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Despite the well-recognized importance in understanding the long term impact of
anthropogenic release of atmospheric CO2 (its partial pressure named as pCO2air) on
surface seawater pCO2 (pCO2sw), it has been difficult to quantify the trends or changing
rates of pCO2sw driven by increasing atmospheric CO2 forcing (pCO2swatm_forced)
due to its combination with the natural variability of pCO2sw (pCO2swnat_forced) and
the requirement of long time series data records. Here, using a novel satellite-based
pCO2sw model with inputs of ocean color and other ancillary data between 2002 and
2019, we address this challenge for a mooring station at the Hawaii Ocean Time-series
Station in the North Pacific subtropical gyre. Specifically, using the developed pCO2sw
model, we differentiated and separately quantified the interannual-decadal trends of
pCO2swnat_forced and pCO2swatm_forced. Between 2002 and 2019, both pCO2sw and
pCO2air show significant increases at rates of 1.7 ± 0.1 µatm yr−1 and 2.2 ± 0.1
µatm yr−1, respectively. Correspondingly, the changing rate in pCO2swnat_forced is mainly
driven by large scale forcing such as Pacific Decadal Oscillation, with a negative rate
(-0.5 ± 0.2 µatm yr−1) and a positive rate (0.6 ± 0.3 µatm yr−1) before and after
2013. The pCO2swatm_forced shows a smaller increasing rate of 1.4 ± 0.1 µatm yr−1

than that of the modeled pCO2sw, varying in different time intervals in response to the
variations in atmospheric pCO2. The findings of decoupled trends in pCO2swatm_forced

and pCO2swnat_forced highlight the necessity to differentiate the two toward a better
understanding of the long term oceanic absorption of anthropogenic CO2 and the
anthropogenic impact on the changing surface ocean carbonic chemistry.

Keywords: surface pCO2, remote sensing, anthropogenic CO2, sea surface temperature, North Pacific

INTRODUCTION

Since industrialization, the global ocean has been a major sink of the increasing atmospheric CO2,
absorbing ∼25% of anthropogenic CO2 in recent years (Sabine et al., 2004a; Friedlingstein et al.,
2019; Gruber et al., 2019). On one hand, the continuous ocean sink of atmospheric CO2 (its partial
pressure is named as pCO2air) is changing ocean carbonic chemistry and the ocean carbon cycle
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(Borges et al., 2005; Cai et al., 2006; Fujii et al., 2009; Landshützer
et al., 2013; Wanninkhof et al., 2013; Xiu and Chai, 2014). On the
other hand, the resulting ocean acidification has great potential
to degrade marine ecosystems and marine biota, particularly the
calcifying organisms such as shellfish and corals (Widdicombe
and Spicer, 2008; Doney, 2010; Fabricius et al., 2011; Dickinson
et al., 2012; Chan and Connolly, 2013; Davis et al., 2017). Both
impacts are closely related to the sustainable development of the
marine biota and ecology. Therefore, the anthropogenic effect
on surface seawater carbonic chemistry and the potential of the
ocean in absorbing anthropogenic CO2 in the changing world are
pressing concerns of the environmental research community.

At present, the study on anthropogenic CO2 at the sea surface
is quite limited. Instead, there are many studies on anthropogenic
CO2 in the ocean interior. The anthropogenic CO2 stored in
the ocean exists in various forms of carbon, originating from
the cumulative CO2 emissions from human activities (e.g., fossil
fuel combustion, cement production, etc.) since the beginning of
the Industrial Revolution. Several chemical and isotopic tracer
approaches have been attempted to estimate the size of this
pool of anthropogenic CO2 (e.g., Sabine et al., 2002, 2004b; Lee
et al., 2003; Quay et al., 2017; Gruber et al., 2019). However,
due to the sparse measurements of chemical tracers in space
and time, there is still significant uncertainty in the long-term
accumulation rates of anthropogenic CO2 and the potential of the
ocean in continued absorption of anthropogenic CO2, making it
important to investigate the anthropogenic CO2 variabilities at
the sea surface.

One approach for tracking changes in surface pCO2sw is
through the collection of autonomous underway and mooring
observations over the global ocean (e.g., Surface Ocean CO2
Atlas (SOCAT, Bakker et al., 2016; Sutton et al., 2019). Many
studies focused on the overall variabilities in surface pCO2sw
and CO2 flux (e.g., Rödenbeck et al., 2015; Landshützer et al.,
2016, 2019; Gregor et al., 2019; Denvil-Sommer et al., 2019; Iida
et al., 2020 among others). However, because of the absence
of isotope tracers in the autonomous observing systems of
surface pCO2sw, it is very challenging to estimate how much
anthropogenic CO2 emissions is driving measured pCO2sw.
Alternatively, it is known that surface pCO2sw is affected by
both increasing atmospheric CO2 forcing (mainly caused by
anthropogenic CO2 emissions) and natural oceanic forcing
(e.g., driven by oceanic physical and biogeochemical dynamics)
(Fennel et al., 2008; Ikawa et al., 2013; Xue et al., 2016). The
effect of atmospheric CO2 forcing on surface pCO2sw (named
as pCO2swatm_forced hereafter) actually refers to the changes of
surface pCO2sw driven by the increase of atmospheric CO2.
Since the increase of atmospheric CO2 is due to anthropogenic
emissions, the changing rates of pCO2swatm_forced in the
past decades can be used to infer the interannual-decadal
variations of the anthropogenic signals in surface pCO2sw.
Yet the pCO2swatm_forced should be differentiated from the
total observed pCO2sw because of the combination of the
natural variability in surface pCO2sw (pCO2swnat_forced). Here
pCO2swnat_forced refers to the remaining pCO2sw component
without atmospheric CO2 forcing effect, which could be
influenced by different physical and biogeochemical processes in

the ocean, including the biological activities (i.e., photosynthesis
and respiration), ocean warming driven by climate change
and anthropogenic CO2 emissions, and ocean mixing, etc.
The effect of all these different processes was regarded as
the overall natural oceanic forcing effect on surface pCO2sw,
It should be clarified that, although we regard all these
different oceanic processes to be natural, their changes can
still not be completely due to “natural” forcing because
these changes in 2002–2019 inherently and implicitly contain
atmospheric forcing.

