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Editorial on the Research Topic

Science and Applications of Coastal Remote Sensing

The Earth has been aptly described as a coastal planet (Martínez et al., 2007). The coastal zone,
defined as land where proximity to the coast is <100 km and elevation is <10m above sea level, is
a linear interface sprawling the Earth’s surface between the planet’s water bodies and land masses,
with a length over 1.6 million kilometers. This significant feature of the Earth’s surface is so long
that it would wrap around the equator 402 times (Martínez et al., 2007) or stretch to the Moon and
back twice. Although the coastal ocean spans 8% of the global ocean surface area (Cracknell, 1999),
it accounts for 14–30% of the total marine organic matter (Gattuso et al., 1998). Coastal oceans,
defined as ocean areas between the shore and the continental shelf edge, and associated coastal
environments are on the front lines of a warming climate. A warming atmosphere driven by a
rising carbon dioxide concentration, the annual average of which is now approaching 420 ppm
(https://www.esrl.noaa.gov), is driving sea level rise and possibly changes in coastal hydrology,
currents and weather. Sea level rise due to melting glaciers and ice caps threaten inundation of
coastal communities (Vitousek et al., 2017) as well as increased coastal erosion (Zhang et al., 2004),
and warming ocean waters are expected to enhance the severity of tropical cyclones (Sobel et al.,
2016). Disruptions in marine ecosystem biodiversity have been documented as tropical species
shift poleward in response to warming trends (Pinsky et al., 2013) and coral reefs undergo mass
bleaching (Heron et al., 2017).

Added to climate factors are the stresses imposed by growing coastal human populations on the
marine services that they require to survive and thrive. Currently, 27% of the global population
lives within the coastal zone (Kummu et al., 2016). This population is expected to nearly double
by mid-century (Neumann et al., 2015), which will increase stressors on this changing coastal
environment. Human dependency and exploitation of coastal resources has produced increasingly
dramatic changes to coastal and inland aquatic habitats in the last 100 years (Turpie et al., 2017).
Presently, the global per capita consumption of seafood represents 6% of all animal protein and is
themost highly traded international food commodity (Smith et al., 2010). Aquaculture constitutes a
growing portion of the consumer seafood supply. This trend is expected to continue with projected
population growth and climate change (Wells et al., 2015).

In addition, stresses on coastal aquatic habitats have resulted in the emergence of many species
of phytoplankton that are pernicious to both humans and aquatic ecosystems (Anderson et al.,
2002). For example, aquaculture produces waste nutrients that fuel the formation of harmful
algal blooms (HAB). The introduction of toxic HAB and the overgrowth of non-toxic or invasive
phytoplankton species disrupt ecosystem functionality, and affect food and water resources. These
changes stem largely from anthropogenic eutrophication (Glibert et al., 2005; Anderson, 2009).
Excessive amounts of algae can decrease light penetration, negatively affecting water-column, and
benthic photosynthesis. Some algal blooms can grow faster than natural grazers can consume them.
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TABLE 1 | List of eBook chapters.

Authors Title DOI

S. Ackleson, J. P. Smith, L. M. Rodriguez,
W. J. Moses, and B. J. Russell

Autonomous Coral Reef Survey in Support of Remote Sensing https://doi.org/10.3389/fmars.2017.00325

D. Chapple and I. Dronova Vegetation Development in a Tidal Marsh Restoration Project during a
Historic Drought: A Remote Sensing Approach

https://doi.org/10.3389/fmars.2017.00243

J. Headley, B. J. Russell, K. Randolph,
M. Á. Pérez-Castro, R. M.
Vásquez-Elizondo, S. Enríquez, and
H. M. Dierssen

Remote Sensing of Seagrass Leaf Area Index and Species: The
Capability of a Model Inversion Method Assessed by Sensitivity Analysis
and Hyperspectral Data of Florida Bay

https://doi.org/10.3389/fmars.2017.00362

W. Jiang, B. R. Knight, C. Cornelisen,
P. Barter, and R. Kudela

Simplifying Regional Tuning of MODIS Algorithms for Monitoring
Chlorophyll-a in Coastal Waters

