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About 20% of the organic carbon produced in the sunlit surface ocean is transported
into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized
and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic
carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical
and biological mechanisms associated with the particle pumps have been revisited,
suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019;
Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms
driving rDOC production and its potential accumulation in the ocean. On the basis
of recent conflicting evidence about the relevance of DOC degradation in the deep
ocean, we revisit the concept of rDOC in terms of its “refractory” nature in order
to understand its role in the global carbon cycle. Here, we address the problem
of various definitions and approaches used to characterize rDOC (such as turnover
time in relation to the ocean transit time, molecule abundance, chemical composition
and structure). We propose that rDOC should be operationally defined. However, we
recognize there are multiple ways to operationally define rDOC; thus the main focus for
unifying future studies should be to explicitly state how rDOC is being defined and the
analytical window used for measuring rDOC, rather than adhering to a single operational
definition. We also conclude, based on recent evidence, that the persistence of rDOC
is fundamentally dependent on both intrinsic (chemical composition and structure,
e.g., molecular properties), and extrinsic properties (amount or external factors, e.g.,
molecular concentrations, ecosystem properties). Finally, we suggest specific research
questions aimed at stimulating research on the nature, dynamics, and role of rDOC in
Carbon sequestration now and in future scenarios of climate change.

Keywords: dissolved organic matter, dissolved organic carbon, refractory DOC, carbon cycle, climate change

INTRODUCTION

Marine ecosystems play a central role in global biogeochemical cycles and climate by sequestering
carbon (C) in the deep ocean. Air/sea gas exchange processes are mainly responsible for
anthropogenic dissolved inorganic carbon (DIC) sequestration, particularly at high-latitudes where
cold surface waters have increased gas solubility and a fast overturning to the deep ocean
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(the so-called “solubility pump”; SP). However, biotic processes,
such as mediated by the “biological carbon pump” (BCP),
explain the majority (ca. 90%) of the vertical distribution of
natural DIC in the water column. During the ocean transit
time the SP sequesters DIC via global overturning circulation,
while biotic processes store carbon in the deep ocean either as
DIC, sedimentary particulate organic carbon (POC) or dissolved
organic carbon (DOC). The amount of DOC in oceanic waters
amounts to ca. 660 million metric tons of carbon (660 Pg C),
comparable to the CO2 currently present in the atmosphere
(860 Pg C) (Hansell, 2013; Friedlingstein et al., 2019). DOC
is the largest reservoir of reduced C in the oceanic water
column, holding > 200 times the C inventory of marine biomass
(Hansell, 2013; Figure 1). This mass is comparable to the
amount of particulate organic C (POC) accumulated in marine
sediments (about 1,000 Pg C) in the last 5,000–10,000 years
(Perdue and Benner, 2009). A large fraction of this DOC pool
is apparently “non-accessible” or “resistant” to rapid microbial
degradation, leading to the adjective “refractory” to describe it
(rDOC). Due to its large inventory (ca. 640 Pg C) and long-term
stability (Dittmar, 2015), rDOC is one of the cornerstones in
marine organic C sequestration (Figure 1). However, despite the

importance of this pool, there are conflicting views and unclear
uses of the term “refractory”; these inconsistent connotations
impede communication and interpretation of research results
and thus projections of C fluxes and sequestration. In this respect,
Hansell (2013) commented on the confusing nomenclature used
for defining this major DOC fraction:

“The problem is exemplified in the denotations of a word commonly
used by the marine science community, “refractory” (...). The
marine science community does not employ the word by its
denotation, nor has it agreed on a common connotation. As an
adjective, refractory has described the resistance of organic matter to
biological remineralization (...) and to chemical oxidation (...), and
has been used to characterize DOC that accumulates during culture
incubations (...). It has been alternatively employed as a noun in
naming the oldest and most abundant fraction of DOC in seawater
(...). These forms of DOC do not have identical reactivities, yet they
have all been termed refractory.”

