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Remotely sensed ocean color data are useful for monitoring water quality in coastal
environments. However, moderate resolution (hundreds of meters to a few kilometers)
satellite data are underutilized in these environments because of frequent data gaps
from cloud cover and algorithm complexities in shallow waters. Aggregating satellite
data over larger space and time scales is a common method to reduce data gaps
and generate a more complete time series, but potentially smooths out the small-scale,
episodic changes in water quality that can have ecological influences. By comparing
aggregated satellite estimates of Kd(490) with related in-water measurements, we can
understand the extent to which aggregation methods are viable for filling gaps while
being able to characterize ecologically relevant water quality conditions. In this study,
we tested a combination of six spatial and seven temporal scales for aggregating
data from the VIIRS instrument at several coral reef locations in Maui, Hawai‘i and
Puerto Rico and compared these with in situ measurements of Kd(490) and turbidity.
In Maui, we found that the median value of a 5-pixels, 7-days spatiotemporal cube
of satellite data yielded a robust result capable of differentiating observations across
small space and time domains and had the best correlation among spatiotemporal
cubes when compared with in situ Kd(490) across 11 nearshore sites (R2 = 0.84).
We also found long-term averages (i.e., chronic condition) of VIIRS data using this
aggregation method follow a similar spatial pattern to onshore turbidity measurements
along the Maui coast over a three-year period. In Puerto Rico, we found that the median
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of a 13-pixels, 13-days spatiotemporal cube of satellite data yielded the best overall
result with an R2 = 0.54 when compared with in situ Kd(490) measurements for one
nearshore site with measurement dates spanning 2016–2019. As spatiotemporal cubes
of different dimensions yielded optimum results in the two locations, we recommend
local analysis of spatial and temporal optima when applying this technique elsewhere.
The use of satellite data and in situ water quality measurements provide complementary
information, each enhancing understanding of the issues affecting coastal ecosystems,
including coral reefs, and the success of management efforts.

Keywords: ocean color, coral reef, water quality, coastal, in situ, turbidity, diffuse attenuation coefficient, Kd(490)

INTRODUCTION

Good water quality is essential for healthy coastal ecosystems
and recent increases in land-based sources of pollution
(LBSP) threaten the persistence of many ecologically important
nearshore species. Water quality is defined by several factors
such as the turbidity, productivity, salinity, amount of sediment,
nutrients, dissolved oxygen, and other pollutants present
within the water column. Human expansion has dramatically
increased coastal LBSP and negatively affected water quality
in nearshore environments impacting most of the world’s
coral reefs (Fabricius, 2005; Sheridan et al., 2014; Otaño-
Cruz et al., 2017). Climate change, sea level rise, and the
increasing frequency of hurricanes and other natural disasters
exacerbate the impacts of anthropogenic LBSP through increased
runoff, coastal erosion, and sediment resuspension (Nearing
et al., 2005). Excess sediment and nutrients that lead to
eutrophication can degrade coastal ecosystem health by limiting
light availability necessary for photosynthetic organisms and
disrupting oligotrophic ecosystems.

Coral reef ecosystems are particularly sensitive to changes in
water quality. There have been substantial ecosystem declines in
reef regions around the world (Pandolfi et al., 2003; Burke et al.,
2011; Hughes et al., 2018), and increased sediment and nutrient
loads indirectly threaten one-third of remaining reef-building
corals by disrupting reef biological processes and increasing
coral disease (Rogers, 1990; Carpenter et al., 2008; Thompson
et al., 2014; UNEP, 2017). In tropical nearshore waters, structure-
building corals provide the underlying habitat that supports the
high biodiversity of coral reefs and the many ecosystem services
they provide. Tropical corals live close to their upper light and
temperature tolerance thresholds (Rodolfo-Metalpa et al., 2014)
and, as sessile organisms, they are highly sensitive to changes in
water quality, which modifies temperature, light, and availability
of both beneficial and detrimental nutrients (Lesser et al., 2009).
Turbid water from sedimentation, nutrient input, and other LBSP
can impair reef growth and lead to degradation of existing reefs.
For example, suspended sediment decreases the light available to
zooxanthellate corals for photosynthesis, and deposited sediment
limits coral recruitment and is energetically costly for corals to
remove (Fabricius, 2005; Weber et al., 2012). Sediment resulting
from coastal dredging has similar deleterious impacts and may
also act as a catalyst for the spread of coral disease (Pollock
et al., 2014). High nutrient input from terrestrial runoff can cause

eutrophication that leads to phytoplankton and algae blooms,
further reducing light availability.