Long time data records are needed to quantify the interannual-
decadal trends of pCO2swatm_forced and pCO2swnat_forced in the
ocean. Indeed, Sutton et al. (2019) analyzed the time scale
of trend detection using 40 autonomous mooring time series
of total observed surface pCO2sw over the globe, and found
that anthropogenic trend detection requires a minimum 8
and 16 years of data records for the sites studies in open
ocean and coastal regions, respectively. However, the current
global time series observation network of surface pCO2sw
just starts to approach these time scales, which has made
it difficult to track the atmospheric forcing effect for most
oceanic environments where the moorings are deployed. Several
recent studies attempted to examine the anthropogenic trend
in pCO2sw based on underway measurements in the past
decades (Takahashi et al., 2009, 2014; McKinley et al., 2011).
For example, Takahashi et al. (2009, 2014) found that pCO2sw
is increasing at varying rates of 1.2 ± 0.5∼2.1 ± 0.5 µatm yr−1

in different ocean basins. However, the ship-based measurements
are quite limited in both spatial and temporal coverage, leading
to many uncertainties in the derived rates. More importantly,
these rates are not exactly referring to the atmospheric forcing
rates of surface pCO2sw, because of the combination of natural
variability (i.e., pCO2swnat_forced) as mentioned above and the
difficulty to differentiate and quantify both pCO2swatm_forced

and pCO2swnat_forced using in situ observations of surface
pCO2sw alone.

When combined with in situ surface pCO2sw observations,
satellite remote sensing has become an important tool for
synoptic estimation of surface pCO2sw (e.g., Lohrenz et al.,
2010, 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al.,
2015; Chen et al., 2019). Without a spectroscopic method for
direct measurements of surface pCO2sw from space, it is possible
to develop satellite-based pCO2sw models through correlations
with other related environmental variables. A satellite-based
surface pCO2sw model also makes it possible to differentiate
pCO2swatm_forced from pCO2swnat_forced. Indeed, satellite data
accumulated in the past 20 years show great potential to quantify
the interannual-decadal trends of the atmospheric forcing effect
on pCO2sw. However, the past remote sensing studies mainly
focused on the retrieval of seasonal surface pCO2sw (e.g.,
Lefèvre et al., 2005; Chierici et al., 2009; Zhu et al., 2009;
Borges et al., 2010; Jo et al., 2012; Tao et al., 2012; Marrec
et al., 2015; Parard et al., 2015; Le et al., 2019), and are quite
limited in predicting interannual variability because of their
insufficient parameterization of increasing atmospheric CO2
forcing (Shadwick et al., 2010; Chen et al., 2019). Therefore,
the satellite-based pCO2sw algorithms need to be refined to
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FIGURE 1 | The geolocation of the study site WHOTS (annotated in black star), and the general climate mode of the North Pacific in terms of PDO based on the
HadISST data set (Rayner et al., 2003) for the period 1870–2019.

enable their capabilities in assessing the interannual trends of
pCO2swatm_forced and pCO2swnat_forced.

The Woods Hole Oceanographic Institution Hawaii Ocean
Time-series Station (WHOTS) near Hawaii in the North Pacific
Subtropical Gyre (NPSG) maintains high resolution surface
pCO2sw observations. It provides an important open ocean
reference for Hawaiian coral reefs (Dore et al., 2003; Sutton
et al., 2017; Terlouw et al., 2019), thus is important to know
the interannual-decadal trends of the atmospheric forcing effect
on surface pCO2sw for a better understanding of the long-term
ocean acidification and oceanic absorption of anthropogenic
CO2. The WHOTS station was selected mainly because it has
sufficient field data records for anthropogenic trend detection
as mentioned above. WHOTS is located at station ALOHA (A
Long-term Oligotrophic Habitat Assessment) (Karl and Church,
2018) in the NPSG (Figure 1), under the large-scale climate
forcing of Pacific Decadal Oscillation (PDO). Several published
studies investigated the interannual variability of the upper ocean
carbon cycle at this station (Dore et al., 2003, 2009; Keeling et al.,
2004; Palevsky and Quay, 2017). For example, based on a 14-year
time series (1988–2002) at ALOHA, Brix et al. (2004) found that
surface pCO2sw and isotopic 13C/12C showed long-term increase
and decrease (yet no rates were provided), respectively, and they
attributed it to the uptake of isotopically light anthropogenic CO2
from the atmosphere. Using the same data time series of pCO2sw
at ALOHA, Dore et al. (2003) found that the significant decrease
in CO2 sink in 1989–2001 was driven by the climate variability in
salinity (Lukas and Santiago-Mandujano, 2008). Later based on
a longer data record of 19 years (1988–2007) at ALOHA, Dore
et al. (2009) presented a pCO2sw increasing rate of 1.88 µatm
yr−1. In contrast, with a synthesis of 35 years of observations in
the North Pacific, Takahashi et al. (2006) found the interannual-
decadal change in surface pCO2sw is mostly correlated with the
increases of sea surface temperature (SST) and anthropogenic
CO2. Therefore, it is necessary to further investigate the effects
of both anthropogenic CO2 emissions and the climate-driven
natural variability in the ocean on surface pCO2sw. However, to
date, no studies have differentiated these two forcing effects.

Considering the importance of addressing this knowledge
gap to promote our understanding of the ocean capability in
absorbing anthropogenic CO2 in the long run, here we for

the first time differentiate the atmospheric forcing and natural
forcing effects on surface pCO2sw, that’s, pCO2swatm_forced and
pCO2swnat_forced, based on a novel satellite-based pCO2sw model
developed in this study. Specifically, the objectives of this
study include: (1) develop a satellite-based surface pCO2sw
model at WHOTS, which should be able to capture the
interannual-decadal variabilities in pCO2sw and differentiate
pCO2swatm_forced and pCO2swnat_forced, and (2) quantify the
interannual-decadal trends of both terms in the past 2 decades,
and understand its implications for ocean acidification and long
term oceanic uptake of anthropogenic CO2. Although the study
was conducted at the WHOTS station, the findings in this
study may provide insight on the interannual-decadal trends
of pCO2sw driven by atmospheric and natural forcing effects,
respectively, in other global subtropical open ocean regions.
More importantly, the approach developed in this study can be
extended to other regions with sufficient data available.