To address this issue, Hansell (2013) introduced a
classification of the DOC pool based on its lifetime or
reactivity: labile, semi-labile, semi-refractory, refractory,
and ultra-refractory DOC, each of which is characterized by

FIGURE 1 | Diagram showing major carbon stocks in the ocean, including a list of the main factors affecting reactivity of the refractory (rDOC) pool. The DOC
inventory in the global ocean is ca. 662 Pg C (Hansell, 2013). The POC/marine biota pool is ca. 18 P g C, including 1–3 Pg C phytoplankton, 0.1 Pg C zooplankton,
0.1 Pg C bacteria and 15 Pg C of detritus (Perdue and Benner, 2009). Short-lived DOC has a pool size of about 20 Pg C (662–642 Pg C). DIC: dissolved inorganic
carbon, DOC, dissolved organic carbon; POC, particulate organic carbon; urDOC, ultra-refractory DOC; rDOC, refractory DOC; srDOC, semi-refractory DOC;
slDOC, semilabile DOC; lDOC, labile DOC.
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distinctive ocean residence times. Although this classification
has proven useful in the study of oceanic DOC, it has not
completely avoided the core problem, which is the use of
the term “refractory” as a one-fits-all word for different and
frequently non-complementary properties/characteristics related
to DOC reactivity. Another way of addressing the reactivity of
DOC is to use the DOC continuum concept instead of using
a number of DOC pools based on its reactivity (Zakem et al.,
2021). Several studies have discussed DOC reactivity in terms
of compounds with a continuum of first order decay rates, e.g.,
in sediments (Boudreau and Ruddick, 1991; Middelburg et al.,
1993) and lake water (Vähätalo et al., 2010; Koehler et al., 2012).

Yet, a major reason precluding a robust definition and
utilization of the adjective “refractory” in describing DOC is our
limited knowledge of its complex nature. The current conceptual
framework explaining the mechanisms governing the formation
and mineralization of rDOC is the “size-reactivity continuum
model.” This model refers to the inverse relationship between
the molecular size of DOC components and their bioavailability,
i.e., larger size classes of DOC are more bioavailable to
heterotrophic microbes than the bulk of small molecules (Amon
and Benner, 1996). Consistent with this model, based on
laboratory incubations with natural microbial communities,
studies of the chemical composition and radiocarbon (114C)
content confirm that the complexity and age of DOC increases
with decreasing molecular size (Walker et al., 2016; Broek et al.,
2020.). This relationship suggests that microbial degradation
controls the size distribution and the nature of the small DOC
molecules persisting in the ocean (Benner and Amon, 2015;
Walker et al., 2016; Broek et al., 2020). Advances in mass
spectrometry (i.e., Fourier transform ion cyclotron resonance
mass spectrometry, FT-ICR-MS) reveal an astonishing diversity
of molecules in the DOC pool, with thousands of different
molecular formulae (Lechtenfeld et al., 2014; Hansman et al.,
2015; Zark and Dittmar, 2018). These analyses do not capture the
full extent of the molecular diversity and complexity of molecules
comprising rDOC because FT-ICR-MS analyses require previous
isolation of DOC from seawater; the commonly used solid phase
extraction methods are chemically selective, typically recovering
less than half of the total DOC. Mass spectrometry also requires
ionization of the molecules, creating a further bias (Patriarca
et al., 2020). It is worth mentioning that the experiments referred
to for the “size-reactivity continuum model” include very few size
fractions (i.e., 2 fractions inAmon and Benner (1996), Martínez-
Pérez et al. (2017), Broek et al. (2020) and 4 fractions in Walker
et al. (2016), which is similar to a bulk group approach (refractory
vs. labile). However, also these approaches have methodological
limitations such as size fractions determined by the pore size of
the membranes used.

To understand the term “refractory,” it is important to
consider three approaches currently used to characterize the pool:
(1) the pool’s longevity (e.g., Hansell, 2013); (2) the occurrence
of specific molecular compositions and structures (i.e., molecular
properties) possibly unrecognizable by prokaryotic enzymes or
requiring many enzymes to degrade it, hence yielding a low
energetic benefit (Jiao et al., 2010; Lechtenfeld et al., 2015); and
(3) the extreme dilution of individual compounds, precluding