Quantifying water quality in coastal ecosystems has
largely depended on highly accurate but small-scale in situ
measurements and less accurate but larger-scale complementary
data from remotely sensed ocean color instruments. While
in situ water quality measurements can be highly accurate, they
are time-consuming, labor-intensive, and often expensive and
therefore difficult to collect over regional scales (Duan et al.,
2013). These measurement methods are also limited in their
ability to track the spatial and temporal variability in water
quality in large water bodies (Gholizadeh et al., 2016). Weather
conditions may also inhibit in situ measurement collection, and
in the case of Hurricane Maria in Puerto Rico, destroy existing
monitoring infrastructure (Hernández et al., 2020). As such,
previous studies have used remotely sensed ocean color data
to estimate water quality parameters in coastal environments
(Thompson et al., 2014; Gholizadeh et al., 2016; Hernández
et al., 2020). These data provide complementary information to
in situ measurements and are useful for estimating water quality
parameters over broad areas.

One such satellite-derived parameter is the diffuse attenuation
coefficient at 490 nm, Kd(490) (Lee et al., 2005; Morel et al.,
2007; Wang et al., 2009). Kd(490) is an apparent optical property
that acts as a proxy for turbidity in the water column and
can be used to quantify light availability for benthic ecosystems
such as coral reefs (Kirk, 2011; Hernández et al., 2020). Two
limitations of ocean color algorithms for remotely sensed water
quality observations over coral reefs are the frequent presence
of clouds along tropical shorelines (Gholizadeh et al., 2016), and
the confounding of water column measurements due to bottom
reflectance in clear, shallow water (Reichstetter et al., 2015). The
presence of clouds increases when using instruments aboard an
afternoon-overpass satellite like Suomi-National Polar-orbiting
Partnership (NPP) or NOAA-20. Optically shallow waters can
confound algorithms due to bottom reflectance, interfering with
measurement of near-coast turbidity (McKinna and Werdell,
2018). Waters are considered optically shallow when the physical
depth of the measurement location is less than the depth to
which penetrating light would be optically significant (Bailey
and Werdell, 2006). While previous work to improve algorithms
for optically shallow waters and minimize bottom reflectance
issues has been tested in Florida and the Gulf of Mexico
(Barnes et al., 2013; Hu et al., 2014; Barnes et al., 2018),
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these algorithms have not been implemented operationally by
NOAA or NASA. In addition to cloud presence and bottom
reflectance, the practice of using only the highest quality satellite
data affects the quantity of data available due to quality control
flags, which account for perturbations such as stray light and
sun glint, further removing data from consideration (Feng
and Hu, 2015; Hu et al., 2020). Multi-satellite approaches can
reduce data gaps, but are limited by the insufficient frequency
of polar-orbiting satellite overpasses and prove difficult to
implement due to instrument and algorithm differences across
sensors (Sathyendranath et al., 2019). NOAA has been using
Data Interpolating Empirical Orthogonal Functions (DINEOF)
on single-sensor and merged-sensor datasets to successfully
fill gaps and capture meso- and large-scale ocean features,
highlighting the need for gapless datasets, but this method
has not been tested at resolutions less than 9 km (Liu and
Wang, 2018, 2019). Aggregating data from one instrument
over space and time scales is routinely done by NOAA and
NASA to produce a more complete time series (e.g, 3-, 8-days,
monthly, and seasonal averages at 4 and 9 km globally). However,
aggregating over space and time has the potential to smooth
out small-scale features that are of interest to coastal managers.
Globally standardized aggregation scales may not be optimal
for all locations due to localized small-scale episodic changes
in water quality.

This study investigated the relationship of in situ data with
space and time aggregations of corresponding satellite Kd(490)
to determine how well satellite data describe environmental
variability at scales applicable to coral reefs. Data from the Visible
Infrared Imaging Radiometer Suite (VIIRS) instrument (nominal
spatial resolution of 750 m) aboard the Suomi-NPP satellite at
several coral reef locations in Maui, Hawai‘i and southwestern
Puerto Rico were compared with in situ measurements of
Kd(490) and turbidity. The performance of aggregated satellite
data was assessed in terms of how well the data correspond to
in situ data to describe acute and chronic water quality, both
of which are ecologically important to coral reefs. Improving
the data availability of satellite-derived water quality while
maintaining a robust relationship with in situ measurements
will enhance the utility and reliability of satellite data for
use in the monitoring and management of events that affect
water quality, as well as understanding of the ecological
implications of such events.

MATERIALS AND METHODS

This study compares the globally available satellite remote
sensing dataset from VIIRS with two types of in situ data
in Maui, Hawai‘i and Puerto Rico (Figure 1). In Maui, the
focus is on spatial dynamics and aggregated VIIRS data are
compared with (i) in situ nearshore optical data collected at
11 sites over three days and (ii) in situ onshore turbidity
measurements collected at 51 sites over three years. In Puerto
Rico, the focus is on temporal dynamics and aggregated VIIRS
data are compared with a four-year in situ time series of
nearshore optical data at a single location. The following

sections describe the data sources and collection methods
in more detail.

