed rugosity, and
geomorphology/Topographic Position Index.”

Regions of the world where data have been or are being
collected, and uncertainty is lower, can serve as testing grounds
for MPA design. For example, a large portion of the southwest
Pacific has defined bioregions, identified with a combination of
empirical and modelled data and verified through participatory
planning (Beger et al., 2020; Ceccarelli et al., 2021). Bioregions
have also been defined in offshore Australian (Department of
the Environment and Heritage, 2006), UK (Chaniotis et al.,
2020), South African (Livingstone et al., 2018) and Canadian
waters (Burt et al., 2018). Multiple national and international
seabed mapping projects are underway, including efforts to map
the entire seafloor by 2030 (Wölfl et al., 2019); technology
innovations promise to deliver increasingly accurate biophysical
data (e.g., Zhang et al., 2021). This ongoing global acquisition
of data, together with sophisticated theoretical and modelling
approaches, invites both a flexible and adaptive management
approach that can incorporate new information within a
systematic planning framework.

Contributing to a Global Effort
There is a global willingness to move toward effective ocean
conservation, as indicated by the increasing number of large
and very large MPAs (IUCN, 2016b; Lewis et al., 2017) and
national Marine Spatial Planning efforts (Beger et al., 2020).
The global target of “30 by 30” (protecting 30% of the global
ocean within MPAs by 2030) is achievable, especially in the
light of recent additions to the global MPA estate (Duarte et al.,
2020). However, it will rely heavily on the protection of offshore
waters, which make up over 90% of the global ocean (Harris
et al., 2014; Inniss et al., 2016; Sala et al., 2018). Offshore
guidelines, as presented in this paper, are an essential tool to
further assist progress toward this global target. The biophysical
MPA network guidelines developed here are equally applicable,
in principle, within national jurisdictions, within ABNJ and,
with international coordination and cooperation, across national
boundaries or even across national and ABNJ boundaries. The
United Nations Convention on Biological Diversity will convene
in October 2021. One target that will be decided upon is a global
commitment to 30% marine (and terrestrial) protected areas by
2030 (CBD, 2021). This paper provides a significant input to
being able to make such a commitment real.
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