energetically efficient degradation (Arrieta et al., 2015). It is
generally assumed that these “typologies” are complementary,
meaning that when we refer to one, the other two are included
(Figure 2A). However, this is not necessarily the case as, for
instance, there are examples of complex organic compounds
that, although requiring hundreds of enzymes to be degraded,
are consumed within days under certain conditions (Sichert
et al., 2020). Astonishingly, few actual molecules constituting
DOM have been isolated and their reactivity tested (Hertkorn
et al., 2006; Geuer et al., 2019; Petras et al., 2021). Moreover,
the term rDOC is strongly dependent on ecosystem properties,
with compounds being “refractory” in one and degraded in
other environments or conditions (Ward et al., 2013; Bianchi
et al., 2018; Figure 1). For example: (i) ultraviolet radiation can
transform DOC compounds from recalcitrant to bioavailable
and vice versa (Benner and Biddanda, 1998; Obernosterer
et al., 1999; Mopper et al., 2015; Shen and Benner, 2018;
Sun et al., 2021); (ii) “Priming,” with the addition of highly
bioavailable compounds, may result in enhanced degradation of
more refractory compounds (Bianchi, 2011; Shen and Benner,
2018), although the process is controversial outside of soil
science (Catalán et al., 2015; Bengtsson et al., 2018); (iii) rDOC
that is resistant to degradation by the microbial community
of a given ecosystem can be utilized by microbes of another
ecosystem (Carlson et al., 2004; Shen and Benner, 2018); (iv)
hydrostatic pressure can deform enzymes, making them less
effective in cleaving substrates (Penniston, 1971); (v) sorption
and aggregation with “(in)organic particles” might hamper
degradation in specific settings while stimulating degradation in
others similar to soil (Keil and Mayer, 2014). Labile compounds
might become less reactive if adsorbed to clay or held under
anaerobic conditions, such as with ancient DNA (Lützow et al.,
2006). Likewise, sinking particles release DOC (Lopez et al.,
2020), and perform non-selective preservation, particularly when
ballasted with terrigenous minerals (Druffel et al., 1992; Hedges
et al., 2001). Thus, taken together, what apparently is “refractory”
for a particular environment, population or community is not
necessarily in a “stable state” or inert (Figure 1). This outcome is
not surprising bearing in mind that biochemical reactions always
require certain conditions, whether it is due to their activation
energy (affected by catalysts/enzymes), their state (gas/water/ice)
or the availability of reactants (concentration). The challenge now
resides in bringing the empirical evidence back into chemical and
biochemical theory (Kothawala et al., 2020).

Collectively, these examples indicate that the three descriptors
of “refractory” DOC do not always refer to the same property.
Therefore, a better representation of their relation/association
may be a Venn diagram (Figure 2), where in some cases two
or more descriptions fit the same compound whereas at other
times or in other environments there will be no complementarity
whatsoever. While definition (1) is “operational,” definitions (2)
and (3) are more “conceptual.” Definition (1) is easier to apply by
both microbiologists and biogeochemists. For a microbiologist,
rDOC would be the fraction that escapes degradation at the end
of the experiment (which ideally should last several years). For
a biogeochemist, rDOC is the fraction that has a turnover time
that exceeds the transit time of the water mass under study,
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FIGURE 2 | Diagram showing different levels of relationship of three currently employed characteristics, properties and definitions (i.e., 1, 2, and 3) of “refractory”
DOC (see text for details): (A) the case in which the three definitions are complementary, (B) the case where the three definitions are sometimes complementary for
some compounds under specific environmental conditions. Part (A) is empirical, part (B) is conceptual. The ultimate goal of our research is represented by the
integrative part (C), related to biochemical theory for individual molecules.

which can last from months in the coastal ocean to about one
thousand years in the deep open ocean (Carlson et al., 2010;
Lønborg and Álvarez-Salgado, 2012). Although definitions (2)
and (3) can be complementary, they can also exclude each other.
If a molecule is unaltered by biological or geochemical processes
it will be refractory independent of its concentration. In contrast,
very labile molecules such as amino acids can be preserved only
if they are extremely diluted at ca. 10−12 mol L−1 (Williams,
2000). At this point, it becomes clear that we not only have a
clear gap of knowledge on the real nature of rDOC, but also
contrasting perspectives depending on our approach to studying
and interpreting the DOM transformation (i.e., microbiologists
vs. geochemists). These differing perspectives are a pressing
problem that we need to resolve for understanding oceanic DOC.