DATA AND METHODS

Data
The WHOTS station (22.7◦N, 158◦W) is located in the
subtropical oligotrophic region of the North Pacific and
is operated by the Woods Hole Oceanographic Institution
(WHOI). Field data time series [including surface pCO2sw, and
pCO2air, SST, and sea surface salinity (SSS)] at this station
collected between 2004 and 2018 at led by NOAA’s Pacific Marine
Environmental Laboratory and were obtained from the National
Centers for Environmental information (NCEI)1 (Sutton et al.,
2012). Specifically, the pCO2 data were measured by a non-
dispersive infrared gas analyzer (LI-CORTM, model LI-820),
which has a sampling frequency of every 3 h, with an accuracy
of 2 µatm (or better) (Sutton et al., 2014; Sabine et al., 2020).
Surface pCO2sw data were collected at a water depth of <0.5
m, and the pCO2air data were collected at 1.2 m above the
sea surface. SST and SSS were obtained from a CTD (SBE16)
integrated in the autonomous CO2 mooring system. The details
of data collection, processing, and quality control can be found

1https://www.nodc.noaa.gov/ocads/oceans/Moorings/
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FIGURE 2 | Interannual variations of the monthly SST (A), SSS (B), Chla (C), pCO2air, and pCO2sw (D) at the WHOTS station in the period of 2002–2019. Note that
the ship-based monthly pCO2sw time series at HOT calculated from DIC and TA measurements was overlaid in (D) for reference, and the calculated pCO2air in (D)
is based on the data of atmospheric CO2 measured at MLO.

in Sutton et al. (2014). These data were binned to daily time
series to remove the diurnal variations (i.e., 0.4∼3.4 µatm), which
are not considered in this study. The data time series were then
averaged at monthly scales as presented in in Figures 2A,B,D.
The Hawaii Ocean Time-series (HOT) program also maintains
ship-based monthly sampling of surface pCO2sw calculated from

dissolved inorganic carbon (DIC) and total alkalinity (TA) at this
location (Figure 2D). We chose to use the high-frequency data
from the WHOTS buoy mainly to assure that there are sufficient
data available to develop the machine learning pCO2sw model
and the monthly averages of the modeled pCO2sw should have
lower bias than the monthly observed pCO2sw at HOT.
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NASA standard daily SST (Figure 2A) and 8 day Chlorophyll-
a (Chla, mg m−3) (Figure 2C) Level-3 data products (version
R2018.0) covering the study region for the period of July
2002–December 2019 with a spatial resolution of ∼4 km
were downloaded from the NASA Goddard Space Flight
Center (GSFC)2. These Level-3 data products were derived
from measurements by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Aqua satellite.

Clearly there are lots of data gaps in the field measurements
(e.g., SST, pCO2air, pCO2sw, Figures 2A,C). Full record of SST
is obtained from MODIS. For a full data record of pCO2air at
WHOTS between 2002 and 2019, daily time series of atmospheric
xCO2 (in unit of ppm) at Mauna Loa Observatory (MLO) in
Hawaii between 2002 and 2019 were obtained from the NOAA
ESRL Global Monitoring Laboratory (2019), and this data was
regarded as the atmospheric xCO2 at WHOTS over the study
period considering the close distance between Mauna Loa and
WHOTS. To calculate the corresponding pCO2air at WHOTS
from the atmospheric xCO2 following the standard operating
procedures (Weiss, 1974; Dickson et al., 2007), ancillary daily
data of sea surface air pressure (in unit of atm) and specific
humidity (in unit of%) were obtained from the National Centers
for Environmental Prediction (NCEP), with a spatial resolution
of 2.5◦. The derived pCO2air (Figure 2D) together with the
MODIS data (Figures 2A,C) were used to estimate pCO2sw
between 2002 and 2019 based on the developed pCO2sw model.
It should be clarified that, for broader impact, one main reason
in choosing MODIS SST and NCEP ancillary data instead of
other in situ data at the WHOTS mooring was to demonstrate
our model capability in dealing with the uncertainties in each
parameter, particularly when extending our method to other
locations or regions where field measurements could be limited.

Methods
Surface pCO2sw is mainly controlled by four oceanic processes –
the thermodynamic effect, biological activity, physical mixing,
and air-sea CO2 exchange (Fennel et al., 2008; Ikawa et al., 2013;
Xue et al., 2016). Accordingly, satellite-derived variables of SST,
SSS, and Chla are commonly used to estimate surface pCO2sw
from remote sensing in past studies (Olsen et al., 2004; Ono
et al., 2004; Lohrenz and Cai, 2006; Sarma et al., 2006; Lohrenz
et al., 2010, 2018; Nakaoka et al., 2013; Chen et al., 2016, 2017,
2019). However, these algorithms are quite limited in capturing
the long-term trend in pCO2sw, mainly because of the insufficient
parameterization of the anthropogenic or atmospheric CO2
forcing effect on pCO2sw. Feely et al. (2006), and Landshützer
et al. (2013, 2016) have investigated the interannual and decadal
variations of pCO2sw and CO2 flux under the anthropogenic
CO2 forcing, yet to better quantify this effect, further studies
are needed to differentiate the warming effect of SST from
the atmospheric effect on surface pCO2sw and quantify both
effects separately.