Nearshore Optical Data
Collection—Maui and Puerto Rico
Nearshore optical data in Maui and Puerto Rico were collected
using a Sea-Bird Scientific HyperPro II optical profiler (Satlantic)
in free-falling mode over the side of a boat, while avoiding ship-
shadowing errors (Mueller et al., 2003; Ondrusek et al., 2012). The
raw instrument data were processed in Satlantic Prosoft software
(v8.0) with calibrated reference data to obtain the attenuation
coefficient of downward irradiance at 490 nm, Kd(490) (Lee
et al., 2013; Wei et al., 2016). The Maui data consisted of 11
measurements taken at different nearshore sites covering a broad
spatial domain (∼17 km2) during November 26 and 28, 2018
(Figure 2). Nine of the nearshore sites in Maui were ∼750 m off
the coast (one satellite pixel) and two were more than 750 m off
the coast. The Puerto Rico data consisted of 22 measurements
taken at one site in the La Parguera Natural Reserve during 2016–
2019 (Figure 3). The site in Puerto Rico was more than 750 m off
the coast, but within the shelf break. At each measurement site
(across both study locations), three instrument casts were taken
and collectively used to determine the attenuation coefficient
(Supplementary Figure 1). In Maui, four sites can be considered
optically shallow at the time of measurement using a conservative
measure of apparent optical depth (AOD = 1.3/Kd; Bailey and
Werdell, 2006); everywhere else the waters were optically deep
(i.e., the apparent optical depth less than the physical depth;
Supplementary Table 1).

Onshore Turbidity Data Collection—Maui
Onshore turbidity data were collected using a Hach 2100Q
turbidimeter in < 1 m deep water along the west and south Maui
coasts at 51 fixed sites (±3 m of accuracy) that are representative
of water quality types along the stretch of coastline. Data were
collected between June 15, 2016 and June 15, 2019 (Figure 4).
Sites were chosen to be adjacent to but not directly in front of
surface water discharges. The turbidimeter reports measurements
in Nephelometric Turbidity Units (NTU). These measurements
are an ongoing effort in collaboration with Hui o Ka Wai Ola, a
local water quality-monitoring group (http://huiokawaiola.com),
and the Hawai‘i State Department of Health. The number of NTU
measurements and dates they were collected varies between sites
(Supplementary Table 2).

VIIRS Kd(490) Ocean Color Data—Maui
and Puerto Rico
Ocean color data are from the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor aboard the Suomi-NPP satellite.
Data are available for download as science-quality, Level-2 swaths
(nominal resolution 750 m) from NOAA CoastWatch (NOAA,
2021). The NOAA Center for Satellite Applications and Research
Ocean Color Team has been routinely producing ocean color
products for VIIRS since its launch on October 28, 2011 using
the NOAA Multi-Sensor Level-1 to Level-2 Processing System
(NOAA-MSL12 v1.2) (Wang et al., 2009, 2017). The algorithms
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FIGURE 1 | Location of study areas (red boxes) in West Maui, Hawai‘i (top) and southwestern Puerto Rico (bottom).

that produce Kd(490) are a weighted combination of clear open
ocean and turbid water algorithms (Wang et al., 2017; Eqs. 12–
16). Algorithm validation was undertaken using the predecessor
to VIIRS (Moderate Resolution Imaging Spectroradiometer,
MODIS) for which the mean ratio of satellite to in situ Kd(490)
was 1.037 (Wang et al., 2009). Subsequent comparison of VIIRS
and MODIS data demonstrated consistent Kd(490) values (Wang
et al., 2017). For this study, Level-2 swath data for Hawai‘i and
Puerto Rico were binned to a geographic projection with pixel
size of 0.0075 degrees (∼750 m) using CoastWatch Utilities
software (v3.6.0). VIIRS overpasses occur once daily with an
afternoon orbit. Swath data within 4 h before or after the average

overpass time were temporally binned into daily images. For
Hawai‘i, which is near the International Date Line, this method
prevented swaths that were sometimes greater than 22 h apart
from being temporally binned into the same “day.” Level-2
quality flags were applied during the spatial binning process to
mask out potentially poor quality data as defined by the MSL12
process (Supplementary Table 3). The flags applied follow the
current default flags used by NOAA to produce daily Level-3
global products (NOAA, 2021). Data using this process were
previously used to investigate water quality impacts following
Hurricanes Irma and Maria in Puerto Rico (Hernández et al.,
2020). The daily, 750 m Kd(490) imagery over Hawai‘i and Puerto
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FIGURE 2 | Maps of VIIRS Kd(490) for West Maui, HI for (A) November 27, 2018 (750 m pixel resolution). White areas are missing data due to cloud cover or flagged
due to poor quality. The red circles show the locations where 11 in situ optical data measurements were taken on November 26 or November 28, 2018 using a
Sea-Bird Scientific HyperPro II; and (B) the 7-days period from November 24–30, 2018, illustrating the variability in satellite data coverage. Sites marked with a white
asterisk were considered optically shallow during the time of measurement (see Supplementary Table 1).