Early studies of DOC reactivity (Ogura, 1970, 1972) defined
rDOC as “not easily utilized by microorganisms.” Based on
this definition, there are many types of rDOC compounds in
the major nonliving reservoirs of organic matter (aquatic and
terrestrial). Refractory organic matter is considered resistant to
biodegradation but it is not considered inert. If, by definition,
we assume that rDOC is not significantly degraded on a time
scale of decades to millennia (Hansell, 2013), and that the pool
is biologically produced (Jiao et al., 2010; Legendre et al., 2015;
Osterholz et al., 2015), either steady state or accumulation of
rDOC over time would be plausible. Yet, to fully address this
question of net DOC accumulation in the global ocean we
would need to know the drivers and mechanisms of rDOC
production and removal. Ocean mixing and circulation are
important for transporting rDOC to different areas of the ocean
where conditions may be favorable for removal (Hansell and
Carlson, 2013). It might be that the ocean overall is in “steady
state” (i.e., sources equal long-term sinks). Geochemical evidence
indicates that the rDOC pool in the ocean undergoes slow
degradation (time scales of deep ocean circulation or longer),
but is renewed at the time scale of surface ocean circulation
(Hansell, 2013). This description is supported by recent evidence

from microbiologists on rDOC production rates indicating that
it is produced faster than it is consumed. For instance, recent
laboratory experiments show that natural bacterial communities
(Lechtenfeld et al., 2015) and marine archaeal isolates (Bayer
et al., 2019) produce significant amounts of carboxyl-rich alicyclic
molecules (CRAM) over a period of weeks. The CRAM may be
key contributors to the rDOC pool (Hertkorn et al., 2006). CRAM
has been shown to be removed in hydrothermal vent systems
(Hawkes et al., 2015), although the water flux in vent systems
appears to be too low to explain the apparent steady state (Hawkes
et al., 2015). A further example is petroleum: it is preserved
for millions of years; however, when it seeps from sediments
it is rapidly degraded by marine microbes (Valentine et al.,
2010). Another such example is the microbial degradation and
utilization of formate to sustain microbial growth, even though
the molecule offers an extremely low energy yield (Dolfing et al.,
2008). In any case, if rDOC is mostly non-degradable, one
should expect “recently” produced rDOC to be a dominant and
potentially accumulating fraction of DOC in the global ocean.
According to global ocean model results, keeping the deep ocean
rDOC pool in steady-state requires the injection of 0.043 Pg
C year−1 from the surface ocean (Hansell, 2013). However, a
biological production of rDOC ranging between 0.1 and 0.2 Pg
C year−1 has been recently suggested (Legendre et al., 2015;
Walker et al., 2016), which would point to the non steady-state
of rDOC or that currently unknown sinks balance the pool.
The annual increase of the 640 Pg C pool of rDOC at these
latter rates would be 0.02–0.03% (0.13–0.19 Pg C year−1) or 1.0–
1.5% (6.4–9.6 Pg C) in 50 years, which is within the current
error of the DOC measurements. Hence, we might not observe
accumulation because the current measurements of DOC are not
sufficiently sensitive.

Another consideration is the interpretation of bulk DO14C
ages: if 30% of the DOC pool turns over in 1 year and the
remaining 70% turns over in 8,000 years, the average age of the
DOC pool will turn over in 5,600 years—a commonly observed
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age of bulk DOC in the deep ocean. Also, there are several
sources of 14C-dead organic carbon to the ocean (e.g., petroleum
seeps, hydrates, riverine discharge, etc.), further complicating the
use of 14C to determine the age of bulk DOC. Recent bioassay
experiments indicate some deep ocean rDOC components are
very resistant to microbial utilization due to their molecular
properties (Shen and Benner, 2020), but different approaches are
needed to determine whether these components are refractory to
microbial removal over time scales of decades to centuries.

Based on the examples provided above, it is clear that there is
a “terminology issue” that needs to be considered. The interested
research community seeks to understand the controls on C
sequestration (in other words, “refractory” compounds) while not
really knowing what defines the reservoir. Given this conundrum,
the word “refractory” should be used within the realm of current
methodology and understanding. The inconsistent use of words
leads to confusion, which makes it difficult to explore and
quantify C sequestration.