Dore et al. (2003) found that the significant increase of
pCO2sw at ALOHA in 1989–2001 was mainly caused by the
increase of SSS due to excess evaporation over this period,

2https://oceancolor.gsfc.nasa.gov/

suggesting that the physical changes in the subtropical North
Pacific may affect the ocean biogeochemistry including surface
pCO2sw. Yet in this study, SSS was found to have little effect
on pCO2sw (R = 0.102 at p > 0.05, which explains 1% nges in
pCO2sw) at the WHOTS station over the period of 2004∼2018,
as also found by Sutton et al. (2017) which shows a small
effect (<5%) of salinity changes on pCO2sw increase. The SMOS
satellite maintains the longest SSS data record since 2009 (Font
et al., 2009, 2013), however, a comparison between the field SSS
and SMOS-derived SSS shows a very large uncertainty of 1.1 for
SSS ranging between 34.5 and 35.5 at WHOTS. As such, SSS was
not used in the model. The mixed layer depth (MLD) could drive
the interannual dynamics of surface pH at ALOHA (Dore et al.,
2009), yet considering the lack of MLD data from remote sensing
and the covariations of SST and MLD dynamics, we chose to
use SST alone to indicate the effect of warming and mixing on
surface pCO2sw. Therefore, the inputs of the satellite pCO2sw
algorithm included observed SST and pCO2air, and concurrent
MODIS-derived Chla, as well as Julian day (Jday) normalized
sinusoidally to “tune” the seasonal cycles of pCO2sw (Friedrich
and Oschlies, 2009; Signorini et al., 2013; Chen et al., 2016, 2017),
and the output was modeled pCO2sw (Eq. 1). In total, there
were 3074 matched data samples between 2004 and 2017. Within
this dataset, data samples collected in 2016 (N = 311) were kept
for independent validation considering its near full coverage in
each month (other years do not); the remaining were randomly
divided into two groups: one for model training (N = 1,934), and
the other for model validation (N = 829).

Various approaches have been used to model pCO2sw from
remote sensing, such as polynomial regression, mechanistic semi-
analytical approach, machine-learning approaches (Friedrich and
Oschlies, 2009; Jo et al., 2012; Landshützer et al., 2013; Bai et al.,
2015; Moussa et al., 2016; Lohrenz et al., 2018). Chen et al. (2019)
did extensive comparisons of these approaches and found that,
the Random Forest based Regression Ensemble (RFRE) was the
most robust one in modeling pCO2sw. Therefore, this approach
was used in this study with model parameters locally tuned
for the WHOTS station (Eq. 1). RFRE is one type of machine
learning technique, which ensembles many weighted regression
trees to implement the random forest algorithm (Breiman, 1996,
2001; James et al., 2013) in Matlab (R2017a). For better model
generalization, the RFRE takes advantage of each regression
tree via bootstrap aggregation (or bagging) (Breiman, 1996;
James et al., 2013) in model parameterization. In the model
training phase, the ensemble regression trees grow independently
on a drawn bootstrap replica of the training dataset. That’s,
each regression tree can randomly select a subset of predictors
at each split and can involve many splits in the algorithm.
This manipulation greatly reduces the correlations among the
developed regression trees, resulting in improved independency
among the regression trees. The mean square error was used as
loss function to adjust the model performance in each iteration.
Briefly, there are two important parameters to define the RFRE
model structure: the minimum leaf size and the number of
regression trees. Leaf size refers to the number of data samples
used in each node of a regression tree, and its minimum thus
determines the splits and depth of a regression tree. By trial
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and error, these two parameters were optimized to be 8 and
28, respectively. With these settings, the RFRE model became
stable and had the best model statistics, thus it was used to
predict pCO2sw. See Chen et al. (2019) for more details of
the RFRE approach.

Modeled pCO2sw = fRFRE[SST, log10(Chla), pCO2air,

cos(2π × Jday/365)] (1)

Standard statistical measures, including root mean square
difference (RMSD, both absolute and relative), coefficient of
determination (R2), mean bias (MB), mean ratio (MR), unbiased
percent difference (UPD), and mean relative difference (MRD)
(Barnes and Hu, 2015), were used to quantify the accuracy of the
modeled pCO2sw.

We varied SST, Chla, and pCO2air by ± 1◦C, and ± 20%,
and ± 5 µatm, respectively, to examine the sensitivity of the
model to changes in each variable. The changes are based on the
uncertainties in the MODIS-derived SST and Chla (Gregg and
Casey, 2004; Mélin et al., 2007; Hu et al., 2009) as well as on the
seasonal variations in pCO2air.

The modeled pCO2sw is the sum of pCO2swatm_forced and
pCO2swnat_forced. Just as its name implies, the pCO2swnat_forced

refers to the pCO2sw without atmospheric CO2 forcing,
thus based on the model developed following Eq. 1, the
pCO2swnat_forced was calculated by assuming that the pCO2air
remained at the same level as in in the start year (i.e., 2002)
of the study period (Eq. 2). The pCO2swatm_forced was defined
as the difference between the modeled pCO2sw (Eq. 1) and
pCO2swnat_forced (Eq. 3). To quantify the natural forcing effect,
the net atmospheric CO2 forcing effect over the study period
(2002–2017) remained at exactly zero by keeping the pCO2air
values in the model at the same level as in 2002. By doing
so, both the derived pCO2swnat_forced and pCO2swatm_forced are
relative quantities to the year of 2002, which should be higher
than those derived by referring to pre-industrialization. However,
either referring to 2002 or other years only affects the absolute
values of these quantities, and they would affect the changing
rates of trends in both pCO2swnat_forced and pCO2swatm_forced in

the past two decades that we are interested in.

pCO2swnat_forced
= fRFRE[SST, log10(Chla), pCO2air@2002,

cos(2π × Jday/365)] (2)

where the pCO2air@2002 means the pCO2air data in 2002–2019
remained at the same level as in 2002 by assuming that there is
no additional atmospheric effect referred to 2002.

pCO2swatmp_forced
= pCO2sw− pCO2swnat_forced (3)

Trends in pCO2sw, pCO2swatm_forced, pCO2swnat_forced,
pCO2air, SST, and Chla were quantified based on their monthly
anomalies, which were derived by subtracting the monthly
climatologies from the monthly averages between 2002 and 2019
using least-square technique.