FIGURE 3 | Map of VIIRS Kd(490) for southwestern Puerto Rico for November 9, 2016 (750 m pixel resolution). White areas are missing data due to cloud cover or
flagged due to poor quality. The red circle shows the location where 22 in situ optical data measurements were taken between 2016 and 2019 using a Sea-Bird
Scientific HyperPro II.
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FIGURE 4 | (Left) Temporal median of the time series of (red, upper axis) in situ turbidity (NTU) and (black, lower axis) spatiotemporal (median of 5-pixels, 7-days
cube) satellite Kd(490) (m−1) for each site by latitude in West Maui, HI. In situ turbidity measurements were taken using a Hach 2100Q turbidimeter. Data were
included in the analysis only when in situ observations and satellite observations (in a 5-pixels, 7-days cube) were both available. Whiskers represent the 1st and 3rd
quartiles of underlying time series data for each dataset, respectively. (Right) Map of collection sites along the West Maui coast. The 1937 land use layer shows
areas historically used for pineapple (orange) and sugarcane (yellow) production. The pink with yellow pattern area shows coral reef presence along the coast.

Rico produced following this process were used to test different
aggregation methods in this study.

Aggregating VIIRS Data for Comparison
With in situ Data
To evaluate the performance of different aggregations of satellite
data, Kd(490) values from every combination of six spatial and
seven temporal scales were compiled for comparison with in situ
data. Spatial scales were defined using a rosette-shaped buffer that
incremented from the central pixel (containing the in situ data
measurement) by one 750 m satellite pixel in every direction.
This resulted in total potential pixels considered for the spatial
dimension of 1, 5, 13, 25, 41, and 61 (effective resolutions ∼0.75,
2.25, 3.75, 5.25, 6.75, and 8.25 km). For in situ measurements
close to shore, the number of pixels considered in the spatial

buffer was less than the potential maximum (typically around half
of the maximum, depending on shape of the coastline) due to the
buffer expanding over land. The temporal scales for the satellite
data were centered on the date of the in situ data measurement,
incrementing by one day before and after, that resulted in time
scales of 1, 3, 5, 7, 9, 11, and 13 days centered on the in situ
measurement date. The resulting spatiotemporal cubes of satellite
data ranged in size from one pixel (1-pixel, 1-day) to 793-pixels
(61-pixels, 13-days).

For each spatiotemporal cube of satellite data, the median
value was determined (where an even number of satellite
data values occurred, the mean of the two middle values was
used). This statistic was chosen (e.g., instead of the mean) for
comparison with in situ data to preserve a “real” measurement
from the satellite data and to remove any influence of extreme
values, which may be erroneous and indicate bottom reflectance

Frontiers in Marine Science | www.frontiersin.org 6 April 2021 | Volume 8 | Article 643302

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-643302 April 13, 2021 Time: 12:44 # 7

Geiger et al. Optimal Spatiotemporal Scales to Aggregate

in optically shallow near-shore environments (McKinna and
Werdell, 2018). As distributions of Kd(490) data are typically
skewed toward low values, both in situ and satellite Kd(490) data
were log-transformed to reduce skew before comparison.

RESULTS

Comparing Aggregated VIIRS Kd(490)
With Nearshore in situ Kd(490)—Maui
For the 11 sites in West Maui (Figure 2A), a week of satellite
Kd(490) values illustrates the variability in satellite data coverage
(Figure 2B). On average, the 11 satellite pixels containing these
sites had data on only 18% of days in 2018. In situ and
satellite Kd(490) values ranged within 0.022 and 0.223 m−1.
Median values from each spatiotemporal cube of VIIRS Kd(490)
were compared with in situ Kd(490) measurements, and linear
regressions of log-transformed data resulted in R2 values ranging
from 0.289 to 0.911 (Figure 5). The highest R2 resulted from
the 5-pixels, 1-day combination; however, this combination
yielded satellite data for only nine out of 11 in situ sites. The
next highest R2 of 0.843 resulted from the 5-pixels, 7-days
combination, which yielded matching satellite data for all 11
of the in situ measurements in Maui (Figure 5B). For this
spatiotemporal cube, a total of 136 satellite values contributed to
the 11 medians (6–21 gray dots for each black dot, Figure 5B)
that were compared with in situ measurements. In general,
increasing the spatial scale beyond the 5-pixels buffer and the
7–9-days time scale led to reduced R2 values. Consideration
of model fit using relative root mean square error (RRMSE)
produced similar outcomes (Supplementary Figure 3). Due to
sparse satellite data coverage, R2 values for smaller and shorter
spatiotemporal aggregation scales were more variable and, for
the smallest aggregations, did not include all sites. Applying the
5-pixels, 7-days aggregation to site 15 resulted in an increase from
28 to 88% data coverage with an RMS difference of 0.005 m−1

between the two time series (Figure 6).