https://doi.org/10.3389/fmars.2017.00151

Z. Lee, S. Shang, and R. Stavn AOPs Are Not Additive: On the Biogeo-Optical Modeling of the Diffuse
Attenuation Coefficient

https://doi.org/10.3389/fmars.2018.00008

J. Lehrter and C. Le Satellite Derived Water Quality Observations Are Related to River
Discharge and Nitrogen Loads in Pensacola Bay, Florida

https://doi.org/10.3389/fmars.2017.00274

M. Marrari, A. R. Piola, and D. Valla Variability and 20-Year Trends in Satellite-Derived Surface Chlorophyll
Concentrations in Large Marine Ecosystems around South and Western
Central America

https://doi.org/10.3389/fmars.2017.00372

T. Moisan, K. M. Rufty, J. R. Moisan, and
M. A. Linkswiler

Satellite Observations of Phytoplankton Functional Type Spatial
Distributions, Phenology, Diversity, and Ecotones

https://doi.org/10.3389/fmars.2017.00189

T. Moisan and B. G. Mitchell Modeling Net Growth of Phaeocystis antarctica Based on Physiological
and Optical Responses to Light and Temperature Co-limitation

https://doi.org/10.3389/fmars.2017.00437

J. Ortiz, D. Avouris, S. Schiller, J. C. Luvall,
J. D. Lekki, R. P. Tokars, R. C. Anderson,
R. Shuchman, M. Sayers, and R. Becker

Intercomparison of Approaches to the Empirical Line Method for
Vicarious Hyperspectral Reflectance Calibration

https://doi.org/10.3389/fmars.2017.00296

A. Reisinger, J. C. Gibeaut, and P. E. Tissot Estuarine Suspended Sediment Dynamics: Observations Derived from
over a Decade of Satellite Data

https://doi.org/10.3389/fmars.2017.00233

J. Snyder, E. Boss, R. Weatherbee,
A. C. Thomas, D. Brady, and C. Newell

Oyster Aquaculture Site Selection Using Landsat 8-Derived Sea Surface
Temperature, Turbidity, and Chlorophyll a

https://doi.org/10.3389/fmars.2017.00190

A. Trembanis, A. L. Forrest, B. M. Keller,
and M. R. Patterson

Mesophotic Coral Ecosystems: A Geoacoustically Derived Proxy for
Habitat and Relative Diversity for the Leeward Shelf of Bonaire, Dutch
Caribbean

https://doi.org/10.3389/fmars.2017.00051

R. Trinh, C. G. Fichot, M. M. Gierach, B.
Holt, N. K. Malakar, G. Hulley, and J. Smith

Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge
on Coastal Water Quality

https://doi.org/10.3389/fmars.2017.00329

When they die, the bloom sinks and decomposes, and the
resulting bacterial respiration takes up dissolved oxygen, causing
hypoxic, and anoxic “dead zones,” which can devastate fisheries
and benthic communities (Anderson et al., 2000; Rabalais et al.,
2002).

To better understand the mounting ecological pressures on
coastal environments, ecosystem scientists and natural resource
managers have increasingly turned to remote sensing for timely
and spatially coherent information. In response, Earth imaging
sensor technologies aboard satellites and aircraft have advanced
rapidly from multispectral systems offering a small number
of broad, discontiguous spectral bands in the visible and
infrared portions of the spectrum to imaging spectrometers
with continuous, high-resolution coverage throughout the visible
and near-infrared spectrum (VNIR), e.g., between 400 nm
and 1µm and spectral bandwidth <10 nm. Such sensors are
referred to as imaging spectrometers or hyperspectral imaging
systems. The next generation of space-based Earth imagers,
such as the U.S. National Aeronautics and Space Administration
(NASA) Ocean Color Imager (OCI), a component of the
Plankton, Aerosol, Cloud and ocean Ecosystem mission (PACE)
(Gorman et al., 2019), and the NASA Surface Biology and

Geology (SBG) designated observable (National Academies of
Sciences, 2018) and the Geosynchronous Littoral Imaging and
Monitoring Radiometer (GLIMR) (National Aeronautics Space
Administration, 2019), will serve to extend the heritage of global
ocean color imagery and will be designed for hyperspectral
coverage to address a wide range of societal problems. Coincident
with the large, national, multi-community efforts, miniaturized
systems are rapidly under development that may be deployed on
small unmanned aerial vehicles controlled by a single research
group or even an individual researcher. As such, they may more
accurately be described as embedded systems because they are
integral to specific, small-scale research and management efforts
and would not exist were it not for those activities.