RESULTS

Figure 3 shows the performance of the RFRE-based pCO2sw
algorithm in both model training and validation. Clearly, most
of the data pairs of the observed and modeled pCO2sw followed
closely along the 1:1 line, with a RMSD of 2.2 µatm (0.6%) and R2

of 0.98. The additional independent validation (Figure 4) using
the data time series in 2016 also shows good consistency between
the observed pCO2sw and modeled pCO2sw, with a RMSD of 4.3
µatm (1.1%) and R2 of 0.87.

The RFRE model is more sensitive to changes in SST
and pCO2air than to changes in Chla (Figure 5). Statistically,
with + 1◦C (-1◦C) added to SST, the modeled pCO2sw was higher
(lower) than the original pCO2sw, with RMSD of 9.7 µatm (2.6%)
[8.0 µatm (2.1%)], R2 of 0.89 (0.93), and MB of 8.5 µatm (-6.8
µatm). The resulting pCO2sw shows slight underestimation and
overestimation in cases of 20% increase and 20% decrease in Chla,
with MB of 1.3 and −1.3 µatm, respectively. With + 5 µatm in
pCO2air, the new pCO2sw was estimated higher than the original
pCO2sw, with RMSD of 5.7 µatm (1.6%), R2 of 0.90, and MB
of 3.7 µatm. With −5 µatm in pCO2air, the new pCO2sw was

FIGURE 3 | The RFRE model performance in estimating surface pCO2sw in both model training (A) and model validation (B).
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FIGURE 4 | The RFRE model performance in reconstructing the surface pCO2sw data time series in 2016, in comparison with the corresponding mooring-observed
surface pCO2sw. Note that none of the field observations in 2016 was used in the model development. The error bar represents one standard deviation of the
diurnal changes of pCO2sw time series.

underestimated compared to the original pCO2sw with RMSD of
6.1 µatm (1.6%), R2 of 0.89 and MB of−4.2 µ atm.

In the North Pacific subtropical gyre at the WHOTS station,
time series of pCO2sw between 2002 and 2019 was obtained using
this RRFE-based pCO2sw algorithm, with good consistency to
the observed pCO2sw in the overlapped time periods (Figure 6).
Overall, the pCO2sw follows the same seasonal pattern as SST
from high values in summer to low values in winter, with a
seasonal magnitude of ∼50 µatm, in the opposite phase of
pCO2air (Figure 6). In addition, the pCO2sw was lower than the
pCO2air most of the time over the years, suggesting a continuous
CO2 flux from the atmosphere to the ocean.

Both pCO2sw and pCO2air show significant increase between
2002 and 2019 (Figure 6). After removing the seasonality signals,
statistically, the pCO2sw had a mean rate of 1.7 ± 0.1 µatm yr−1

(R2 = 0.80, at p < 0.05), lower than the rate of pCO2air (2.2± 0.1
µatm yr−1, R2 = 0.99, at p < 0.05), as shown in Figure 7. The
pCO2swnat_forced shows a significant increasing rate of 0.2 ± 0.1
µatm yr−1 (R2 = 0.07, at p < 0.05) on average in the study period.
In contrast, the pCO2swatm_forced, which is just driven by the
atmospheric CO2 forcing, had a mean rate of 1.4± 0.1 µatm yr−1

(R2 = 0.84, at p < 0.05), but tended to plateau since 2016. Indeed,
the pCO2sw without the thermodynamic effect (i.e., pCO2nonT,
Chen and Hu, 2019) had similar interannual patterns as pCO2ant
at a mean rate of 1.2 ± 0.1 µatm yr−1. Correspondingly, the
Chla time series did not show any trends over the years while
the SST was increasing at an overall rate of 0.03 ± 0.01◦C yr−1

(R2 = 0.07, at p < 0.05). This warming trend could be influencing
the pCO2natural trend.

Clearly, there are some visible trends (e.g., <10 years)
particularly in SST and pCO2swnat_forced different from those
over the 20-year time frame (Figure 7). To further investigate
the trends in each variable, we quantified the rates of each for
a variety of periods starting between 2002 and 2015, ending
between 2006 and 2019, with durations ranging from 5 to 18 years
(Figure 8). It is found that, at confidence level of >95%, the
SST had a negative and positive rate of −0.1 ± 0.02◦C yr−1

and 0.1 ± 0.05◦C yr−1 for periods ending in ≤2013 and >2013,

respectively (Figure 8A). Again, the Chla did not show any
trend over the years. Correspondingly, pCO2swnat_forced shows a
very similar pattern as the rates in SST, with a negative rate of
−0.5± 0.2 µatm yr−1 for periods ending in≤2013, and a positive
rate of 0.6 ± 0.3 µatm yr−1 for periods ending in >2013. The
anthropogenic forcing on atmospheric pCO2 tends to accelerate
over the study period consistent with the published studies
(Canadell et al., 2007), with a rate of 1.7 ± 0.1 µatm yr−1

for periods ending in ≤2011, and a rate of 2.3 ± 0.2 µatm
yr−1 for periods ending in beyond 2011, and the acceleration
is getting even stronger (2.4 ± 0.1 µatm yr−1) after 2016.
As a result, the pCO2sw shows a lower rate (1.5 ± 0.4 µatm
yr−1) for periods starting in 2002–2005, ending in 2006–2019; a
higher rate (2.2 ± 0.3 µatm yr−1) for periods starting in 2006–
2013, ending in 2010–2017; and a lower rate (1.5 ± 0.4 µatm
yr−1) again for periods starting in 2006–2013, ending in 2018–
2019. Correspondingly, the pCO2swatm_forced shows similar but
significantly weaken signals (at p < 0.05) in these three time
frames, with rates of 1.6 ± 0.3 µatm yr−1, 1.8 ± 0.5µatm yr−1,
and 0.9± 0.5 µatm yr−1, respectively.