Comparing Aggregated VIIRS Kd(490)
With Onshore in situ Turbidity
(NTU)—Maui
Having determined from the nearshore analysis that the 5-pixels,
7-days spatiotemporal aggregation was optimal, this aggregation
scale was applied to VIIRS Kd(490) values for comparison with
the onshore turbidity measurements. While some of the 51
onshore sites fell within the same 750 m pixel, the sampling
dates were unique to each site. From the resulting matched
sets of satellite and in situ data, the chronic or long-term
turbidity at each site was determined using the median value
through time to investigate variation with latitude (Figure 4).
The left panel of Figure 4 illustrates the chronic spatial pattern of
measured turbidity and Kd(490). Along the southern sector of the
Maui coast, both measures increased from south to north until
reaching Kalepolepo Park (∼20◦46.6′ N). Variability in turbidity
(as indicated by the interquartile whiskers), also increased along
this section of the coast. In the middle latitudes, the coastline

runs from east to west, from Kalepolepo Park around the bight
to Mā'alaea Harbor, which means the values are difficult to
distinguish by latitude alone (Figure 4). Considering the sites
by index (Supplementary Figure 2 and Supplementary Table 2)
this region experienced low turbidity values, while Kd(490) values
remained high (index 19–23). Additionally, Mā'alaea Condos,
Keālia Pond, and Haycraft Park (index 27–29), also within the
bight, had low turbidity and high Kd(490) values. Along the
northern sector of the Maui coast, turbidity (together with
variability) increased heading north to Kā'opala Bay, although
to a lesser extent than the southern sector. The northernmost
site, Honolua Bay, had the highest variability in turbidity. Despite
the differences in the measured quantities (in situ turbidity of
particulates, and remotely sensed attenuation coefficient, which
measures the effect of both particulates and dissolved matter),
there is a consistency in the spatial pattern, indicating either
that the components co-vary or that the satellite measurement
is predominated by particulates. The R2 between the long-term
median Kd(490) and turbidity values was 0.056. While spatial
patterns in the chronic conditions appeared consistent for the
two datasets, there was little to no relationship between turbidity
values and VIIRS Kd(490) when examined for each time and
location. This was likely due to the inability of the satellite to
measure changes in turbidity within tens of meters of the coast
where turbidity samples were taken (typically <1 m deep water).

Comparing Aggregated VIIRS Kd(490)
With in situ Kd(490)—Puerto Rico
We matched 22 in situ Kd(490) measurements spanning
four years from a single nearshore site in Puerto Rico with
spatiotemporal aggregations of satellite data (Figure 3, which
shows satellite Kd(490) coverage for one matchup date). In situ
and satellite Kd(490) values ranged between 0.03 and 0.33 m−1.
Median values from each spatiotemporal cube of VIIRS Kd(490)
were compared with in situ Kd(490) measurements, and linear
regressions of log-transformed data resulted in R2 values ranging
from 0.003 to 0.547 (Figure 7). Every spatiotemporal cube
smaller than 13-pixels and/or shorter than nine days resulted
in an R2 less than 0.35. The highest R2 of 0.547 (to three
decimal places) resulted from the 13-pixels, 13-days and the
25-pixels, 13-days combinations (the latter was higher in the
5th decimal place). There was little difference in R2 between
the regressions that fell within the 13–41 pixels and 9–13 days
range of the matrix (ranging 0.45–0.547). The 13-pixels, 13-days
matchup yielded the highest R2 with the more parsimonious
spatial scale (Figure 7B). In contrast to the West Maui dataset,
the in situ values here represent measurement dates at the
same location rather than measurements across different sites.
The matrix in Figure 7 shows little pattern between R2 and
increasing time and space scales, but it could be argued that
increasing the time scale had a greater (positive) effect on
R2 than increasing the spatial scale. Evaluation of model fit
using the RRMSE statistic (RRMSE < 15%) supported the
selection of the 13-pixels, 13-days aggregation (using R2) to
balance the desired improvement to data coverage (number of
dates matched) while maintaining representation of the in-water
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FIGURE 5 | (A) Correlation matrix of in situ and VIIRS measures of log-transformed Kd(490) over a three-days in situ measurement period at 11 West Maui locations
(Figure 2) for a range of spatial buffers and time windows applied to the satellite data. The outer horizontal axis indicates the spatial buffer and the outer vertical axis
represents the time window, with icons on each representing the space (or time) domain. Together, the time window and spatial buffer make the spatiotemporal cube
of satellite data from which values are compiled (gray circles) and the median of those is calculated (black circles). Shading of each plot represents the R2 value of
individual regression lines between the median satellite observation and the in situ observations. For each scatterplot, the horizontal axis values are the in situ
observations from the sites in Figure 2, all of which were taken during November 26–28, 2018, and the vertical axis values are all satellite observations associated
with that in situ measurement within the time window and space buffer indicated. The number in the upper left corner is the R2 value for that plot; the number in the
bottom right corner is the total number of satellite observations (gray circles) displayed in the plot. (B) Enlarged scatterplot for recommended spatiotemporal
aggregation (5-pixels, 7-days). Axis tick values in (B) are the same as all scatterplots in (A) and major tick marks are bold for all scatterplots.
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FIGURE 6 | Time Series of Kd(490) from 2017 to 2018 at Maui Station 15 before aggregation (top) and after taking the median from a rolling 5-pixels, 7-days
spatiotemporal window centered on the date (bottom) demonstrating improved data coverage. The RMS difference between the non-aggregated and aggregated
time series is 0.005 m−1.

measurements (Supplementary Figure 4). No spatiotemporal
aggregation resulted in all in situ sampling dates having matched
satellite data (the largest cube, 61-pixels and 13-days, matched
with 19 out of 22 dates; the selected 13-pixels, 13-days cube
matched with 17). Applying the 13-pixels, 13-days aggregation to
Site LP6 resulted in an increase from 11 to 82% data coverage
with an RMS difference of 0.025 m−1 between the two time
series (Figure 8).