With the availability of more spectrally complex imagery, new
algorithmic approaches have emerged to retrieve more useful
information from the data. Advances in coastal remote sensing
technology are well-documented in recent review articles (De
Moraes Rudorff and Kampel, 2012; Duffy et al., 2013; Blondeau-
Patissier et al., 2014;Mouw et al., 2015; Palmer et al., 2015; Hedley
et al., 2016; Werdell et al., 2018).

The lynchpin for any environmental remote sensing operation
is the coincidental collection of high quality, in situ observations
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of direct relevance to the calibration and validation of image-
based products. This requirement is particularly challenging
within coastal environments where the temporal and spatial
correlation scales can be quite short (Hedley et al., 2012;
Moses et al., 2016). Traditional methods of collecting in situ
observations from floating platforms can be compromised by
water depth, either by restricting access or causing re-suspension
of bottom sediments. In applications to benthic cover, such
as coral reef surveys, observations with SCUBA have proven
effective for collecting high quality data, but operations are slow,
laborious, expensive, and require a high level of specialized
training. To address these problems, researchers have developed
autonomous methods of collecting in situ observations (Moline
et al., 2005; Ryan et al., 2010). Autonomous in situ survey systems
offer key advantages over traditional methods including lower
survey costs (excluding the initial infrastructure investment) and
orders of magnitude more data with greater dimensionality and
aerial coverage, often representing environmental conditions that
would prohibit safe, human-based operations.

The purpose of this Frontiers inMarine Science eBook focuses
on remote sensing of the coastal ocean is to provide a condensed
forum to sample areas of notable technological advance. It
provides a sample of such innovations and considerations
contributed from the coastal remote sensing community. Given
the a priori emphasis placed on environmental problems, the
papers included in this eBook largely address processes, methods
and technology pertaining to biological resources. The eBook is
comprised of 14 chapters representing the work and thoughts
of 62 authors (Table 1). Remote sensing technology covers
multispectral to hyperspectral systems applied to environments
ranging from wetlands to the pelagic ocean. Many of the papers
include a large component of radiative transfer modeling and
algorithm development and several of the papers address new
autonomous methods to survey the coastal ocean in support of
algorithm development, validation, and verification. One paper

explores the use of acoustic remote sensing to improve studies
of coastal ecosystems. Papers address multiple coastal remote
sensing themes and applications, including remote sensing of
coastal ecosystems (coral reefs: Trembanis et al.; Ackleson et al.;
tidal marsh: Chapple and Dronova; seagrass: Hedley et al.), water
quality (Reisinger et al.; Jiang et al.; Snyder et al.; Lehrter and Le;
Trinh et al.), phytoplankton abundance and diversity (Moisan
et al.; Moisan and Mitchell; Marrari et al.), and improvements
to calibration and radiative transfer modeling (Ortiz et al.;
Lee et al.). Water quality papers address a range of topics
including suspended sediments in estuaries (Reisinger et al.),
eutrophication, as indicated by chlorophyll-a (Jiang et al.),
aquaculture site selection (Snyder et al.), and effects of river
discharge and nutrient loads (Lehrter and Le; Trinh et al.).

DEDICATION

This eBook is dedicated to our co-editor Dr. Tiffany Moisan,
a well-regarded ocean color remote sensing scientist, who
unexpectedly passed away during its preparation. Dr. Moisan
was a dear friend, and upbeat and enthusiastic colleague and
a scientist committed to the use of remote sensing to improve
our understanding of marine microbiology and phytoplankton
ecology. Tiffany was a strong supporter of coastal remote sensing
science and applications and wanted this publication to provide
her colleagues a forum to share and promote their most recent
accomplishments. Let the chorus of our shared song continue
with her memory. Dr. Moisan is survived by her loving family,
including her husband, Dr. John Moisan, and her two daughters.
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