DISCUSSION

Model Uncertainty
The satellite-based RFRE pCO2sw model developed in this study
had a RMSD of 4.3 µatm (1.1%), significantly smaller than
most of the published pCO2sw algorithms in open ocean waters
(Olsen et al., 2004; Feely et al., 2006; Nakaoka et al., 2013;
Moussa et al., 2016). This uncertainty is reasonably acceptable
considering the diurnal variations (i.e., 0.4∼3.4 µatm) in surface
pCO2sw at WHOTS.

The sensitivity of the pCO2sw model to each input variable
indicates not only the model’s capacity in tolerating the
uncertainty of each variable, but also the model’s response to
real changes in each variable. Specifically, the positive feedback
of modeled pCO2sw to changes in SST are consistent with
the thermodynamic effect on pCO2sw (increased SST leads to
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FIGURE 5 | Sensitivity of the RFRE pCO2sw algorithm to uncertainties in satellite-derived SST (A,B) and Chla (C,D) and to the natural variability of pCO2air (E,F).

an increase in pCO2sw and vice versa). The negative response
of the pCO2sw model to Chla suggests that the increase
(decrease) in Chla indicates stronger (weaker) biological uptake
of oceanic CO2, therefore, the resulting modeled pCO2sw was
lower (higher) than without the Chla perturbation. Although the
Chla level at the WHOTS station is consistently low (Figure 2C),

the sensitivity analysis here suggests the necessity of including
Chla in the model to better modulate the seasonal variations
of surface pCO2sw. Yet it should be noted that, Chla is only a
proxy to indicate the overall biological activities that could affect
surface pCO2sw. Although there is no visible change in surface
Chla, still there could be possible changes in the phytoplankton
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FIGURE 6 | Modeled pCO2sw in the full time period between 2002 and 2019, in comparison with the mooring-observed surface pCO2sw and calculated pCO2air at
WHOTS. Note that the calculated pCO2air is based on the data of atmospheric CO2 measured at MLO.

community and net community production. The insignificant
responses of the pCO2sw model to the 20% change in Chla
suggest the model is insensitive to uncertainties in the satellite
Chla. For the same reason, the biological uptake of CO2 tends
to have a quite limited effect on pCO2sw in the oligotrophic
ocean, consistent with previous studies (Chen and Hu, 2019).
For regions where satellite Chla is not available due to severe
cloud coverage (e.g., some tropical and high latitude zones), a
first examination of the Chla effect on surface pCO2sw using
field observations (if there are) is suggested to determine the
potential bias that would be resulted in pCO2sw if Chla is not
included in the model. The changes of pCO2air directly affect the
gradient between pCO2air and pCO2sw, which drives the air-sea
CO2 exchange, thus, it is reasonable to see a positive response
of the pCO2sw model to changes in pCO2air. The resulting
increase (MB = 3.7 µatm) in pCO2sw was slightly weaker than the
assigned increase of 5 µatm in pCO2air, which may be due to the
ocean’s increasing Revelle Factor and reduced buffering capacity
of seawater (Fassbender et al., 2017).

Interannual Changes of pCO2sw Driven
by Natural and Atmospheric Forcing
In response to the accelerating rates of pCO2air, the modeled
surface pCO2sw shows different rates at various time intervals.
Specifically, the 5 year pCO2sw trends we derived for the periods
of 2007–2011, 2008–2012, and 2009–2013 are high at rates of 2.5,
2.1, and 2.5 µatm yr−1, respectively, which are higher than the
relatively low rates in period of 2003–2007 visually interpreted
from Figure 1 in Dore et al. (2009). To further examine the
trends in pCO2sw, we analyzed the ship-based monthly pCO2sw
datasets at ALOHA from HOT program (used in Dore et al.,
2009). Indeed, the 5 year HOT-based pCO2sw trends starting
in 2007–2008 did show low values, but these low values are
insignificant at p > 0.05, yet no such statistics was available
in Dore et al. (2009). For the 5 year pCO2sw trend starting in
2009, the HOT-based pCO2sw and our modeled pCO2sw show
close trends of 2.5 and 2.2 µatm yr−1, respectively, at p < 0.05.
Meanwhile, the overall trend we detected in surface pCO2sw (i.e.,

1.7 ± 0.1µatm yr−1) in period of 2002–2019 was a bit smaller
than that (i.e., 1.88 µatm yr−1) in period of 1988–2007 found
in Dore et al. (2009) and that (i.e., 2.4 µatm yr−1) in period
of 2003–2014 presented in Sutton et al. (2017). This could be
reasonable considering the different physical and biogeochemical
dynamics on decadal time scales and the acceleration of ocean
acidification in the western North Pacific (Ono et al., 2019).
Besides, it should be noted that the ship-based monthly pCO2sw
dataset is derived from measurements of DIC and TA collected
approximately once a month to compose this monthly dataset.
In contrast, our monthly pCO2sw is based on the daily modeled
pCO2sw and is validated thoroughly with daily-averaged in situ
measurements at WHOTS. Therefore, the trends in the modeled
pCO2sw we derived here should be reliable with high confidence.
Also, the mooring measures pCO2sw at surface of <0.5 m, while
the ship-based HOT data were based on the mean measurements
within 0–30 m, which could be another potential source for the
discrepancy. In the North Pacific subtropical gyre (represented
by the WHOTS station), the interannual changes of surface
pCO2sw is mainly driven by both SST and pCO2air (Figures 7, 8
and Table 1), consistent with the published studies (Takahashi
et al., 2006). Despite the little impact of SSS on pCO2sw shown
in our study period (2002–2019), a further experiment with
SSS added into our model was conducted. It shows that the
inclusion of SSS did not result in any significant difference
in the modeled pCO2sw and pCO2swnat_forced. Considering the
important impact of SSS on pCO2sw in 1989–2007 presented in
Dore et al. (2003), it seems that the effect of SSS depends on
the specific study periods. Here we prefer to exclude SSS from
our model mainly considering the large error (i.e., 1.1) in the
SMOS SSS at present. With more accurate SSS data available from
satellites in the future, it could be possible to include SSS to better
model the variations of pCO2sw, particularly the effect of rainfall
minus precipitation on pCO2sw in any time periods. However,
most of the published studies directly regarded the interannual
trend of pCO2sw as the trend of anthropogenic pCO2sw. It
should be noted that the anthropogenic pCO2sw refers to the
pCO2sw impacted by atmospheric CO2 increases, thus most of
the reported anthropogenic trend of pCO2sw actually refers to
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FIGURE 7 | Interannual variations of the monthly anomalies in SST (A), Chla (B), pCO2air and modeled pCO2sw (C), modeled pCO2swnat_forced and
pCO2swatm_forced (D), and PDO index (E) in the period of 2002–2019.
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FIGURE 8 | Interannual changing rates of SST (A), Chla (B), pCO2air (C), modeled pCO2sw (D), modeled pCO2swnat_forced (E), and pCO2swatm_forced (F) for a
variety of periods starting between 2002 and 2015, and ending between 2006 and 2019 at Station WHOTS. The X-axis and Y-axis represent the start year and end
year, respectively, of each rate analyzed. The diagonal lines (i.e., 5, 10, and 15 years) indicate the length of trend periods. A white cross is superposed on the plot
when the p value was >0.05.