DISCUSSION

Understanding the long- and short-term variations in water
quality are essential to enhance related management of marine
ecosystems. We found that aggregated VIIRS Kd(490) data
adequately captures this variability in coastal waters, allowing
characterization of water quality over broad regions. Researchers
and managers can leverage the long time domain of satellite
measures of water quality that are now available to assess
both historical trends and variability, and to evaluate temporal
dynamics. Our method of optimizing satellite data aggregation
in nearshore areas, which are typically of low data density,
successfully represented in situ measurements, supporting the
use of this type of data for coral reefs and other coastal
marine environments.

The nearshore Maui dataset—collected in a three-days
snapshot at 11 sites—captured Kd(490) data over the West Maui
region. The relationship between in situ Kd(490) and median
VIIRS Kd(490) from a 5-pixels, 7-days spatiotemporal cube was
robust at differentiating observations even across these small
space and time domains. Many of the nearshore in situ Kd(490)
measurement locations in Maui were within the satellite pixel
directly adjacent to the VIIRS dataset land mask. This affected
the overall number of pixels that had valid data and effectively
reduced the total possible pixels in the spatiotemporal cubes by
approximately half. Rather than attempting to shift the buffer

to include additional water pixels and capture the maximum
possible pixels for each buffer size, we chose instead to use a
consistent method for all in situ sites. Time series using the 5-
pixels, 7-days spatiotemporal cube at site 15 in Maui highlight
the improvement in data coverage, while maintaining features of
the non-aggregated data (Figure 7).

The robustness of the methodology also was apparent in
the Puerto Rico analysis, which considered a single location
over a longer time period (four years). However, the optimal
spatiotemporal cube dimension (13-pixels, 13-days) was notably
different. Aggregating satellite data over longer time and broader
spatial scales yielded better correlation with in situ data, with a
preference for longer time scales. This is consistent with previous
uses of VIIRS monthly Kd(490) and chlorophyll-a data to
monitor prolonged degradation of water quality after Hurricanes
Maria and Irma in Puerto Rico (Hernández et al., 2020). Of the 22
in situ measurements, less than half had matching satellite data
at combinations less than a 25-pixels spatial buffer or a 7-days
time window. This can be explained by the typical occurrence
of cloud cover at the time of the satellite overpass (Mikelsons
and Wang, 2019; Hernández et al., 2020). However, the strength
of the relationship between satellite and in situ data for larger
spatiotemporal cubes suggests the persistence of water quality
features in this region typically aligns with the scale selected for
the aggregation. Importantly, and similar to the spatial analysis in
Maui, VIIRS data seem capable of effectively capturing temporal
dynamics in turbidity in Puerto Rico. Time series using the 13-
pixels, 13-days spatiotemporal cube at site LP6 in La Parguera,
Puerto Rico highlight the improvement in data coverage, while
maintaining features of the non-aggregated data (Figure 8).

VIIRS Kd(490) also appear to be useful for monitoring
and characterizing chronic states along the Maui coast where
sediment input is known to be high and extends far offshore.
The onshore turbidity dataset for Maui provided a spatially
well-distributed dataset spanning three years, reflecting the
commitment of both local organizations and state agencies
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FIGURE 7 | (A) Correlation matrix of in situ and VIIRS measures of log-transformed Kd(490) over a 4-years in situ measurement period at one southwest Puerto Rico
location (Figure 5) for a range of spatial buffers and time windows applied to the satellite data. The outer horizontal axis indicates the spatial buffer and the outer
vertical axis represents the time window, with icons on each representing the space (or time) domain. Together, the time window and spatial buffer make the
spatiotemporal cube of satellite data from which satellite values are compiled (gray circles) and the median of those is calculated. Shading of each plot represents the
R2 value of individual regression lines between the median satellite observation and the in situ observations. Scatterplots with two or fewer matchups are excluded.
For each scatterplot, the horizontal axis values are the in situ observations from the site in Figure 3, which were taken between 2016 and 2019, and the vertical axis
values are all satellite observations associated with that in situ measurement within the time window and space buffer indicated. The number in the upper left corner
is the R2 value for that plot; the number in the bottom right corner is the total number of satellite observations (gray circles) displayed in the plot. (B) Enlarged
scatterplot for recommended spatiotemporal aggregation (13-pixels, 13-days). Axis tick values in (B) are the same as all scatterplots in (A) and major tick marks are
bold for all scatterplots.
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FIGURE 8 | Time Series of Kd(490) from 2017 to 2018 at La Parguera, Puerto Rico Station LP6 before aggregation (top) and after taking the median from a rolling
13-pixels, 13-days spatiotemporal window centered on the date (bottom). The RMS difference between the non-aggregated and aggregated time series is
0.025 m−1.