This analysis shows that we still know very little about the
refractory (strictly speaking) nature of DOC in the deep ocean.
Is remineralization of DOC constrained by the composition and
structure of the molecules, by concentration, by temperature,
by hydrostatic pressure or by a combination of all factors to
varying degrees? Recent studies have demonstrated microbial
degradation of more recalcitrant compounds having higher
temperature sensitivity, suggesting that ocean warming could
reduce the rDOC pool size and lead to the production of CO2
(Lønborg et al., 2016, 2018). Another issue is that bacterial growth
is stimulated upon decompression of deep-water samples, even if
in situ temperature is maintained, indicating that relieving deep-
sea microbial communities from hydrostatic pressure stimulates
DOC consumption (Amano et al. unpubl. data).

These few examples highlight our lack of knowledge on the
ability of microbes to remineralize DOC, and the need to properly
define/delimit rDOC. We propose that the word “refractory”
should be operationally defined (e.g., any form of organic carbon
that sequesters CO2 for a period longer that the ocean transit
time under in situ conditions). It is important to recognize that
this operational definition includes removal of rDOC by abiotic
as well as biotic processes. Abiotic removal processes include
sorption, photochemical degradation and thermal combustion in
hydrothermal vent systems (Hansell, 2013; Hansell and Carlson,
2014). The term rDOC should be operational mainly because
it is empirical, and because of the various potential removal
processes and the varying capacity of microbes to degrade it (i.e.,
with respect to different species, molecular properties, dilution
effects, temperature, hydrostatic pressure, etc.). DOC research is
generally fraught with vague terminology (e.g., humic-like, labile,
autochthonous), posing major challenges in comparing different
studies and for large-scale data synthesis. The methodological
approaches used to characterize oceanic rDOC have constantly
expanded and diversified to keep pace with the growing interest
in rDOC over the years. Thus, rDOC is an emergent property that
is also operationally defined by the approach and/or method we
use to quantify and characterize it. Therefore, we argue that the
main focus in unifying future studies should be to explicitly state
how rDOC is being defined and the analytical window used for

measuring the pool, rather than adhering to a single operational
definition. Leaving space for multiple (but clearly described)
definitions of rDOC would promote collaborative efforts and
allow for more efficient data synthesis. An empirical definition
of “refractory” will prove useful because the DOC pool is a
black box; theories about how it reacts or is degraded remain
challenging to formulate. Nevertheless, we advocate for more
theoretical approaches aiming to explain this resistance based
on molecular structure (Kothawala et al., 2020). This suggestion
is unlikely to lead to an unambiguous decision on whether a
molecule is “refractory or not,” but rather a determination as to
“how refractory each molecule is.” Whether we treat rDOC as
reactivity groups or continua we will still reach the same solution:
DOC is a mixture of a very large number of low concentration
compounds, each exhibiting specific reactivity (decay rate and
conditions required). Thus, critical knowledge could be gained
from focusing on specific molecules.

Finally, to determine the relative importance of the variety of
mechanisms contributing to accumulation and/or maintenance
of the rDOC pool, we encourage pursuing the following
research topics, all of which require close collaboration between
microbiologists and biogeochemists:

(i) Cross-comparison among different analytical methods for
isolation and characterization of rDOC in the ocean for
understanding the possible unifying characteristics and
molecular structure of rDOC.

(ii) Focus on the mechanisms of production and removal of
rDOC in intermediate and deep-water formation areas.

(iii) Studies linking chemical diversity of rDOC to microbial
diversity, identifying associations between the production
and removal of rDOC with specific bacterial and archaeal
groups (Osterholz et al., 2016).

(iv) Determine how climate change-related drivers, such as
warming, intermediate and deep-water formation, global
thermohaline circulation, acidification and deoxygenation
might affect rDOC production/degradation from a multi-
stressors perspective.

(v) Test via FT-IC-MS (Lehmann et al., 2020) whether the
molecular diversity (number of molecular formulas) of
bulk rDOC is too high to make it energetically rewarding
to degrade, despite that the individual compounds might
be easily degraded, as suggested for soil organic matter
(Lehmann et al., 2020).

(vi) Reconcile the calculations of theoretical extreme dilution
(10−12 mol L−1) with the actual fraction of molecules at
such concentrations in the deep ocean.

(vii) Investigate multi-substrate and low-concentration
transport mechanisms in meso- and bathypelagic
microorganisms by combining microbial rate
measurements in situ with –omics approaches.

New knowledge gained in such studies will reduce the gap in our
understanding of organic carbon sequestration. That knowledge
is required for a robust prediction of the responses of the marine
C cycle in the light of climate change.
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