the total rate of pCO2sw (Takahashi et al., 2009, 2014; McKinley
et al., 2011; Sutton et al., 2019), which also includes the natural
variability of pCO2sw driven by the general oceanic processes
(e.g., thermodynamics, ocean mixing, biological activities).

In this study, both the natural and atmospheric CO2 forcing
effects on pCO2sw were separately quantified. The rates in
pCO2swnat_forced over the study period follow a similar pattern
as those in SST with a correlation coefficient (R) of 0.82,
indicating that the interannual trend signals in pCO2swnat_forced

are mainly driven by SST, at least over the study period of
2002–2019. The cooling characteristics in SST between 2002 and
2012 resulted in a significant negative rate in pCO2swnat_forced,
and the warming effect since 2013, which were also reported in
previous studies (Sutton et al., 2017; Terlouw et al., 2019), leads
to a significant positive rate in pCO2swnat_forced. In addition to
the global warming effect on SST, the interannual SST dynamics
could also be attributed to the changes in MLD because of the
ocean mixing effect on SST. As such, the interannual variations
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in pCO2swnat_forced could also be driven by the MLD changes,
and more DIC enriched waters would be entrained into the
surface when MLD deepens and SST decreases (Dore et al.,
2009). Overall, it seems that the rate of pCO2swnat_forced tends
to correspond to decadal oscillations in SST between cooling
and warming periods associated with PDO (Yasunaka et al.,
2014; Newman et al., 2016; Landshützer et al., 2019). Indeed,
the interannual PDO (Figure 7E) shows very similar variation
patterns to the SST (Figure 7A) with a significant correlation of
R = 0.53 (Table 1). Specifically, the PDO decreased progressively
from 2004 to 2012, was low in 2011–2012, reached a maximum
in 2015, and then decreased from 2015 to 2019. As a result, the
pCO2swnat_forced also shows a significant correlation (R = 0.41,
see Table 1) with PDO, suggesting the large scale climate
forcing also contribute to the natural oceanic forcing effect on
surface pCO2sw.

With the exclusion of pCO2swnat_forced, the pCO2swatm_forced

rates were significantly smaller than the corresponding
pCO2sw rates in various time intervals (Figure 8). Although
pCO2swatm_forced is mainly driven by the oceanic uptake of
increasing atmospheric CO2 (R = 0.91), it shows distinctively
different patterns in changing rates from that of the pCO2air
over various time intervals in 2002–2019. This different response
of pCO2swatm_forced toward pCO2air seems mainly caused by
the buffering effect of dissolved CO2 in seawater (Egleston
et al., 2010). However, for the tendency of pCO2swatm_forced

to plateau after 2016, there could be several potential
explanations depending on the condition of air-sea CO2
fluxes. Specifically, it would be reasonable to observe a plateau
signal in pCO2swatm_forced if there is little change in air-sea
CO2 fluxes after 2016; yet if the dissolved CO2 keeps increasing
after 2016, the little response in pCO2swatm_forced would tend
to suggest that a larger fraction of dissolved CO2 stays in forms
of other carbonate species (i.e., HCO3−, CO32−), significantly
lowering the Revelle factor and enhancing the ocean’s buffering
capacity in recent years; and if there is a decrease in air-sea CO2
fluxes after 2016, it would be likely that a fration of bicarbonate
and carbonate species are converted to dissolved CO2, which
would lower the ocean’s buffering capacity and promote ocean
acidification. Xue and Cai (2020) found that TA minus DIC can
be used as a proxy for deciphering ocean acidification. Here
using the ship-based monthly TA and DIC data in the study
period, we found a significant decreasing trend in TA minus
DIC over the years (Figure 9A), which suggests a strong ocean
acidification in the study period. However, the changing rates

of TA minus DIC is distinctively higher in recent years since
2014 (Figure 9B), suggesting a stronger ocean acidification and
weaker buffering capacity in the past few years. Indeed, ocean
acidification has shifted the carbonate chemistry speciation and
lowered the CaCO3 saturation state (Orr et al., 2005; Doney
et al., 2009; Krug et al., 2011), yet further studies are needed to
investigate and quantify the changing patterns of the air-sea CO2
flux and the carbonate species over the past decades. In general,
the oceanic uptake of anthropogenic CO2 is resulting in more
rapid changes in carbonic chemistry in the surface ocean and
accelerating ocean acidification (Feely et al., 2009; Ono et al.,
2019), yet a revisit of such phenomenon is needed when more
satellite/field data are available in the coming years.