to ongoing water quality monitoring. While turbidity and
Kd(490) are measures of different in-water constituents (turbidity
measures particles and Kd(490) measures both particles and
dissolved matter), Kd(490) has been previously used to estimate
turbidity levels in the Great Lakes (Son and Wang, 2019), and
may act as a proxy for turbidity in particle-dominated waters.
The similar spatial patterns of long-term conditions between
in situ and satellite measures across south and west Maui suggest
that nearshore patterns reflect those in shallow onshore waters.
This provides confidence in the application of satellite data to
inform likely onshore spatial patterns. Notably, the increase in
both chronic VIIRS Kd(490) and turbidity from south to north
follows known sedimentation patterns in Maui related to historic
agricultural land use practices, as shown in the map in Figure 4.
Historical pineapple plantations were common in the northern
West Maui watersheds and best management practices were
typically poor, such as terrace creation leading to movement of
soil into the adjacent stream gulch (Stock et al., 2015). Along
the northern coast, the turbidity gradient is also related to an
increase in rainfall moving north to Honolua Bay. In the southern
sector, large sugar plantations were in cultivation up until 2016,
and were developed using an extensive network of ditches that
also deliver sediment and nutrients to the coast. The effects were
concentrated in the Mā'alaea area, which may partially explain
the south-to-north increase in turbidity along the southern
sector. It is of note that while spatial patterns in long-term
characteristics were similar, individually paired turbidity values
and VIIRS Kd(490) showed little to no relationship (maximum
R2 = 0.013 across all spatiotemporal cubes tested). This may
be attributed to aforementioned differences in the in-water
constituents satellite Kd(490) and in situ turbidity are measuring
and the resolution and onshore coverage limitations of the
satellite. Sediment resuspension with wind or wave action may
also affect onshore samples differently from nearshore patterns
we see in the satellite data. Although broad spatial patterns are
captured by satellite data, the temporal variability of particular

sites is not well captured, emphasizing the independent value of
in situ sampling.

Importantly, these results together indicate the
complementary value of using both remotely sensed and
in situ data on water quality. Satellite products can provide
continuity of information between field excursions, while in-
water measurements are invaluable during extended periods of
cloud cover that usually correlate with storms and occur close
to shore, where bottom reflectance and land masking prevent
consistently available satellite data. In the shallow coastal zone,
satellite products may best inform long-term conditions (e.g.,
baseline data) for water quality that couple with in situ data
used to monitor short-term events. For some sites, it may be
possible to develop satellite tools that alert managers and other
stakeholders to unusual conditions nearshore, which trigger
response monitoring onshore. Similarly, in situ measurements
can be useful to inform the development of satellite algorithms
in complex waters.

It is common practice to average satellite data over longer time
scales of weeks and months to understand seasonal patterns and
fill data gaps. It is less common to increase the spatial buffer
used, especially near the coast, due to the potential of introducing
more noise into the signal. However, for monitoring changes over
an area, such as coastal coral reefs, this method of determining
the optimal spatiotemporal scale may capture nearby events that
can have ecological impacts, such as a sediment plume moving
along the coast. While they can be informed by the analyses
presented here, optimizing the dimensions of the spatiotemporal
aggregation should ideally be undertaken for each geographic
region of study using appropriate in situ measurements. This is
especially important since satellite data coverage can vary greatly
from location to location. Spatial buffer size may ultimately affect
the correlation between satellite and in situ data when trying to
track acute events; however, it can be useful for characterizing
the chronic state of a location when looking for anomalies. Our
relationships between satellite data and in situ data in Maui and
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Puerto Rico suggest that aggregating over longer time scales
produces better correlations with in situ data than increasing
spatial buffer size; however, further analysis would be required
to categorically state this.

Enhancing the availability of temporally dense, long-term
satellite data to managers opens up new possibilities for
application and calibration/validation. The application of
methods to maximize satellite data availability should include
fine-tuning with in situ measurements at each new location.
Ecological models that require regular data input to generate
predicted changes in environmental conditions, such as seagrass
habitat loss or coral disease occurrence, could utilize this
method. We suggest testing this method with other remotely
sensed metrics such as chlorophyll-a or colored dissolved
organic matter (CDOM) where in situ data are readily available.
Longer time series of in situ water quality data in nearshore
and onshore environments would benefit the validation and
applicability of this method.

CONCLUSION

Remotely sensed ocean color data from satellites provide useful
information for characterizing and tracking changes in water
quality over broad regions. Many challenges exist when creating
management tools using these data, the most prevalent of which
are data gaps due to clouds and capturing events that occur at
small spatial and temporal scales close to the coast (e.g., tens
of meters, less than one day in duration). In this study, we
addressed the issue of overcoming data gaps by testing space
and time aggregation methods on VIIRS data in Maui Hawai‘i
and southwestern Puerto Rico to determine when the correlation
with corresponding in situ measurements is optimal. We found
that this method worked well in nearshore waters of Maui
for optimizing the correlation with in situ data and increasing
the overall number of satellite matchups. In onshore waters in
Maui, VIIRS data aggregated with this method follow similar
climatological patterns as in situ turbidity measurements over a
3-years period. In Puerto Rico, the overall correlations between
VIIRS data and in situ data were lower, but R2 and matchups were
maximized at longer time and space scales. The complementary
nature of satellite and in situwater quality measurements enhance
our understanding of coastal ecosystems and should continue to
be used together in management plans and other applications.
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Supplementary Figure 1 | Range of normalized Ed(490) from three separate
casts using a Sea-Bird Scientific HyperPro II optical profiler at (A) Station 15 in
West Maui on November 28, 2018 and (B) Station LP6 in La Parguera, Puerto
Rico on December 6, 2017.

Supplementary Figure 2 | Temporal median of the time series of (red, right axis)
in situ turbidity (NTU) and (black, left axis) spatiotemporal (median of 5-pixels,
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7-days cube) satellite Kd(490) (m−1) for each site by index number in West Maui,
HI. Site latitude increases from left to right with index number (see
Figure 4, left panel).

Supplementary Figure 3 | (A) Correlation matrix of in situ and VIIRS measures of
log-transformed Kd(490) over a 3-days in situ measurement period at 11 West
Maui locations (Figure 2) for a range of spatial buffers and time windows applied
to the satellite data. The outer horizontal axis indicates the spatial buffer and the
outer vertical axis represents the time window, with icons on each representing the
space (or time) domain. Together, the time window and spatial buffer make the
spatiotemporal cube of satellite data from which values are compiled (gray circles)
and the median of those is calculated (black circles). Shading of each plot
represents the RRMSE value of individual regression lines between the median
satellite observation and the in situ observations. For each scatterplot, the
horizontal axis values are the in situ observations from the sites in Figure 2, all of
which were taken during November 26–28, 2018, and the vertical axis values are
all satellite observations associated with that in situ measurement within the time
window and space buffer indicated. The number in the upper left corner is the
RRMSE value for that plot; the number in the bottom right corner is the total
number of satellite observations (gray circles) displayed in the plot. (B) Enlarged
scatterplot for recommended spatiotemporal aggregation (5-pixels, 7-days). Axis
tick values in (B) are the same as all scatterplots in (A) and major tick marks are
bold for all scatterplots.

Supplementary Figure 4 | (A) Correlation matrix of in situ and VIIRS measures of
log-transformed Kd(490) over a 4-years in situ measurement period at one
southwest Puerto Rico location (Figure 5) for a range of spatial buffers and time
windows applied to the satellite data. The outer horizontal axis indicates the
spatial buffer and the outer vertical axis represents the time window, with icons on
each representing the space (or time) domain. Together, the time window and
spatial buffer make the spatiotemporal cube of satellite data from which satellite

values are compiled (gray circles) and the median of those is calculated. Shading
of each plot represents the RRMSE value of individual regression lines between
the median satellite observation and the in situ observations. Scatterplots with two
or fewer matchups are excluded. For each scatterplot, the horizontal axis values
are the in situ observations from the site in Figure 3, which were taken between
2016 and 2019, and the vertical axis values are all satellite observations
associated with that in situ measurement within the time window and space buffer
indicated. The number in the upper left corner is the RRMSE value for that plot;
the number in the bottom right corner is the total number of satellite observations
(gray circles) displayed in the plot. (B) Enlarged scatterplot for recommended
spatiotemporal aggregation (13-pixels, 13-days). Axis tick values in (B) are the
same as all scatterplots in (A) and major tick marks are bold for all scatterplots.

Supplementary Table 1 | Site names, locations, and average depths of in situ
measurement sites. The date the Maui samples were taken is November 28, 2018
and the date of the La Parguera sample is December 6, 2017. Apparent optical
depth was calculated using the formula 1.3/Kd (Bailey and Werdell, 2006). Rows
with a gray background are considered optically shallow since the apparent
optical depth exceeds the site average depth.

Supplementary Table 2 | West Maui, HI sites where in situ turbidity samples
were taken sorted by descending latitude as they appear in Figure 4. N
Observations is the total number of in situ observations, Matched Pairs is the
number of in situ observations with corresponding satellite observations (within the
5-pixels, 7-days data cube), and Distance to Satellite Pixel is the distance of the
in situ observation to the center point of the 750 m satellite pixel containing the
sampling site (decimal degrees).

Supplementary Table 3 | List of Level-2 flags used for quality control during the
binning process and corresponding bit values that make up the bitmask
for flagging data.
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