Implications
Long time series data are required to investigate the
anthropogenic effect on surface pCO2sw. However, the field data
are always limited in both spatial and temporal coverage. For
example, few of the 40 global pCO2sw mooring stations have
data coverage of >10 years (Sutton et al., 2019), and the global
field pCO2sw database (i.e., SOCAT or LDEO, Bakker et al.,
2016; Takahashi et al., 2019), although greatly accumulated in
recent years, still has data gaps in some regions and at some
time intervals. More importantly, it is impossible or difficult
to separate the pCO2swatm_forced and pCO2swnat_forced signals
apart based on purely field measurements to better quantify the
anthropogenic forcing impact on surface pCO2sw. Instead, with
the related environmental variables observed from satellites,
surface pCO2sw models using satellite data and other ancillary
data can be developed and applied to the full satellite data
record over the past ∼20 years. Besides, SSS measurements
from SMOS and SMAP satellite have been available since 2009
and 2015, respectively, with longer and accurate data records
available, the interannual and decadal trends in surface pCO2sw
as well as the natural forcing and atmospheric CO2 forcing
components can be further studied. The recovered long time
series of pCO2sw can be used to quantify both pCO2swatm_forced

and pCO2swnat_forced accordingly. The findings of decoupled
changing rates in pCO2swatm_forced and pCO2swnat_forced in this
study highlight the necessity of differentiating the two, in order to
have a better understanding of the long term oceanic absorption
of anthropogenic CO2 and its buffering capacity in the long term.
Therefore, this study sets a template for future study to examine
both natural and anthropogenic or atmospheric CO2 forcing
effects on pCO2sw in various oceanic systems over the past

TABLE 1 | Correlation coefficients among the monthly anomalies of pCO2sw, pCO2sw nat_forced, pCO2swatm_forced, SST, Chla, pCO2air, and PDO index, with insignificant
correlation (i.e., p > 0.05) annotated in italic.

Correlation coef. pCO2sw pCO2sw nat_forced pCO2swatm_forced SST Chla pCO2air PDO index

pCO2sw 1 / / / / / /

pCO2sw nat_forced 0.54 1 / / / / /

pCO2swatm_forced 0.89 0.11 1 / / / /

SST 0.52 0.82 0.18 1 / / /

Chla -0.04 -0.13 0.02 -0.03 1 – /

pCO2air 0.89 0.26 0.91 0.27 0.06 1 /

PDO index 0.19 0.41 0.01 0.53 0.06 0.12 1
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FIGURE 9 | The interannual variations of the monthly anomalies in TA minus DIC, which was a proxy of ocean acidification, based on the ship-based monthly TA and
DIC measurements at ALOHA in surface waters (A), and the corresponding interannual changing rates for a variety of periods starting between 2002 and 2015, and
ending between 2006 and 2019 (B). In (B), the X-axis and Y-axis represent the start year and end year, respectively, of each rate analyzed, the diagonal lines (i.e., 5,
10, and 15 years) indicate the length of trend periods, and a white cross is superposed on the plot when the p-value was >0.05.

decades, toward an improved understanding of anthropogenic
forcing on surface pCO2sw.

Specifically, the pCO2sw in the North Pacific subtropical
gyre shows various increase rates in response to the increasing
pCO2air between 2002 and 2019. The accelerating increase rates
in pCO2air and the weaker rates in pCO2sw indicate stronger
gradients between pCO2air and pCO2sw, which implies an
accelerated oceanic CO2 uptake and ocean acidification. If the
warming effect continues following the decadal pattern in SST
in recent years since 2010, a steady rate of ∼0.8 ± 0.1 µatm
yr−1 in pCO2swnat_forced (see Figure 8E) would be expected
in the coming few years. The weaker rate in pCO2swatm_forced

in recent years in response to the accelerating rate in pCO2air
implies a lower ocean buffering capacity leading to more rapidly
changing oceanic carbon chemistry and ocean acidification, yet
further study in this field is needed to promote our knowledge
and understanding.

Based on observations at WHOTS, the present work
demonstrated the necessity in differentiating the atmospheric
forcing and natural forcing effects on surface pCO2sw, and
show unprecedented information on their interannual-decadal
trends over both short and long time scales. The WHOTS
station is located in the North Pacific Subtropical Gyre, therefore,
the results and findings should be referential to understand
the overall surface pCO2sw dynamics for a broader impact of
the ocean in absorbing anthropogenic CO2, particularly under
both anthropogenic CO2 forcing and natural oceanic forcing
(Henson et al., 2016).

More importantly, the pCO2sw model was developed using
satellite-derived environmental data and other ancillary data,
thus the model is capable to tolerate the uncertainties involved
in each variable as demonstrated in the sensitivity analysis. This
is of great importance and significance to locations or areas where
very limited data are available. Specifically, with these limited field
observations of surface pCO2sw, it would be possible to develop
a surface pCO2sw model with related environmental variables
from satellite and ancillary data from NCEP to differentiate the
two forcing effects following Eqs 1 and 2. With nearly 20 years

of satellite data records, it would be straightforward to extend
the current study to other oceanic regions to investigate the
interannual-decadal surface pCO2sw dynamics by differentiating
the atmospheric forcing and natural forcing effects toward a
better understanding of the ocean in absorbing anthropogenic
CO2 and its impact on the surface ocean carbonate chemistry.

CONCLUSION

The rate of anthropogenic or atmospheric CO2 forcing pCO2sw
in surface seawater has been difficult to characterize because
of the interaction of natural variability in pCO2sw and the
requirement of long time series data records. In this study,
we show that a remote sensing algorithm applied to the
WHOTS station in the North Pacific subtropical gyre can
reveal the interannual-decadal variability of surface pCO2sw
between 2002 and 2019. Such an ability enables the separation
of atmospheric CO2 forced pCO2sw (pCO2swatm_forced) from
natural variability in pCO2sw (pCO2swnat_forced). We believe that
this is the first time such atmospheric CO2 forced pCO2sw and
natural oceanic processes driven pCO2sw are mathematically
differentiated and their interannual-decadal changing rates are
statistically quantified. Results show unprecedented information
on their interannual-decadal rates over both short and long time
scales at the WHOTS site. With the availability of ocean color data
and other ancillary data globally, it is straightforward to extend
the current study to other oceanic regions.
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